Downloaded clean version of Coremark from EEMBC github page with which to benchmark RISCV-Wally

This commit is contained in:
Abe 2021-07-13 13:37:40 -04:00
parent 90eb84cc61
commit d71b99383f
24 changed files with 3751 additions and 2561 deletions

View File

@ -3,6 +3,8 @@
CoreMark's primary goals are simplicity and providing a method for testing only a processor's core features. For more information about EEMBC's comprehensive embedded benchmark suites, please see www.eembc.org.
For a more compute-intensive version of CoreMark that uses larger datasets and execution loops taken from common applications, please check out EEMBC's [CoreMark-PRO](https://www.github.com/eembc/coremark-pro) benchmark, also on GitHub.
# Building and Running
To build and run the benchmark, type
@ -83,7 +85,9 @@ Use `XCFLAGS=-DMULTITHREAD=N` where N is number of threads to run in parallel. S
% make XCFLAGS="-DMULTITHREAD=4 -DUSE_PTHREAD"
~~~
Above will compile the benchmark for execution on 4 cores, using POSIX Threads API.
The above will compile the benchmark for execution on 4 cores, using POSIX Threads API.
Note: linking may fail on the previous command if your linker does not automatically add the `pthread` library. If you encounter `undefined reference` errors, please modify the `core_portme.mak` file for your platform, (e.g. `linux/core_portme.mak`) and add `-lpthread` to the `LFLAGS_END` parameter.
# Run Parameters for the Benchmark Executable
CoreMark's executable takes several parameters as follows (but only if `main()` accepts arguments):
@ -109,7 +113,7 @@ The default for such a target when testing different configurations could be:
# Submitting Results
CoreMark results can be submitted on the web. Open a web browser and go to https://www.eembc.org/coremark/login.php?url=enter_score.php. After registering an account you may enter a score.
CoreMark results can be submitted on the web. Open a web browser and go to the [submission page](https://www.eembc.org/coremark/submit.php). After registering an account you may enter a score.
# Run Rules
What is and is not allowed.

157
riscv-coremark/coremark/barebones/core_portme.c Executable file → Normal file
View File

@ -19,110 +19,135 @@ Original Author: Shay Gal-on
#include "core_portme.h"
#if VALIDATION_RUN
volatile ee_s32 seed1_volatile=0x3415;
volatile ee_s32 seed2_volatile=0x3415;
volatile ee_s32 seed3_volatile=0x66;
volatile ee_s32 seed1_volatile = 0x3415;
volatile ee_s32 seed2_volatile = 0x3415;
volatile ee_s32 seed3_volatile = 0x66;
#endif
#if PERFORMANCE_RUN
volatile ee_s32 seed1_volatile=0x0;
volatile ee_s32 seed2_volatile=0x0;
volatile ee_s32 seed3_volatile=0x66;
volatile ee_s32 seed1_volatile = 0x0;
volatile ee_s32 seed2_volatile = 0x0;
volatile ee_s32 seed3_volatile = 0x66;
#endif
#if PROFILE_RUN
volatile ee_s32 seed1_volatile=0x8;
volatile ee_s32 seed2_volatile=0x8;
volatile ee_s32 seed3_volatile=0x8;
volatile ee_s32 seed1_volatile = 0x8;
volatile ee_s32 seed2_volatile = 0x8;
volatile ee_s32 seed3_volatile = 0x8;
#endif
volatile ee_s32 seed4_volatile=ITERATIONS;
volatile ee_s32 seed5_volatile=0;
volatile ee_s32 seed4_volatile = ITERATIONS;
volatile ee_s32 seed5_volatile = 0;
/* Porting : Timing functions
How to capture time and convert to seconds must be ported to whatever is supported by the platform.
e.g. Read value from on board RTC, read value from cpu clock cycles performance counter etc.
Sample implementation for standard time.h and windows.h definitions included.
How to capture time and convert to seconds must be ported to whatever is
supported by the platform. e.g. Read value from on board RTC, read value from
cpu clock cycles performance counter etc. Sample implementation for standard
time.h and windows.h definitions included.
*/
CORETIMETYPE barebones_clock() {
#error "You must implement a method to measure time in barebones_clock()! This function should return current time.\n"
CORETIMETYPE
barebones_clock()
{
#error \
"You must implement a method to measure time in barebones_clock()! This function should return current time.\n"
}
/* Define : TIMER_RES_DIVIDER
Divider to trade off timer resolution and total time that can be measured.
Divider to trade off timer resolution and total time that can be
measured.
Use lower values to increase resolution, but make sure that overflow does not occur.
If there are issues with the return value overflowing, increase this value.
*/
#define GETMYTIME(_t) (*_t=barebones_clock())
#define MYTIMEDIFF(fin,ini) ((fin)-(ini))
#define TIMER_RES_DIVIDER 1
Use lower values to increase resolution, but make sure that overflow
does not occur. If there are issues with the return value overflowing,
increase this value.
*/
#define GETMYTIME(_t) (*_t = barebones_clock())
#define MYTIMEDIFF(fin, ini) ((fin) - (ini))
#define TIMER_RES_DIVIDER 1
#define SAMPLE_TIME_IMPLEMENTATION 1
#define EE_TICKS_PER_SEC (CLOCKS_PER_SEC / TIMER_RES_DIVIDER)
#define EE_TICKS_PER_SEC (CLOCKS_PER_SEC / TIMER_RES_DIVIDER)
/** Define Host specific (POSIX), or target specific global time variables. */
static CORETIMETYPE start_time_val, stop_time_val;
/* Function : start_time
This function will be called right before starting the timed portion of the benchmark.
This function will be called right before starting the timed portion of
the benchmark.
Implementation may be capturing a system timer (as implemented in the example code)
or zeroing some system parameters - e.g. setting the cpu clocks cycles to 0.
Implementation may be capturing a system timer (as implemented in the
example code) or zeroing some system parameters - e.g. setting the cpu clocks
cycles to 0.
*/
void start_time(void) {
GETMYTIME(&start_time_val );
void
start_time(void)
{
GETMYTIME(&start_time_val);
}
/* Function : stop_time
This function will be called right after ending the timed portion of the benchmark.
This function will be called right after ending the timed portion of the
benchmark.
Implementation may be capturing a system timer (as implemented in the example code)
or other system parameters - e.g. reading the current value of cpu cycles counter.
Implementation may be capturing a system timer (as implemented in the
example code) or other system parameters - e.g. reading the current value of
cpu cycles counter.
*/
void stop_time(void) {
GETMYTIME(&stop_time_val );
void
stop_time(void)
{
GETMYTIME(&stop_time_val);
}
/* Function : get_time
Return an abstract "ticks" number that signifies time on the system.
Return an abstract "ticks" number that signifies time on the system.
Actual value returned may be cpu cycles, milliseconds or any other value,
as long as it can be converted to seconds by <time_in_secs>.
This methodology is taken to accomodate any hardware or simulated platform.
The sample implementation returns millisecs by default,
and the resolution is controlled by <TIMER_RES_DIVIDER>
Actual value returned may be cpu cycles, milliseconds or any other
value, as long as it can be converted to seconds by <time_in_secs>. This
methodology is taken to accomodate any hardware or simulated platform. The
sample implementation returns millisecs by default, and the resolution is
controlled by <TIMER_RES_DIVIDER>
*/
CORE_TICKS get_time(void) {
CORE_TICKS elapsed=(CORE_TICKS)(MYTIMEDIFF(stop_time_val, start_time_val));
return elapsed;
CORE_TICKS
get_time(void)
{
CORE_TICKS elapsed
= (CORE_TICKS)(MYTIMEDIFF(stop_time_val, start_time_val));
return elapsed;
}
/* Function : time_in_secs
Convert the value returned by get_time to seconds.
Convert the value returned by get_time to seconds.
The <secs_ret> type is used to accomodate systems with no support for floating point.
Default implementation implemented by the EE_TICKS_PER_SEC macro above.
The <secs_ret> type is used to accomodate systems with no support for
floating point. Default implementation implemented by the EE_TICKS_PER_SEC
macro above.
*/
secs_ret time_in_secs(CORE_TICKS ticks) {
secs_ret retval=((secs_ret)ticks) / (secs_ret)EE_TICKS_PER_SEC;
return retval;
secs_ret
time_in_secs(CORE_TICKS ticks)
{
secs_ret retval = ((secs_ret)ticks) / (secs_ret)EE_TICKS_PER_SEC;
return retval;
}
ee_u32 default_num_contexts=1;
ee_u32 default_num_contexts = 1;
/* Function : portable_init
Target specific initialization code
Test for some common mistakes.
Target specific initialization code
Test for some common mistakes.
*/
void portable_init(core_portable *p, int *argc, char *argv[])
void
portable_init(core_portable *p, int *argc, char *argv[])
{
#error "Call board initialization routines in portable init (if needed), in particular initialize UART!\n"
if (sizeof(ee_ptr_int) != sizeof(ee_u8 *)) {
ee_printf("ERROR! Please define ee_ptr_int to a type that holds a pointer!\n");
}
if (sizeof(ee_u32) != 4) {
ee_printf("ERROR! Please define ee_u32 to a 32b unsigned type!\n");
}
p->portable_id=1;
#error \
"Call board initialization routines in portable init (if needed), in particular initialize UART!\n"
if (sizeof(ee_ptr_int) != sizeof(ee_u8 *))
{
ee_printf(
"ERROR! Please define ee_ptr_int to a type that holds a "
"pointer!\n");
}
if (sizeof(ee_u32) != 4)
{
ee_printf("ERROR! Please define ee_u32 to a 32b unsigned type!\n");
}
p->portable_id = 1;
}
/* Function : portable_fini
Target specific final code
Target specific final code
*/
void portable_fini(core_portable *p)
void
portable_fini(core_portable *p)
{
p->portable_id=0;
p->portable_id = 0;
}

145
riscv-coremark/coremark/barebones/core_portme.h Executable file → Normal file
View File

@ -16,7 +16,8 @@ limitations under the License.
Original Author: Shay Gal-on
*/
/* Topic : Description
This file contains configuration constants required to execute on different platforms
This file contains configuration constants required to execute on
different platforms
*/
#ifndef CORE_PORTME_H
#define CORE_PORTME_H
@ -24,170 +25,180 @@ Original Author: Shay Gal-on
/* Data types and settings */
/************************/
/* Configuration : HAS_FLOAT
Define to 1 if the platform supports floating point.
Define to 1 if the platform supports floating point.
*/
#ifndef HAS_FLOAT
#define HAS_FLOAT 1
#endif
/* Configuration : HAS_TIME_H
Define to 1 if platform has the time.h header file,
and implementation of functions thereof.
Define to 1 if platform has the time.h header file,
and implementation of functions thereof.
*/
#ifndef HAS_TIME_H
#define HAS_TIME_H 1
#endif
/* Configuration : USE_CLOCK
Define to 1 if platform has the time.h header file,
and implementation of functions thereof.
Define to 1 if platform has the time.h header file,
and implementation of functions thereof.
*/
#ifndef USE_CLOCK
#define USE_CLOCK 1
#endif
/* Configuration : HAS_STDIO
Define to 1 if the platform has stdio.h.
Define to 1 if the platform has stdio.h.
*/
#ifndef HAS_STDIO
#define HAS_STDIO 0
#endif
/* Configuration : HAS_PRINTF
Define to 1 if the platform has stdio.h and implements the printf function.
Define to 1 if the platform has stdio.h and implements the printf
function.
*/
#ifndef HAS_PRINTF
#define HAS_PRINTF 0
#endif
/* Definitions : COMPILER_VERSION, COMPILER_FLAGS, MEM_LOCATION
Initialize these strings per platform
Initialize these strings per platform
*/
#ifndef COMPILER_VERSION
#ifdef __GNUC__
#define COMPILER_VERSION "GCC"__VERSION__
#else
#define COMPILER_VERSION "Please put compiler version here (e.g. gcc 4.1)"
#endif
#ifdef __GNUC__
#define COMPILER_VERSION "GCC"__VERSION__
#else
#define COMPILER_VERSION "Please put compiler version here (e.g. gcc 4.1)"
#endif
#endif
#ifndef COMPILER_FLAGS
#define COMPILER_FLAGS FLAGS_STR /* "Please put compiler flags here (e.g. -o3)" */
#define COMPILER_FLAGS \
FLAGS_STR /* "Please put compiler flags here (e.g. -o3)" */
#endif
#ifndef MEM_LOCATION
#define MEM_LOCATION "STACK"
#define MEM_LOCATION "STACK"
#endif
/* Data Types :
To avoid compiler issues, define the data types that need ot be used for 8b, 16b and 32b in <core_portme.h>.
To avoid compiler issues, define the data types that need ot be used for
8b, 16b and 32b in <core_portme.h>.
*Imprtant* :
ee_ptr_int needs to be the data type used to hold pointers, otherwise coremark may fail!!!
*Imprtant* :
ee_ptr_int needs to be the data type used to hold pointers, otherwise
coremark may fail!!!
*/
typedef signed short ee_s16;
typedef signed short ee_s16;
typedef unsigned short ee_u16;
typedef signed int ee_s32;
typedef double ee_f32;
typedef unsigned char ee_u8;
typedef unsigned int ee_u32;
typedef ee_u32 ee_ptr_int;
typedef size_t ee_size_t;
typedef signed int ee_s32;
typedef double ee_f32;
typedef unsigned char ee_u8;
typedef unsigned int ee_u32;
typedef ee_u32 ee_ptr_int;
typedef size_t ee_size_t;
#define NULL ((void *)0)
/* align_mem :
This macro is used to align an offset to point to a 32b value. It is used in the Matrix algorithm to initialize the input memory blocks.
This macro is used to align an offset to point to a 32b value. It is
used in the Matrix algorithm to initialize the input memory blocks.
*/
#define align_mem(x) (void *)(4 + (((ee_ptr_int)(x) - 1) & ~3))
#define align_mem(x) (void *)(4 + (((ee_ptr_int)(x)-1) & ~3))
/* Configuration : CORE_TICKS
Define type of return from the timing functions.
Define type of return from the timing functions.
*/
#define CORETIMETYPE ee_u32
typedef ee_u32 CORE_TICKS;
/* Configuration : SEED_METHOD
Defines method to get seed values that cannot be computed at compile time.
Defines method to get seed values that cannot be computed at compile
time.
Valid values :
SEED_ARG - from command line.
SEED_FUNC - from a system function.
SEED_VOLATILE - from volatile variables.
Valid values :
SEED_ARG - from command line.
SEED_FUNC - from a system function.
SEED_VOLATILE - from volatile variables.
*/
#ifndef SEED_METHOD
#define SEED_METHOD SEED_VOLATILE
#endif
/* Configuration : MEM_METHOD
Defines method to get a block of memry.
Defines method to get a block of memry.
Valid values :
MEM_MALLOC - for platforms that implement malloc and have malloc.h.
MEM_STATIC - to use a static memory array.
MEM_STACK - to allocate the data block on the stack (NYI).
Valid values :
MEM_MALLOC - for platforms that implement malloc and have malloc.h.
MEM_STATIC - to use a static memory array.
MEM_STACK - to allocate the data block on the stack (NYI).
*/
#ifndef MEM_METHOD
#define MEM_METHOD MEM_STACK
#endif
/* Configuration : MULTITHREAD
Define for parallel execution
Define for parallel execution
Valid values :
1 - only one context (default).
N>1 - will execute N copies in parallel.
Valid values :
1 - only one context (default).
N>1 - will execute N copies in parallel.
Note :
If this flag is defined to more then 1, an implementation for launching parallel contexts must be defined.
Note :
If this flag is defined to more then 1, an implementation for launching
parallel contexts must be defined.
Two sample implementations are provided. Use <USE_PTHREAD> or <USE_FORK> to enable them.
Two sample implementations are provided. Use <USE_PTHREAD> or <USE_FORK>
to enable them.
It is valid to have a different implementation of <core_start_parallel> and <core_end_parallel> in <core_portme.c>,
to fit a particular architecture.
It is valid to have a different implementation of <core_start_parallel>
and <core_end_parallel> in <core_portme.c>, to fit a particular architecture.
*/
#ifndef MULTITHREAD
#define MULTITHREAD 1
#define USE_PTHREAD 0
#define USE_FORK 0
#define USE_SOCKET 0
#define USE_FORK 0
#define USE_SOCKET 0
#endif
/* Configuration : MAIN_HAS_NOARGC
Needed if platform does not support getting arguments to main.
Needed if platform does not support getting arguments to main.
Valid values :
0 - argc/argv to main is supported
1 - argc/argv to main is not supported
Valid values :
0 - argc/argv to main is supported
1 - argc/argv to main is not supported
Note :
This flag only matters if MULTITHREAD has been defined to a value greater then 1.
Note :
This flag only matters if MULTITHREAD has been defined to a value
greater then 1.
*/
#ifndef MAIN_HAS_NOARGC
#define MAIN_HAS_NOARGC 0
#endif
/* Configuration : MAIN_HAS_NORETURN
Needed if platform does not support returning a value from main.
Needed if platform does not support returning a value from main.
Valid values :
0 - main returns an int, and return value will be 0.
1 - platform does not support returning a value from main
Valid values :
0 - main returns an int, and return value will be 0.
1 - platform does not support returning a value from main
*/
#ifndef MAIN_HAS_NORETURN
#define MAIN_HAS_NORETURN 0
#endif
/* Variable : default_num_contexts
Not used for this simple port, must cintain the value 1.
Not used for this simple port, must cintain the value 1.
*/
extern ee_u32 default_num_contexts;
typedef struct CORE_PORTABLE_S {
ee_u8 portable_id;
typedef struct CORE_PORTABLE_S
{
ee_u8 portable_id;
} core_portable;
/* target specific init/fini */
void portable_init(core_portable *p, int *argc, char *argv[]);
void portable_fini(core_portable *p);
#if !defined(PROFILE_RUN) && !defined(PERFORMANCE_RUN) && !defined(VALIDATION_RUN)
#if (TOTAL_DATA_SIZE==1200)
#if !defined(PROFILE_RUN) && !defined(PERFORMANCE_RUN) \
&& !defined(VALIDATION_RUN)
#if (TOTAL_DATA_SIZE == 1200)
#define PROFILE_RUN 1
#elif (TOTAL_DATA_SIZE==2000)
#elif (TOTAL_DATA_SIZE == 2000)
#define PERFORMANCE_RUN 1
#else
#define VALIDATION_RUN 1

164
riscv-coremark/coremark/barebones/cvt.c Executable file → Normal file
View File

@ -17,101 +17,111 @@ limitations under the License.
#define CVTBUFSIZE 80
static char CVTBUF[CVTBUFSIZE];
static char *cvt(double arg, int ndigits, int *decpt, int *sign, char *buf, int eflag)
static char *
cvt(double arg, int ndigits, int *decpt, int *sign, char *buf, int eflag)
{
int r2;
double fi, fj;
char *p, *p1;
int r2;
double fi, fj;
char * p, *p1;
if (ndigits < 0) ndigits = 0;
if (ndigits >= CVTBUFSIZE - 1) ndigits = CVTBUFSIZE - 2;
r2 = 0;
*sign = 0;
p = &buf[0];
if (arg < 0)
{
*sign = 1;
arg = -arg;
}
arg = modf(arg, &fi);
p1 = &buf[CVTBUFSIZE];
if (ndigits < 0)
ndigits = 0;
if (ndigits >= CVTBUFSIZE - 1)
ndigits = CVTBUFSIZE - 2;
r2 = 0;
*sign = 0;
p = &buf[0];
if (arg < 0)
{
*sign = 1;
arg = -arg;
}
arg = modf(arg, &fi);
p1 = &buf[CVTBUFSIZE];
if (fi != 0)
{
p1 = &buf[CVTBUFSIZE];
while (fi != 0)
if (fi != 0)
{
fj = modf(fi / 10, &fi);
*--p1 = (int)((fj + .03) * 10) + '0';
r2++;
p1 = &buf[CVTBUFSIZE];
while (fi != 0)
{
fj = modf(fi / 10, &fi);
*--p1 = (int)((fj + .03) * 10) + '0';
r2++;
}
while (p1 < &buf[CVTBUFSIZE])
*p++ = *p1++;
}
while (p1 < &buf[CVTBUFSIZE]) *p++ = *p1++;
}
else if (arg > 0)
{
while ((fj = arg * 10) < 1)
else if (arg > 0)
{
arg = fj;
r2--;
while ((fj = arg * 10) < 1)
{
arg = fj;
r2--;
}
}
}
p1 = &buf[ndigits];
if (eflag == 0) p1 += r2;
*decpt = r2;
if (p1 < &buf[0])
{
buf[0] = '\0';
p1 = &buf[ndigits];
if (eflag == 0)
p1 += r2;
*decpt = r2;
if (p1 < &buf[0])
{
buf[0] = '\0';
return buf;
}
while (p <= p1 && p < &buf[CVTBUFSIZE])
{
arg *= 10;
arg = modf(arg, &fj);
*p++ = (int)fj + '0';
}
if (p1 >= &buf[CVTBUFSIZE])
{
buf[CVTBUFSIZE - 1] = '\0';
return buf;
}
p = p1;
*p1 += 5;
while (*p1 > '9')
{
*p1 = '0';
if (p1 > buf)
++*--p1;
else
{
*p1 = '1';
(*decpt)++;
if (eflag == 0)
{
if (p > buf)
*p = '0';
p++;
}
}
}
*p = '\0';
return buf;
}
while (p <= p1 && p < &buf[CVTBUFSIZE])
{
arg *= 10;
arg = modf(arg, &fj);
*p++ = (int) fj + '0';
}
if (p1 >= &buf[CVTBUFSIZE])
{
buf[CVTBUFSIZE - 1] = '\0';
return buf;
}
p = p1;
*p1 += 5;
while (*p1 > '9')
{
*p1 = '0';
if (p1 > buf)
++*--p1;
else
{
*p1 = '1';
(*decpt)++;
if (eflag == 0)
{
if (p > buf) *p = '0';
p++;
}
}
}
*p = '\0';
return buf;
}
char *ecvt(double arg, int ndigits, int *decpt, int *sign)
char *
ecvt(double arg, int ndigits, int *decpt, int *sign)
{
return cvt(arg, ndigits, decpt, sign, CVTBUF, 1);
return cvt(arg, ndigits, decpt, sign, CVTBUF, 1);
}
char *ecvtbuf(double arg, int ndigits, int *decpt, int *sign, char *buf)
char *
ecvtbuf(double arg, int ndigits, int *decpt, int *sign, char *buf)
{
return cvt(arg, ndigits, decpt, sign, buf, 1);
return cvt(arg, ndigits, decpt, sign, buf, 1);
}
char *fcvt(double arg, int ndigits, int *decpt, int *sign)
char *
fcvt(double arg, int ndigits, int *decpt, int *sign)
{
return cvt(arg, ndigits, decpt, sign, CVTBUF, 0);
return cvt(arg, ndigits, decpt, sign, CVTBUF, 0);
}
char *fcvtbuf(double arg, int ndigits, int *decpt, int *sign, char *buf)
char *
fcvtbuf(double arg, int ndigits, int *decpt, int *sign, char *buf)
{
return cvt(arg, ndigits, decpt, sign, buf, 0);
return cvt(arg, ndigits, decpt, sign, buf, 0);
}

1063
riscv-coremark/coremark/barebones/ee_printf.c Executable file → Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -17,383 +17,431 @@ Original Author: Shay Gal-on
*/
/* File: core_main.c
This file contains the framework to acquire a block of memory, seed initial parameters, tun t he benchmark and report the results.
This file contains the framework to acquire a block of memory, seed
initial parameters, tun t he benchmark and report the results.
*/
#include "coremark.h"
/* Function: iterate
Run the benchmark for a specified number of iterations.
Run the benchmark for a specified number of iterations.
Operation:
For each type of benchmarked algorithm:
a - Initialize the data block for the algorithm.
b - Execute the algorithm N times.
Operation:
For each type of benchmarked algorithm:
a - Initialize the data block for the algorithm.
b - Execute the algorithm N times.
Returns:
NULL.
Returns:
NULL.
*/
static ee_u16 list_known_crc[] = {(ee_u16)0xd4b0,(ee_u16)0x3340,(ee_u16)0x6a79,(ee_u16)0xe714,(ee_u16)0xe3c1};
static ee_u16 matrix_known_crc[] = {(ee_u16)0xbe52,(ee_u16)0x1199,(ee_u16)0x5608,(ee_u16)0x1fd7,(ee_u16)0x0747};
static ee_u16 state_known_crc[] = {(ee_u16)0x5e47,(ee_u16)0x39bf,(ee_u16)0xe5a4,(ee_u16)0x8e3a,(ee_u16)0x8d84};
int gg_printf(const char *fmt, ...);
int sendstring(const char *p);
void _send_char(char c);
void *iterate(void *pres) {
ee_u32 i;
ee_u16 crc;
core_results *res=(core_results *)pres;
ee_u32 iterations=res->iterations;
res->crc=0;
res->crclist=0;
res->crcmatrix=0;
res->crcstate=0;
static ee_u16 list_known_crc[] = { (ee_u16)0xd4b0,
(ee_u16)0x3340,
(ee_u16)0x6a79,
(ee_u16)0xe714,
(ee_u16)0xe3c1 };
static ee_u16 matrix_known_crc[] = { (ee_u16)0xbe52,
(ee_u16)0x1199,
(ee_u16)0x5608,
(ee_u16)0x1fd7,
(ee_u16)0x0747 };
static ee_u16 state_known_crc[] = { (ee_u16)0x5e47,
(ee_u16)0x39bf,
(ee_u16)0xe5a4,
(ee_u16)0x8e3a,
(ee_u16)0x8d84 };
void *
iterate(void *pres)
{
ee_u32 i;
ee_u16 crc;
core_results *res = (core_results *)pres;
ee_u32 iterations = res->iterations;
res->crc = 0;
res->crclist = 0;
res->crcmatrix = 0;
res->crcstate = 0;
for (i=0; i<iterations; i++) {
crc=core_bench_list(res,1);
res->crc=crcu16(crc,res->crc);
crc=core_bench_list(res,-1);
res->crc=crcu16(crc,res->crc);
if (i==0) res->crclist=res->crc;
}
return NULL;
for (i = 0; i < iterations; i++)
{
crc = core_bench_list(res, 1);
res->crc = crcu16(crc, res->crc);
crc = core_bench_list(res, -1);
res->crc = crcu16(crc, res->crc);
if (i == 0)
res->crclist = res->crc;
}
return NULL;
}
#if (SEED_METHOD==SEED_ARG)
#if (SEED_METHOD == SEED_ARG)
ee_s32 get_seed_args(int i, int argc, char *argv[]);
#define get_seed(x) (ee_s16)get_seed_args(x,argc,argv)
#define get_seed_32(x) get_seed_args(x,argc,argv)
#define get_seed(x) (ee_s16) get_seed_args(x, argc, argv)
#define get_seed_32(x) get_seed_args(x, argc, argv)
#else /* via function or volatile */
ee_s32 get_seed_32(int i);
#define get_seed(x) (ee_s16)get_seed_32(x)
#define get_seed(x) (ee_s16) get_seed_32(x)
#endif
#if (MEM_METHOD==MEM_STATIC)
#if (MEM_METHOD == MEM_STATIC)
ee_u8 static_memblk[TOTAL_DATA_SIZE];
#endif
char *mem_name[3] = {"Static","Heap","Stack"};
char *mem_name[3] = { "Static", "Heap", "Stack" };
/* Function: main
Main entry routine for the benchmark.
This function is responsible for the following steps:
Main entry routine for the benchmark.
This function is responsible for the following steps:
1 - Initialize input seeds from a source that cannot be determined at compile time.
2 - Initialize memory block for use.
3 - Run and time the benchmark.
4 - Report results, testing the validity of the output if the seeds are known.
1 - Initialize input seeds from a source that cannot be determined at
compile time. 2 - Initialize memory block for use. 3 - Run and time the
benchmark. 4 - Report results, testing the validity of the output if the
seeds are known.
Arguments:
1 - first seed : Any value
2 - second seed : Must be identical to first for iterations to be identical
3 - third seed : Any value, should be at least an order of magnitude less then the input size, but bigger then 32.
4 - Iterations : Special, if set to 0, iterations will be automatically determined such that the benchmark will run between 10 to 100 secs
Arguments:
1 - first seed : Any value
2 - second seed : Must be identical to first for iterations to be
identical 3 - third seed : Any value, should be at least an order of
magnitude less then the input size, but bigger then 32. 4 - Iterations :
Special, if set to 0, iterations will be automatically determined such that
the benchmark will run between 10 to 100 secs
*/
#if MAIN_HAS_NOARGC
MAIN_RETURN_TYPE main(void) {
int argc=0;
char *argv[1];
MAIN_RETURN_TYPE
main(void)
{
int argc = 0;
char *argv[1];
#else
MAIN_RETURN_TYPE main(int argc, char *argv[]) {
MAIN_RETURN_TYPE
main(int argc, char *argv[])
{
#endif
//const char s[] = "Elizabeth";
ee_printf("eeprint");
//ee_printf("Trying to print: %d", 0);
/*gg_printf("Elizabeth");*/
//sendstring("Elizabeth");
//sendstring(s);
//return(0);
ee_u16 i,j=0,num_algorithms=0;
ee_s16 known_id=-1,total_errors=0;
ee_u16 seedcrc=0;
CORE_TICKS total_time;
core_results results[MULTITHREAD];
#if (MEM_METHOD==MEM_STACK)
ee_u8 stack_memblock[TOTAL_DATA_SIZE*MULTITHREAD];
ee_printf("SHOWTIME\n");
ee_u16 i, j = 0, num_algorithms = 0;
ee_s16 known_id = -1, total_errors = 0;
ee_u16 seedcrc = 0;
CORE_TICKS total_time;
core_results results[MULTITHREAD];
#if (MEM_METHOD == MEM_STACK)
ee_u8 stack_memblock[TOTAL_DATA_SIZE * MULTITHREAD];
#endif
/* first call any initializations needed */
portable_init(&(results[0].port), &argc, argv);
/* First some checks to make sure benchmark will run ok */
if (sizeof(struct list_head_s)>128) {
ee_printf("list_head structure too big for comparable data!\n");
return MAIN_RETURN_VAL;
}
results[0].seed1=get_seed(1);
results[0].seed2=get_seed(2);
results[0].seed3=get_seed(3);
results[0].iterations=get_seed_32(4);
/* first call any initializations needed */
portable_init(&(results[0].port), &argc, argv);
/* First some checks to make sure benchmark will run ok */
if (sizeof(struct list_head_s) > 128)
{
ee_printf("list_head structure too big for comparable data!\n");
return MAIN_RETURN_VAL;
}
results[0].seed1 = get_seed(1);
results[0].seed2 = get_seed(2);
results[0].seed3 = get_seed(3);
results[0].iterations = get_seed_32(4);
#if CORE_DEBUG
results[0].iterations=1;
results[0].iterations = 1;
#endif
results[0].execs=get_seed_32(5);
if (results[0].execs==0) { /* if not supplied, execute all algorithms */
results[0].execs=ALL_ALGORITHMS_MASK;
}
/* put in some default values based on one seed only for easy testing */
if ((results[0].seed1==0) && (results[0].seed2==0) && (results[0].seed3==0)) { /* validation run */
results[0].seed1=0;
results[0].seed2=0;
results[0].seed3=0x66;
}
if ((results[0].seed1==1) && (results[0].seed2==0) && (results[0].seed3==0)) { /* perfromance run */
results[0].seed1=0x3415;
results[0].seed2=0x3415;
results[0].seed3=0x66;
}
#if (MEM_METHOD==MEM_STATIC)
results[0].memblock[0]=(void *)static_memblk;
results[0].size=TOTAL_DATA_SIZE;
ee_printf("%d \n total data size", TOTAL_DATA_SIZE);
results[0].err=0;
#if (MULTITHREAD>1)
#error "Cannot use a static data area with multiple contexts!"
#endif
#elif (MEM_METHOD==MEM_MALLOC)
for (i=0 ; i<MULTITHREAD; i++) {
ee_s32 malloc_override=get_seed(7);
if (malloc_override != 0)
results[i].size=malloc_override;
ee_printf("%d \n malloc datasize", malloc_override);
else
results[i].size=TOTAL_DATA_SIZE;
results[i].memblock[0]=portable_malloc(results[i].size);
results[i].seed1=results[0].seed1;
results[i].seed2=results[0].seed2;
results[i].seed3=results[0].seed3;
results[i].err=0;
results[i].execs=results[0].execs;
}
#elif (MEM_METHOD==MEM_STACK)
for (i=0 ; i<MULTITHREAD; i++) {
results[i].memblock[0]=stack_memblock+i*TOTAL_DATA_SIZE;
results[i].size=TOTAL_DATA_SIZE;
results[i].seed1=results[0].seed1;
results[i].seed2=results[0].seed2;
results[i].seed3=results[0].seed3;
results[i].err=0;
results[i].execs=results[0].execs;
}
results[0].execs = get_seed_32(5);
if (results[0].execs == 0)
{ /* if not supplied, execute all algorithms */
results[0].execs = ALL_ALGORITHMS_MASK;
}
/* put in some default values based on one seed only for easy testing */
if ((results[0].seed1 == 0) && (results[0].seed2 == 0)
&& (results[0].seed3 == 0))
{ /* perfromance run */
results[0].seed1 = 0;
results[0].seed2 = 0;
results[0].seed3 = 0x66;
}
if ((results[0].seed1 == 1) && (results[0].seed2 == 0)
&& (results[0].seed3 == 0))
{ /* validation run */
results[0].seed1 = 0x3415;
results[0].seed2 = 0x3415;
results[0].seed3 = 0x66;
}
#if (MEM_METHOD == MEM_STATIC)
results[0].memblock[0] = (void *)static_memblk;
results[0].size = TOTAL_DATA_SIZE;
results[0].err = 0;
#if (MULTITHREAD > 1)
#error "Cannot use a static data area with multiple contexts!"
#endif
#elif (MEM_METHOD == MEM_MALLOC)
for (i = 0; i < MULTITHREAD; i++)
{
ee_s32 malloc_override = get_seed(7);
if (malloc_override != 0)
results[i].size = malloc_override;
else
results[i].size = TOTAL_DATA_SIZE;
results[i].memblock[0] = portable_malloc(results[i].size);
results[i].seed1 = results[0].seed1;
results[i].seed2 = results[0].seed2;
results[i].seed3 = results[0].seed3;
results[i].err = 0;
results[i].execs = results[0].execs;
}
#elif (MEM_METHOD == MEM_STACK)
for (i = 0; i < MULTITHREAD; i++)
{
results[i].memblock[0] = stack_memblock + i * TOTAL_DATA_SIZE;
results[i].size = TOTAL_DATA_SIZE;
results[i].seed1 = results[0].seed1;
results[i].seed2 = results[0].seed2;
results[i].seed3 = results[0].seed3;
results[i].err = 0;
results[i].execs = results[0].execs;
}
#else
#error "Please define a way to initialize a memory block."
#endif
/* Data init */
/* Find out how space much we have based on number of algorithms */
for (i=0; i<NUM_ALGORITHMS; i++) {
if ((1<<(ee_u32)i) & results[0].execs)
num_algorithms++;
}
for (i=0 ; i<MULTITHREAD; i++)
results[i].size=results[i].size/num_algorithms;
/* Assign pointers */
for (i=0; i<NUM_ALGORITHMS; i++) {
ee_u32 ctx;
if ((1<<(ee_u32)i) & results[0].execs) {
for (ctx=0 ; ctx<MULTITHREAD; ctx++)
results[ctx].memblock[i+1]=(char *)(results[ctx].memblock[0])+results[0].size*j;
j++;
}
}
/* call inits */
for (i=0 ; i<MULTITHREAD; i++) {
if (results[i].execs & ID_LIST) {
ee_printf("loop");
ee_printf("%d \n", MULTITHREAD);
ee_printf("%d \n sizethread \n", results[0].size);
/* Data init */
/* Find out how space much we have based on number of algorithms */
for (i = 0; i < NUM_ALGORITHMS; i++)
{
if ((1 << (ee_u32)i) & results[0].execs)
num_algorithms++;
}
for (i = 0; i < MULTITHREAD; i++)
results[i].size = results[i].size / num_algorithms;
/* Assign pointers */
for (i = 0; i < NUM_ALGORITHMS; i++)
{
ee_u32 ctx;
if ((1 << (ee_u32)i) & results[0].execs)
{
for (ctx = 0; ctx < MULTITHREAD; ctx++)
results[ctx].memblock[i + 1]
= (char *)(results[ctx].memblock[0]) + results[0].size * j;
j++;
}
}
/* call inits */
for (i = 0; i < MULTITHREAD; i++)
{
if (results[i].execs & ID_LIST)
{
results[i].list = core_list_init(
results[0].size, results[i].memblock[1], results[i].seed1);
}
if (results[i].execs & ID_MATRIX)
{
core_init_matrix(results[0].size,
results[i].memblock[2],
(ee_s32)results[i].seed1
| (((ee_s32)results[i].seed2) << 16),
&(results[i].mat));
}
if (results[i].execs & ID_STATE)
{
core_init_state(
results[0].size, results[i].seed1, results[i].memblock[3]);
}
}
results[i].list=core_list_init(results[0].size,results[i].memblock[1],results[i].seed1);
}
if (results[i].execs & ID_MATRIX) {
core_init_matrix(results[0].size, results[i].memblock[2], (ee_s32)results[i].seed1 | (((ee_s32)results[i].seed2) << 16), &(results[i].mat) );
}
if (results[i].execs & ID_STATE) {
core_init_state(results[0].size,results[i].seed1,results[i].memblock[3]);
}
}
/* automatically determine number of iterations if not set */
if (results[0].iterations==0) {
secs_ret secs_passed=0;
ee_u32 divisor;
results[0].iterations=1;
int iterationInc = 0;
ee_printf("\n\nENTERING ITERATION WHILE LOOP\n");
while (secs_passed < (secs_ret)1) {
if(iterationInc != 0)
{
results[0].iterations++;
}
ee_printf("iterations is %d\n", results[0].iterations);
start_time();
iterate(&results[0]);
stop_time();
secs_passed = time_in_secs(get_time());
int secs_passed_int = (int)secs_passed;
ee_printf("secs passed is %d\n", secs_passed_int);
iterationInc++;
}
ee_printf("LEAVING ITERATION WHILE LOOP!\n\n");
/* now we know it executes for at least 1 sec, set actual run time at about 10 secs */
divisor=(ee_u32)secs_passed;
ee_printf("divisor is %lu\n", divisor);
if (divisor==0) /* some machines cast float to int as 0 since this conversion is not defined by ANSI, but we know at least one second passed */
divisor=1;
results[0].iterations*=1+10/divisor;
ee_printf("iterations is %d\n", results[0].iterations);
}
/* perform actual benchmark */
ee_printf("iterations is %d\n", results[0].iterations);
ee_printf("Starting benchmark\n");
start_time();
#if (MULTITHREAD>1)
if (default_num_contexts>MULTITHREAD) {
default_num_contexts=MULTITHREAD;
}
for (i=0 ; i<default_num_contexts; i++) {
results[i].iterations=results[0].iterations;
results[i].execs=results[0].execs;
core_start_parallel(&results[i]);
}
for (i=0 ; i<default_num_contexts; i++) {
core_stop_parallel(&results[i]);
}
/* automatically determine number of iterations if not set */
if (results[0].iterations == 0)
{
secs_ret secs_passed = 0;
ee_u32 divisor;
results[0].iterations = 1;
while (secs_passed < (secs_ret)1)
{
results[0].iterations *= 10;
start_time();
iterate(&results[0]);
stop_time();
secs_passed = time_in_secs(get_time());
}
/* now we know it executes for at least 1 sec, set actual run time at
* about 10 secs */
divisor = (ee_u32)secs_passed;
if (divisor == 0) /* some machines cast float to int as 0 since this
conversion is not defined by ANSI, but we know at
least one second passed */
divisor = 1;
results[0].iterations *= 1 + 10 / divisor;
}
/* perform actual benchmark */
start_time();
#if (MULTITHREAD > 1)
if (default_num_contexts > MULTITHREAD)
{
default_num_contexts = MULTITHREAD;
}
for (i = 0; i < default_num_contexts; i++)
{
results[i].iterations = results[0].iterations;
results[i].execs = results[0].execs;
core_start_parallel(&results[i]);
}
for (i = 0; i < default_num_contexts; i++)
{
core_stop_parallel(&results[i]);
}
#else
iterate(&results[0]);
iterate(&results[0]);
#endif
stop_time();
total_time=get_time();
ee_printf("total time is %u\n", total_time);
ee_printf("ending benchmark\n");
/* get a function of the input to report */
seedcrc=crc16(results[0].seed1,seedcrc);
seedcrc=crc16(results[0].seed2,seedcrc);
seedcrc=crc16(results[0].seed3,seedcrc);
seedcrc=crc16(results[0].size,seedcrc);
stop_time();
total_time = get_time();
/* get a function of the input to report */
seedcrc = crc16(results[0].seed1, seedcrc);
seedcrc = crc16(results[0].seed2, seedcrc);
seedcrc = crc16(results[0].seed3, seedcrc);
seedcrc = crc16(results[0].size, seedcrc);
switch (seedcrc) { /* test known output for common seeds */
case 0x8a02: /* seed1=0, seed2=0, seed3=0x66, size 2000 per algorithm */
known_id=0;
ee_printf("6k performance run parameters for coremark.\n");
break;
case 0x7b05: /* seed1=0x3415, seed2=0x3415, seed3=0x66, size 2000 per algorithm */
known_id=1;
ee_printf("6k validation run parameters for coremark.\n");
break;
case 0x4eaf: /* seed1=0x8, seed2=0x8, seed3=0x8, size 400 per algorithm */
known_id=2;
ee_printf("Profile generation run parameters for coremark.\n");
break;
case 0xe9f5: /* seed1=0, seed2=0, seed3=0x66, size 666 per algorithm */
known_id=3;
ee_printf("2K performance run parameters for coremark.\n");
break;
case 0x18f2: /* seed1=0x3415, seed2=0x3415, seed3=0x66, size 666 per algorithm */
known_id=4;
ee_printf("2K validation run parameters for coremark.\n");
break;
default:
total_errors=-1;
break;
}
if (known_id>=0) {
for (i=0 ; i<default_num_contexts; i++) {
results[i].err=0;
if ((results[i].execs & ID_LIST) &&
(results[i].crclist!=list_known_crc[known_id])) {
ee_printf("[%u]ERROR! list crc 0x%04x - should be 0x%04x\n",i,results[i].crclist,list_known_crc[known_id]);
results[i].err++;
}
if ((results[i].execs & ID_MATRIX) &&
(results[i].crcmatrix!=matrix_known_crc[known_id])) {
ee_printf("[%u]ERROR! matrix crc 0x%04x - should be 0x%04x\n",i,results[i].crcmatrix,matrix_known_crc[known_id]);
results[i].err++;
}
if ((results[i].execs & ID_STATE) &&
(results[i].crcstate!=state_known_crc[known_id])) {
ee_printf("[%u]ERROR! state crc 0x%04x - should be 0x%04x\n",i,results[i].crcstate,state_known_crc[known_id]);
results[i].err++;
}
total_errors+=results[i].err;
}
}
total_errors+=check_data_types();
/* and report results */
//ee_printf("CoreMark Size : %lu\n", (long unsigned) results[0].size);
ee_printf("CoreMark Size : %lu\n", (long unsigned) results[0].size);
ee_printf("Total ticks : %lu\n", (long unsigned) total_time);
switch (seedcrc)
{ /* test known output for common seeds */
case 0x8a02: /* seed1=0, seed2=0, seed3=0x66, size 2000 per algorithm */
known_id = 0;
ee_printf("6k performance run parameters for coremark.\n");
break;
case 0x7b05: /* seed1=0x3415, seed2=0x3415, seed3=0x66, size 2000 per
algorithm */
known_id = 1;
ee_printf("6k validation run parameters for coremark.\n");
break;
case 0x4eaf: /* seed1=0x8, seed2=0x8, seed3=0x8, size 400 per algorithm
*/
known_id = 2;
ee_printf("Profile generation run parameters for coremark.\n");
break;
case 0xe9f5: /* seed1=0, seed2=0, seed3=0x66, size 666 per algorithm */
known_id = 3;
ee_printf("2K performance run parameters for coremark.\n");
break;
case 0x18f2: /* seed1=0x3415, seed2=0x3415, seed3=0x66, size 666 per
algorithm */
known_id = 4;
ee_printf("2K validation run parameters for coremark.\n");
break;
default:
total_errors = -1;
break;
}
if (known_id >= 0)
{
for (i = 0; i < default_num_contexts; i++)
{
results[i].err = 0;
if ((results[i].execs & ID_LIST)
&& (results[i].crclist != list_known_crc[known_id]))
{
ee_printf("[%u]ERROR! list crc 0x%04x - should be 0x%04x\n",
i,
results[i].crclist,
list_known_crc[known_id]);
results[i].err++;
}
if ((results[i].execs & ID_MATRIX)
&& (results[i].crcmatrix != matrix_known_crc[known_id]))
{
ee_printf("[%u]ERROR! matrix crc 0x%04x - should be 0x%04x\n",
i,
results[i].crcmatrix,
matrix_known_crc[known_id]);
results[i].err++;
}
if ((results[i].execs & ID_STATE)
&& (results[i].crcstate != state_known_crc[known_id]))
{
ee_printf("[%u]ERROR! state crc 0x%04x - should be 0x%04x\n",
i,
results[i].crcstate,
state_known_crc[known_id]);
results[i].err++;
}
total_errors += results[i].err;
}
}
total_errors += check_data_types();
/* and report results */
ee_printf("CoreMark Size : %lu\n", (long unsigned)results[0].size);
ee_printf("Total ticks : %lu\n", (long unsigned)total_time);
#if HAS_FLOAT
ee_printf("Total time (secs): %f\n",time_in_secs(total_time));
if (time_in_secs(total_time) > 0)
ee_printf("Iterations/Sec : %f\n",default_num_contexts*results[0].iterations/time_in_secs(total_time));
ee_printf("Total time (secs): %f\n", time_in_secs(total_time));
if (time_in_secs(total_time) > 0)
ee_printf("Iterations/Sec : %f\n",
default_num_contexts * results[0].iterations
/ time_in_secs(total_time));
#else
ee_printf("Total time (secs): %d\n,time_in_secs(total_time)");
if (time_in_secs(total_time) > 0)
ee_printf("Iterations/Sec : %d\n",default_num_contexts*results[0].iterations/time_in_secs(total_time));
ee_printf("Total time (secs): %d\n", time_in_secs(total_time));
if (time_in_secs(total_time) > 0)
ee_printf("Iterations/Sec : %d\n",
default_num_contexts * results[0].iterations
/ time_in_secs(total_time));
#endif
if (time_in_secs(total_time) < 10) {
ee_printf("ERROR! Must execute for at least 10 secs for a valid result!\n");
total_errors++;
}
if (time_in_secs(total_time) < 10)
{
ee_printf(
"ERROR! Must execute for at least 10 secs for a valid result!\n");
total_errors++;
}
ee_printf("Iterations : %lu\n", (long unsigned) default_num_contexts*results[0].iterations);
ee_printf("Compiler version : %s\n",COMPILER_VERSION);
ee_printf("Compiler flags : %s\n",COMPILER_FLAGS);
#if (MULTITHREAD>1)
ee_printf("Parallel %s : %d\n",PARALLEL_METHOD,default_num_contexts);
ee_printf("Iterations : %lu\n",
(long unsigned)default_num_contexts * results[0].iterations);
ee_printf("Compiler version : %s\n", COMPILER_VERSION);
ee_printf("Compiler flags : %s\n", COMPILER_FLAGS);
#if (MULTITHREAD > 1)
ee_printf("Parallel %s : %d\n", PARALLEL_METHOD, default_num_contexts);
#endif
ee_printf("Memory location : %s\n",MEM_LOCATION);
/* output for verification */
ee_printf("seedcrc : 0x%04x\n",seedcrc);
if (results[0].execs & ID_LIST)
for (i=0 ; i<default_num_contexts; i++)
ee_printf("[%d]crclist : 0x%04x\n",i,results[i].crclist);
if (results[0].execs & ID_MATRIX)
for (i=0 ; i<default_num_contexts; i++)
ee_printf("[%d]crcmatrix : 0x%04x\n",i,results[i].crcmatrix);
if (results[0].execs & ID_STATE)
for (i=0 ; i<default_num_contexts; i++)
ee_printf("[%d]crcstate : 0x%04x\n",i,results[i].crcstate);
for (i=0 ; i<default_num_contexts; i++)
ee_printf("[%d]crcfinal : 0x%04x\n",i,results[i].crc);
if (total_errors==0) {
ee_printf("Correct operation validated. See README.md for run and reporting rules.\n");
ee_printf("Memory location : %s\n", MEM_LOCATION);
/* output for verification */
ee_printf("seedcrc : 0x%04x\n", seedcrc);
if (results[0].execs & ID_LIST)
for (i = 0; i < default_num_contexts; i++)
ee_printf("[%d]crclist : 0x%04x\n", i, results[i].crclist);
if (results[0].execs & ID_MATRIX)
for (i = 0; i < default_num_contexts; i++)
ee_printf("[%d]crcmatrix : 0x%04x\n", i, results[i].crcmatrix);
if (results[0].execs & ID_STATE)
for (i = 0; i < default_num_contexts; i++)
ee_printf("[%d]crcstate : 0x%04x\n", i, results[i].crcstate);
for (i = 0; i < default_num_contexts; i++)
ee_printf("[%d]crcfinal : 0x%04x\n", i, results[i].crc);
if (total_errors == 0)
{
ee_printf(
"Correct operation validated. See README.md for run and reporting "
"rules.\n");
#if HAS_FLOAT
if (known_id==3) {
unsigned long long tmp = (unsigned long long) 1000.0*default_num_contexts*results[0].iterations/time_in_secs(total_time);
if (known_id == 3)
{
unsigned long long tmp = (unsigned long long) 1000.0*default_num_contexts*results[0].iterations/time_in_secs(total_time);
secs_ret totalmsecs = time_in_secs(total_time);
int totalmint = (int) totalmsecs;
ee_printf("ELAPSED TIME: %d\n", totalmint);
ee_printf("CoreMark 1.0 : %d / %s %s\n",tmp,COMPILER_VERSION,COMPILER_FLAGS);
ee_printf("CoreMark 1.0 : %d / %s %s",
tmp,
COMPILER_VERSION,
COMPILER_FLAGS);
#if defined(MEM_LOCATION) && !defined(MEM_LOCATION_UNSPEC)
ee_printf(" / %s",MEM_LOCATION);
ee_printf(" / %s", MEM_LOCATION);
#else
ee_printf(" / %s",mem_name[MEM_METHOD]);
ee_printf(" / %s", mem_name[MEM_METHOD]);
#endif
#if (MULTITHREAD>1)
ee_printf(" / %d:%s",default_num_contexts,PARALLEL_METHOD);
#if (MULTITHREAD > 1)
ee_printf(" / %d:%s", default_num_contexts, PARALLEL_METHOD);
#endif
ee_printf("\n");
}
ee_printf("\n");
}
#endif
}
if (total_errors>0)
ee_printf("Errors detected\n");
if (total_errors<0)
ee_printf("Cannot validate operation for these seed values, please compare with results on a known platform.\n");
}
if (total_errors > 0)
ee_printf("Errors detected\n");
if (total_errors < 0)
ee_printf(
"Cannot validate operation for these seed values, please compare "
"with results on a known platform.\n");
#if (MEM_METHOD==MEM_MALLOC)
for (i=0 ; i<MULTITHREAD; i++)
portable_free(results[i].memblock[0]);
#if (MEM_METHOD == MEM_MALLOC)
for (i = 0; i < MULTITHREAD; i++)
portable_free(results[i].memblock[0]);
#endif
/* And last call any target specific code for finalizing */
portable_fini(&(results[0].port));
/* And last call any target specific code for finalizing */
portable_fini(&(results[0].port));
return MAIN_RETURN_VAL;
return MAIN_RETURN_VAL;
}
//pls

View File

@ -19,290 +19,341 @@ Original Author: Shay Gal-on
#include "coremark.h"
/*
Topic: Description
Matrix manipulation benchmark
Matrix manipulation benchmark
This very simple algorithm forms the basis of many more complex algorithms.
This very simple algorithm forms the basis of many more complex
algorithms.
The tight inner loop is the focus of many optimizations (compiler as well as hardware based)
and is thus relevant for embedded processing.
The tight inner loop is the focus of many optimizations (compiler as
well as hardware based) and is thus relevant for embedded processing.
The total available data space will be divided to 3 parts:
NxN Matrix A - initialized with small values (upper 3/4 of the bits all zero).
NxN Matrix B - initialized with medium values (upper half of the bits all zero).
NxN Matrix C - used for the result.
The total available data space will be divided to 3 parts:
NxN Matrix A - initialized with small values (upper 3/4 of the bits all
zero). NxN Matrix B - initialized with medium values (upper half of the bits all
zero). NxN Matrix C - used for the result.
The actual values for A and B must be derived based on input that is not available at compile time.
The actual values for A and B must be derived based on input that is not
available at compile time.
*/
ee_s16 matrix_test(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B, MATDAT val);
ee_s16 matrix_sum(ee_u32 N, MATRES *C, MATDAT clipval);
void matrix_mul_const(ee_u32 N, MATRES *C, MATDAT *A, MATDAT val);
void matrix_mul_vect(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
void matrix_mul_matrix(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
void matrix_mul_matrix_bitextract(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
void matrix_add_const(ee_u32 N, MATDAT *A, MATDAT val);
void matrix_mul_const(ee_u32 N, MATRES *C, MATDAT *A, MATDAT val);
void matrix_mul_vect(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
void matrix_mul_matrix(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
void matrix_mul_matrix_bitextract(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
void matrix_add_const(ee_u32 N, MATDAT *A, MATDAT val);
#define matrix_test_next(x) (x+1)
#define matrix_clip(x,y) ((y) ? (x) & 0x0ff : (x) & 0x0ffff)
#define matrix_big(x) (0xf000 | (x))
#define bit_extract(x,from,to) (((x)>>(from)) & (~(0xffffffff << (to))))
#define matrix_test_next(x) (x + 1)
#define matrix_clip(x, y) ((y) ? (x)&0x0ff : (x)&0x0ffff)
#define matrix_big(x) (0xf000 | (x))
#define bit_extract(x, from, to) (((x) >> (from)) & (~(0xffffffff << (to))))
#if CORE_DEBUG
void printmat(MATDAT *A, ee_u32 N, char *name) {
ee_u32 i,j;
ee_printf("Matrix %s [%dx%d]:\n",name,N,N);
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
if (j!=0)
ee_printf(",");
ee_printf("%d",A[i*N+j]);
}
ee_printf("\n");
}
void
printmat(MATDAT *A, ee_u32 N, char *name)
{
ee_u32 i, j;
ee_printf("Matrix %s [%dx%d]:\n", name, N, N);
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
if (j != 0)
ee_printf(",");
ee_printf("%d", A[i * N + j]);
}
ee_printf("\n");
}
}
void printmatC(MATRES *C, ee_u32 N, char *name) {
ee_u32 i,j;
ee_printf("Matrix %s [%dx%d]:\n",name,N,N);
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
if (j!=0)
ee_printf(",");
ee_printf("%d",C[i*N+j]);
}
ee_printf("\n");
}
void
printmatC(MATRES *C, ee_u32 N, char *name)
{
ee_u32 i, j;
ee_printf("Matrix %s [%dx%d]:\n", name, N, N);
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
if (j != 0)
ee_printf(",");
ee_printf("%d", C[i * N + j]);
}
ee_printf("\n");
}
}
#endif
/* Function: core_bench_matrix
Benchmark function
Benchmark function
Iterate <matrix_test> N times,
changing the matrix values slightly by a constant amount each time.
Iterate <matrix_test> N times,
changing the matrix values slightly by a constant amount each time.
*/
ee_u16 core_bench_matrix(mat_params *p, ee_s16 seed, ee_u16 crc) {
ee_u32 N=p->N;
MATRES *C=p->C;
MATDAT *A=p->A;
MATDAT *B=p->B;
MATDAT val=(MATDAT)seed;
ee_u16
core_bench_matrix(mat_params *p, ee_s16 seed, ee_u16 crc)
{
ee_u32 N = p->N;
MATRES *C = p->C;
MATDAT *A = p->A;
MATDAT *B = p->B;
MATDAT val = (MATDAT)seed;
crc=crc16(matrix_test(N,C,A,B,val),crc);
crc = crc16(matrix_test(N, C, A, B, val), crc);
return crc;
return crc;
}
/* Function: matrix_test
Perform matrix manipulation.
Perform matrix manipulation.
Parameters:
N - Dimensions of the matrix.
C - memory for result matrix.
A - input matrix
B - operator matrix (not changed during operations)
Parameters:
N - Dimensions of the matrix.
C - memory for result matrix.
A - input matrix
B - operator matrix (not changed during operations)
Returns:
A CRC value that captures all results calculated in the function.
In particular, crc of the value calculated on the result matrix
after each step by <matrix_sum>.
Returns:
A CRC value that captures all results calculated in the function.
In particular, crc of the value calculated on the result matrix
after each step by <matrix_sum>.
Operation:
Operation:
1 - Add a constant value to all elements of a matrix.
2 - Multiply a matrix by a constant.
3 - Multiply a matrix by a vector.
4 - Multiply a matrix by a matrix.
5 - Add a constant value to all elements of a matrix.
1 - Add a constant value to all elements of a matrix.
2 - Multiply a matrix by a constant.
3 - Multiply a matrix by a vector.
4 - Multiply a matrix by a matrix.
5 - Add a constant value to all elements of a matrix.
After the last step, matrix A is back to original contents.
After the last step, matrix A is back to original contents.
*/
ee_s16 matrix_test(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B, MATDAT val) {
ee_u16 crc=0;
MATDAT clipval=matrix_big(val);
ee_s16
matrix_test(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B, MATDAT val)
{
ee_u16 crc = 0;
MATDAT clipval = matrix_big(val);
matrix_add_const(N,A,val); /* make sure data changes */
matrix_add_const(N, A, val); /* make sure data changes */
#if CORE_DEBUG
printmat(A,N,"matrix_add_const");
printmat(A, N, "matrix_add_const");
#endif
matrix_mul_const(N,C,A,val);
crc=crc16(matrix_sum(N,C,clipval),crc);
matrix_mul_const(N, C, A, val);
crc = crc16(matrix_sum(N, C, clipval), crc);
#if CORE_DEBUG
printmatC(C,N,"matrix_mul_const");
printmatC(C, N, "matrix_mul_const");
#endif
matrix_mul_vect(N,C,A,B);
crc=crc16(matrix_sum(N,C,clipval),crc);
matrix_mul_vect(N, C, A, B);
crc = crc16(matrix_sum(N, C, clipval), crc);
#if CORE_DEBUG
printmatC(C,N,"matrix_mul_vect");
printmatC(C, N, "matrix_mul_vect");
#endif
matrix_mul_matrix(N,C,A,B);
crc=crc16(matrix_sum(N,C,clipval),crc);
matrix_mul_matrix(N, C, A, B);
crc = crc16(matrix_sum(N, C, clipval), crc);
#if CORE_DEBUG
printmatC(C,N,"matrix_mul_matrix");
printmatC(C, N, "matrix_mul_matrix");
#endif
matrix_mul_matrix_bitextract(N,C,A,B);
crc=crc16(matrix_sum(N,C,clipval),crc);
matrix_mul_matrix_bitextract(N, C, A, B);
crc = crc16(matrix_sum(N, C, clipval), crc);
#if CORE_DEBUG
printmatC(C,N,"matrix_mul_matrix_bitextract");
printmatC(C, N, "matrix_mul_matrix_bitextract");
#endif
matrix_add_const(N,A,-val); /* return matrix to initial value */
return crc;
matrix_add_const(N, A, -val); /* return matrix to initial value */
return crc;
}
/* Function : matrix_init
Initialize the memory block for matrix benchmarking.
Initialize the memory block for matrix benchmarking.
Parameters:
blksize - Size of memory to be initialized.
memblk - Pointer to memory block.
seed - Actual values chosen depend on the seed parameter.
p - pointers to <mat_params> containing initialized matrixes.
Parameters:
blksize - Size of memory to be initialized.
memblk - Pointer to memory block.
seed - Actual values chosen depend on the seed parameter.
p - pointers to <mat_params> containing initialized matrixes.
Returns:
Matrix dimensions.
Returns:
Matrix dimensions.
Note:
The seed parameter MUST be supplied from a source that cannot be determined at compile time
Note:
The seed parameter MUST be supplied from a source that cannot be
determined at compile time
*/
ee_u32 core_init_matrix(ee_u32 blksize, void *memblk, ee_s32 seed, mat_params *p) {
ee_u32 N=0;
MATDAT *A;
MATDAT *B;
ee_s32 order=1;
MATDAT val;
ee_u32 i=0,j=0;
if (seed==0)
seed=1;
while (j<blksize) {
i++;
j=i*i*2*4;
}
N=i-1;
A=(MATDAT *)align_mem(memblk);
B=A+N*N;
ee_u32
core_init_matrix(ee_u32 blksize, void *memblk, ee_s32 seed, mat_params *p)
{
ee_u32 N = 0;
MATDAT *A;
MATDAT *B;
ee_s32 order = 1;
MATDAT val;
ee_u32 i = 0, j = 0;
if (seed == 0)
seed = 1;
while (j < blksize)
{
i++;
j = i * i * 2 * 4;
}
N = i - 1;
A = (MATDAT *)align_mem(memblk);
B = A + N * N;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
seed = ( ( order * seed ) % 65536 );
val = (seed + order);
val=matrix_clip(val,0);
B[i*N+j] = val;
val = (val + order);
val=matrix_clip(val,1);
A[i*N+j] = val;
order++;
}
}
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
seed = ((order * seed) % 65536);
val = (seed + order);
val = matrix_clip(val, 0);
B[i * N + j] = val;
val = (val + order);
val = matrix_clip(val, 1);
A[i * N + j] = val;
order++;
}
}
p->A=A;
p->B=B;
p->C=(MATRES *)align_mem(B+N*N);
p->N=N;
p->A = A;
p->B = B;
p->C = (MATRES *)align_mem(B + N * N);
p->N = N;
#if CORE_DEBUG
printmat(A,N,"A");
printmat(B,N,"B");
printmat(A, N, "A");
printmat(B, N, "B");
#endif
return N;
return N;
}
/* Function: matrix_sum
Calculate a function that depends on the values of elements in the matrix.
Calculate a function that depends on the values of elements in the
matrix.
For each element, accumulate into a temporary variable.
For each element, accumulate into a temporary variable.
As long as this value is under the parameter clipval,
add 1 to the result if the element is bigger then the previous.
As long as this value is under the parameter clipval,
add 1 to the result if the element is bigger then the previous.
Otherwise, reset the accumulator and add 10 to the result.
Otherwise, reset the accumulator and add 10 to the result.
*/
ee_s16 matrix_sum(ee_u32 N, MATRES *C, MATDAT clipval) {
MATRES tmp=0,prev=0,cur=0;
ee_s16 ret=0;
ee_u32 i,j;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
cur=C[i*N+j];
tmp+=cur;
if (tmp>clipval) {
ret+=10;
tmp=0;
} else {
ret += (cur>prev) ? 1 : 0;
}
prev=cur;
}
}
return ret;
ee_s16
matrix_sum(ee_u32 N, MATRES *C, MATDAT clipval)
{
MATRES tmp = 0, prev = 0, cur = 0;
ee_s16 ret = 0;
ee_u32 i, j;
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
cur = C[i * N + j];
tmp += cur;
if (tmp > clipval)
{
ret += 10;
tmp = 0;
}
else
{
ret += (cur > prev) ? 1 : 0;
}
prev = cur;
}
}
return ret;
}
/* Function: matrix_mul_const
Multiply a matrix by a constant.
This could be used as a scaler for instance.
Multiply a matrix by a constant.
This could be used as a scaler for instance.
*/
void matrix_mul_const(ee_u32 N, MATRES *C, MATDAT *A, MATDAT val) {
ee_u32 i,j;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
C[i*N+j]=(MATRES)A[i*N+j] * (MATRES)val;
}
}
void
matrix_mul_const(ee_u32 N, MATRES *C, MATDAT *A, MATDAT val)
{
ee_u32 i, j;
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
C[i * N + j] = (MATRES)A[i * N + j] * (MATRES)val;
}
}
}
/* Function: matrix_add_const
Add a constant value to all elements of a matrix.
Add a constant value to all elements of a matrix.
*/
void matrix_add_const(ee_u32 N, MATDAT *A, MATDAT val) {
ee_u32 i,j;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
A[i*N+j] += val;
}
}
void
matrix_add_const(ee_u32 N, MATDAT *A, MATDAT val)
{
ee_u32 i, j;
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
A[i * N + j] += val;
}
}
}
/* Function: matrix_mul_vect
Multiply a matrix by a vector.
This is common in many simple filters (e.g. fir where a vector of coefficients is applied to the matrix.)
Multiply a matrix by a vector.
This is common in many simple filters (e.g. fir where a vector of
coefficients is applied to the matrix.)
*/
void matrix_mul_vect(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B) {
ee_u32 i,j;
for (i=0; i<N; i++) {
C[i]=0;
for (j=0; j<N; j++) {
C[i]+=(MATRES)A[i*N+j] * (MATRES)B[j];
}
}
void
matrix_mul_vect(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B)
{
ee_u32 i, j;
for (i = 0; i < N; i++)
{
C[i] = 0;
for (j = 0; j < N; j++)
{
C[i] += (MATRES)A[i * N + j] * (MATRES)B[j];
}
}
}
/* Function: matrix_mul_matrix
Multiply a matrix by a matrix.
Basic code is used in many algorithms, mostly with minor changes such as scaling.
Multiply a matrix by a matrix.
Basic code is used in many algorithms, mostly with minor changes such as
scaling.
*/
void matrix_mul_matrix(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B) {
ee_u32 i,j,k;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
C[i*N+j]=0;
for(k=0;k<N;k++)
{
C[i*N+j]+=(MATRES)A[i*N+k] * (MATRES)B[k*N+j];
}
}
}
void
matrix_mul_matrix(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B)
{
ee_u32 i, j, k;
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
C[i * N + j] = 0;
for (k = 0; k < N; k++)
{
C[i * N + j] += (MATRES)A[i * N + k] * (MATRES)B[k * N + j];
}
}
}
}
/* Function: matrix_mul_matrix_bitextract
Multiply a matrix by a matrix, and extract some bits from the result.
Basic code is used in many algorithms, mostly with minor changes such as scaling.
Multiply a matrix by a matrix, and extract some bits from the result.
Basic code is used in many algorithms, mostly with minor changes such as
scaling.
*/
void matrix_mul_matrix_bitextract(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B) {
ee_u32 i,j,k;
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
C[i*N+j]=0;
for(k=0;k<N;k++)
{
MATRES tmp=(MATRES)A[i*N+k] * (MATRES)B[k*N+j];
C[i*N+j]+=bit_extract(tmp,2,4)*bit_extract(tmp,5,7);
}
}
}
void
matrix_mul_matrix_bitextract(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B)
{
ee_u32 i, j, k;
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
C[i * N + j] = 0;
for (k = 0; k < N; k++)
{
MATRES tmp = (MATRES)A[i * N + k] * (MATRES)B[k * N + j];
C[i * N + j] += bit_extract(tmp, 2, 4) * bit_extract(tmp, 5, 7);
}
}
}
}

View File

@ -18,260 +18,313 @@ Original Author: Shay Gal-on
#include "coremark.h"
/* local functions */
enum CORE_STATE core_state_transition( ee_u8 **instr , ee_u32 *transition_count);
enum CORE_STATE core_state_transition(ee_u8 **instr, ee_u32 *transition_count);
/*
Topic: Description
Simple state machines like this one are used in many embedded products.
Simple state machines like this one are used in many embedded products.
For more complex state machines, sometimes a state transition table implementation is used instead,
trading speed of direct coding for ease of maintenance.
For more complex state machines, sometimes a state transition table
implementation is used instead, trading speed of direct coding for ease of
maintenance.
Since the main goal of using a state machine in CoreMark is to excercise the switch/if behaviour,
we are using a small moore machine.
Since the main goal of using a state machine in CoreMark is to excercise
the switch/if behaviour, we are using a small moore machine.
In particular, this machine tests type of string input,
trying to determine whether the input is a number or something else.
(see core_state.png).
In particular, this machine tests type of string input,
trying to determine whether the input is a number or something else.
(see core_state.png).
*/
/* Function: core_bench_state
Benchmark function
Benchmark function
Go over the input twice, once direct, and once after introducing some corruption.
Go over the input twice, once direct, and once after introducing some
corruption.
*/
ee_u16 core_bench_state(ee_u32 blksize, ee_u8 *memblock,
ee_s16 seed1, ee_s16 seed2, ee_s16 step, ee_u16 crc)
ee_u16
core_bench_state(ee_u32 blksize,
ee_u8 *memblock,
ee_s16 seed1,
ee_s16 seed2,
ee_s16 step,
ee_u16 crc)
{
ee_u32 final_counts[NUM_CORE_STATES];
ee_u32 track_counts[NUM_CORE_STATES];
ee_u8 *p=memblock;
ee_u32 i;
ee_u32 final_counts[NUM_CORE_STATES];
ee_u32 track_counts[NUM_CORE_STATES];
ee_u8 *p = memblock;
ee_u32 i;
#if CORE_DEBUG
ee_printf("State Bench: %d,%d,%d,%04x\n",seed1,seed2,step,crc);
ee_printf("State Bench: %d,%d,%d,%04x\n", seed1, seed2, step, crc);
#endif
for (i=0; i<NUM_CORE_STATES; i++) {
final_counts[i]=track_counts[i]=0;
}
/* run the state machine over the input */
while (*p!=0) {
enum CORE_STATE fstate=core_state_transition(&p,track_counts);
final_counts[fstate]++;
for (i = 0; i < NUM_CORE_STATES; i++)
{
final_counts[i] = track_counts[i] = 0;
}
/* run the state machine over the input */
while (*p != 0)
{
enum CORE_STATE fstate = core_state_transition(&p, track_counts);
final_counts[fstate]++;
#if CORE_DEBUG
ee_printf("%d,",fstate);
}
ee_printf("\n");
ee_printf("%d,", fstate);
}
ee_printf("\n");
#else
}
}
#endif
p=memblock;
while (p < (memblock+blksize)) { /* insert some corruption */
if (*p!=',')
*p^=(ee_u8)seed1;
p+=step;
}
p=memblock;
/* run the state machine over the input again */
while (*p!=0) {
enum CORE_STATE fstate=core_state_transition(&p,track_counts);
final_counts[fstate]++;
p = memblock;
while (p < (memblock + blksize))
{ /* insert some corruption */
if (*p != ',')
*p ^= (ee_u8)seed1;
p += step;
}
p = memblock;
/* run the state machine over the input again */
while (*p != 0)
{
enum CORE_STATE fstate = core_state_transition(&p, track_counts);
final_counts[fstate]++;
#if CORE_DEBUG
ee_printf("%d,",fstate);
}
ee_printf("\n");
ee_printf("%d,", fstate);
}
ee_printf("\n");
#else
}
}
#endif
p=memblock;
while (p < (memblock+blksize)) { /* undo corruption is seed1 and seed2 are equal */
if (*p!=',')
*p^=(ee_u8)seed2;
p+=step;
}
/* end timing */
for (i=0; i<NUM_CORE_STATES; i++) {
crc=crcu32(final_counts[i],crc);
crc=crcu32(track_counts[i],crc);
}
return crc;
p = memblock;
while (p < (memblock + blksize))
{ /* undo corruption is seed1 and seed2 are equal */
if (*p != ',')
*p ^= (ee_u8)seed2;
p += step;
}
/* end timing */
for (i = 0; i < NUM_CORE_STATES; i++)
{
crc = crcu32(final_counts[i], crc);
crc = crcu32(track_counts[i], crc);
}
return crc;
}
/* Default initialization patterns */
static ee_u8 *intpat[4] ={(ee_u8 *)"5012",(ee_u8 *)"1234",(ee_u8 *)"-874",(ee_u8 *)"+122"};
static ee_u8 *floatpat[4]={(ee_u8 *)"35.54400",(ee_u8 *)".1234500",(ee_u8 *)"-110.700",(ee_u8 *)"+0.64400"};
static ee_u8 *scipat[4] ={(ee_u8 *)"5.500e+3",(ee_u8 *)"-.123e-2",(ee_u8 *)"-87e+832",(ee_u8 *)"+0.6e-12"};
static ee_u8 *errpat[4] ={(ee_u8 *)"T0.3e-1F",(ee_u8 *)"-T.T++Tq",(ee_u8 *)"1T3.4e4z",(ee_u8 *)"34.0e-T^"};
static ee_u8 *intpat[4]
= { (ee_u8 *)"5012", (ee_u8 *)"1234", (ee_u8 *)"-874", (ee_u8 *)"+122" };
static ee_u8 *floatpat[4] = { (ee_u8 *)"35.54400",
(ee_u8 *)".1234500",
(ee_u8 *)"-110.700",
(ee_u8 *)"+0.64400" };
static ee_u8 *scipat[4] = { (ee_u8 *)"5.500e+3",
(ee_u8 *)"-.123e-2",
(ee_u8 *)"-87e+832",
(ee_u8 *)"+0.6e-12" };
static ee_u8 *errpat[4] = { (ee_u8 *)"T0.3e-1F",
(ee_u8 *)"-T.T++Tq",
(ee_u8 *)"1T3.4e4z",
(ee_u8 *)"34.0e-T^" };
/* Function: core_init_state
Initialize the input data for the state machine.
Initialize the input data for the state machine.
Populate the input with several predetermined strings, interspersed.
Actual patterns chosen depend on the seed parameter.
Populate the input with several predetermined strings, interspersed.
Actual patterns chosen depend on the seed parameter.
Note:
The seed parameter MUST be supplied from a source that cannot be determined at compile time
Note:
The seed parameter MUST be supplied from a source that cannot be
determined at compile time
*/
void core_init_state(ee_u32 size, ee_s16 seed, ee_u8 *p) {
ee_u32 total=0,next=0,i;
ee_u8 *buf=0;
void
core_init_state(ee_u32 size, ee_s16 seed, ee_u8 *p)
{
ee_u32 total = 0, next = 0, i;
ee_u8 *buf = 0;
#if CORE_DEBUG
ee_u8 *start=p;
ee_printf("State: %d,%d\n",size,seed);
ee_u8 *start = p;
ee_printf("State: %d,%d\n", size, seed);
#endif
size--;
next=0;
while ((total+next+1)<size) {
if (next>0) {
for(i=0;i<next;i++)
*(p+total+i)=buf[i];
*(p+total+i)=',';
total+=next+1;
}
seed++;
switch (seed & 0x7) {
case 0: /* int */
case 1: /* int */
case 2: /* int */
buf=intpat[(seed>>3) & 0x3];
next=4;
break;
case 3: /* float */
case 4: /* float */
buf=floatpat[(seed>>3) & 0x3];
next=8;
break;
case 5: /* scientific */
case 6: /* scientific */
buf=scipat[(seed>>3) & 0x3];
next=8;
break;
case 7: /* invalid */
buf=errpat[(seed>>3) & 0x3];
next=8;
break;
default: /* Never happen, just to make some compilers happy */
break;
}
}
size++;
while (total<size) { /* fill the rest with 0 */
*(p+total)=0;
total++;
}
size--;
next = 0;
while ((total + next + 1) < size)
{
if (next > 0)
{
for (i = 0; i < next; i++)
*(p + total + i) = buf[i];
*(p + total + i) = ',';
total += next + 1;
}
seed++;
switch (seed & 0x7)
{
case 0: /* int */
case 1: /* int */
case 2: /* int */
buf = intpat[(seed >> 3) & 0x3];
next = 4;
break;
case 3: /* float */
case 4: /* float */
buf = floatpat[(seed >> 3) & 0x3];
next = 8;
break;
case 5: /* scientific */
case 6: /* scientific */
buf = scipat[(seed >> 3) & 0x3];
next = 8;
break;
case 7: /* invalid */
buf = errpat[(seed >> 3) & 0x3];
next = 8;
break;
default: /* Never happen, just to make some compilers happy */
break;
}
}
size++;
while (total < size)
{ /* fill the rest with 0 */
*(p + total) = 0;
total++;
}
#if CORE_DEBUG
ee_printf("State Input: %s\n",start);
ee_printf("State Input: %s\n", start);
#endif
}
static ee_u8 ee_isdigit(ee_u8 c) {
ee_u8 retval;
retval = ((c>='0') & (c<='9')) ? 1 : 0;
return retval;
static ee_u8
ee_isdigit(ee_u8 c)
{
ee_u8 retval;
retval = ((c >= '0') & (c <= '9')) ? 1 : 0;
return retval;
}
/* Function: core_state_transition
Actual state machine.
Actual state machine.
The state machine will continue scanning until either:
1 - an invalid input is detcted.
2 - a valid number has been detected.
The state machine will continue scanning until either:
1 - an invalid input is detcted.
2 - a valid number has been detected.
The input pointer is updated to point to the end of the token, and the end state is returned (either specific format determined or invalid).
The input pointer is updated to point to the end of the token, and the
end state is returned (either specific format determined or invalid).
*/
enum CORE_STATE core_state_transition( ee_u8 **instr , ee_u32 *transition_count) {
ee_u8 *str=*instr;
ee_u8 NEXT_SYMBOL;
enum CORE_STATE state=CORE_START;
for( ; *str && state != CORE_INVALID; str++ ) {
NEXT_SYMBOL = *str;
if (NEXT_SYMBOL==',') /* end of this input */ {
str++;
break;
}
switch(state) {
case CORE_START:
if(ee_isdigit(NEXT_SYMBOL)) {
state = CORE_INT;
}
else if( NEXT_SYMBOL == '+' || NEXT_SYMBOL == '-' ) {
state = CORE_S1;
}
else if( NEXT_SYMBOL == '.' ) {
state = CORE_FLOAT;
}
else {
state = CORE_INVALID;
transition_count[CORE_INVALID]++;
}
transition_count[CORE_START]++;
break;
case CORE_S1:
if(ee_isdigit(NEXT_SYMBOL)) {
state = CORE_INT;
transition_count[CORE_S1]++;
}
else if( NEXT_SYMBOL == '.' ) {
state = CORE_FLOAT;
transition_count[CORE_S1]++;
}
else {
state = CORE_INVALID;
transition_count[CORE_S1]++;
}
break;
case CORE_INT:
if( NEXT_SYMBOL == '.' ) {
state = CORE_FLOAT;
transition_count[CORE_INT]++;
}
else if(!ee_isdigit(NEXT_SYMBOL)) {
state = CORE_INVALID;
transition_count[CORE_INT]++;
}
break;
case CORE_FLOAT:
if( NEXT_SYMBOL == 'E' || NEXT_SYMBOL == 'e' ) {
state = CORE_S2;
transition_count[CORE_FLOAT]++;
}
else if(!ee_isdigit(NEXT_SYMBOL)) {
state = CORE_INVALID;
transition_count[CORE_FLOAT]++;
}
break;
case CORE_S2:
if( NEXT_SYMBOL == '+' || NEXT_SYMBOL == '-' ) {
state = CORE_EXPONENT;
transition_count[CORE_S2]++;
}
else {
state = CORE_INVALID;
transition_count[CORE_S2]++;
}
break;
case CORE_EXPONENT:
if(ee_isdigit(NEXT_SYMBOL)) {
state = CORE_SCIENTIFIC;
transition_count[CORE_EXPONENT]++;
}
else {
state = CORE_INVALID;
transition_count[CORE_EXPONENT]++;
}
break;
case CORE_SCIENTIFIC:
if(!ee_isdigit(NEXT_SYMBOL)) {
state = CORE_INVALID;
transition_count[CORE_INVALID]++;
}
break;
default:
break;
}
}
*instr=str;
return state;
enum CORE_STATE
core_state_transition(ee_u8 **instr, ee_u32 *transition_count)
{
ee_u8 * str = *instr;
ee_u8 NEXT_SYMBOL;
enum CORE_STATE state = CORE_START;
for (; *str && state != CORE_INVALID; str++)
{
NEXT_SYMBOL = *str;
if (NEXT_SYMBOL == ',') /* end of this input */
{
str++;
break;
}
switch (state)
{
case CORE_START:
if (ee_isdigit(NEXT_SYMBOL))
{
state = CORE_INT;
}
else if (NEXT_SYMBOL == '+' || NEXT_SYMBOL == '-')
{
state = CORE_S1;
}
else if (NEXT_SYMBOL == '.')
{
state = CORE_FLOAT;
}
else
{
state = CORE_INVALID;
transition_count[CORE_INVALID]++;
}
transition_count[CORE_START]++;
break;
case CORE_S1:
if (ee_isdigit(NEXT_SYMBOL))
{
state = CORE_INT;
transition_count[CORE_S1]++;
}
else if (NEXT_SYMBOL == '.')
{
state = CORE_FLOAT;
transition_count[CORE_S1]++;
}
else
{
state = CORE_INVALID;
transition_count[CORE_S1]++;
}
break;
case CORE_INT:
if (NEXT_SYMBOL == '.')
{
state = CORE_FLOAT;
transition_count[CORE_INT]++;
}
else if (!ee_isdigit(NEXT_SYMBOL))
{
state = CORE_INVALID;
transition_count[CORE_INT]++;
}
break;
case CORE_FLOAT:
if (NEXT_SYMBOL == 'E' || NEXT_SYMBOL == 'e')
{
state = CORE_S2;
transition_count[CORE_FLOAT]++;
}
else if (!ee_isdigit(NEXT_SYMBOL))
{
state = CORE_INVALID;
transition_count[CORE_FLOAT]++;
}
break;
case CORE_S2:
if (NEXT_SYMBOL == '+' || NEXT_SYMBOL == '-')
{
state = CORE_EXPONENT;
transition_count[CORE_S2]++;
}
else
{
state = CORE_INVALID;
transition_count[CORE_S2]++;
}
break;
case CORE_EXPONENT:
if (ee_isdigit(NEXT_SYMBOL))
{
state = CORE_SCIENTIFIC;
transition_count[CORE_EXPONENT]++;
}
else
{
state = CORE_INVALID;
transition_count[CORE_EXPONENT]++;
}
break;
case CORE_SCIENTIFIC:
if (!ee_isdigit(NEXT_SYMBOL))
{
state = CORE_INVALID;
transition_count[CORE_INVALID]++;
}
break;
default:
break;
}
}
*instr = str;
return state;
}

View File

@ -18,193 +18,232 @@ Original Author: Shay Gal-on
#include "coremark.h"
/* Function: get_seed
Get a values that cannot be determined at compile time.
Get a values that cannot be determined at compile time.
Since different embedded systems and compilers are used, 3 different methods are provided:
1 - Using a volatile variable. This method is only valid if the compiler is forced to generate code that
reads the value of a volatile variable from memory at run time.
Please note, if using this method, you would need to modify core_portme.c to generate training profile.
2 - Command line arguments. This is the preferred method if command line arguments are supported.
3 - System function. If none of the first 2 methods is available on the platform,
a system function which is not a stub can be used.
Since different embedded systems and compilers are used, 3 different
methods are provided: 1 - Using a volatile variable. This method is only
valid if the compiler is forced to generate code that reads the value of a
volatile variable from memory at run time. Please note, if using this method,
you would need to modify core_portme.c to generate training profile. 2 -
Command line arguments. This is the preferred method if command line
arguments are supported. 3 - System function. If none of the first 2 methods
is available on the platform, a system function which is not a stub can be
used.
e.g. read the value on GPIO pins connected to switches, or invoke special simulator functions.
e.g. read the value on GPIO pins connected to switches, or invoke
special simulator functions.
*/
#if (SEED_METHOD==SEED_VOLATILE)
extern volatile ee_s32 seed1_volatile;
extern volatile ee_s32 seed2_volatile;
extern volatile ee_s32 seed3_volatile;
extern volatile ee_s32 seed4_volatile;
extern volatile ee_s32 seed5_volatile;
ee_s32 get_seed_32(int i) {
ee_s32 retval;
switch (i) {
case 1:
retval=seed1_volatile;
break;
case 2:
retval=seed2_volatile;
break;
case 3:
retval=seed3_volatile;
break;
case 4:
retval=seed4_volatile;
break;
case 5:
retval=seed5_volatile;
break;
default:
retval=0;
break;
}
return retval;
}
#elif (SEED_METHOD==SEED_ARG)
ee_s32 parseval(char *valstring) {
ee_s32 retval=0;
ee_s32 neg=1;
int hexmode=0;
if (*valstring == '-') {
neg=-1;
valstring++;
}
if ((valstring[0] == '0') && (valstring[1] == 'x')) {
hexmode=1;
valstring+=2;
}
/* first look for digits */
if (hexmode) {
while (((*valstring >= '0') && (*valstring <= '9')) || ((*valstring >= 'a') && (*valstring <= 'f'))) {
ee_s32 digit=*valstring-'0';
if (digit>9)
digit=10+*valstring-'a';
retval*=16;
retval+=digit;
valstring++;
}
} else {
while ((*valstring >= '0') && (*valstring <= '9')) {
ee_s32 digit=*valstring-'0';
retval*=10;
retval+=digit;
valstring++;
}
}
/* now add qualifiers */
if (*valstring=='K')
retval*=1024;
if (*valstring=='M')
retval*=1024*1024;
#if (SEED_METHOD == SEED_VOLATILE)
extern volatile ee_s32 seed1_volatile;
extern volatile ee_s32 seed2_volatile;
extern volatile ee_s32 seed3_volatile;
extern volatile ee_s32 seed4_volatile;
extern volatile ee_s32 seed5_volatile;
ee_s32
get_seed_32(int i)
{
ee_s32 retval;
switch (i)
{
case 1:
retval = seed1_volatile;
break;
case 2:
retval = seed2_volatile;
break;
case 3:
retval = seed3_volatile;
break;
case 4:
retval = seed4_volatile;
break;
case 5:
retval = seed5_volatile;
break;
default:
retval = 0;
break;
}
return retval;
}
#elif (SEED_METHOD == SEED_ARG)
ee_s32
parseval(char *valstring)
{
ee_s32 retval = 0;
ee_s32 neg = 1;
int hexmode = 0;
if (*valstring == '-')
{
neg = -1;
valstring++;
}
if ((valstring[0] == '0') && (valstring[1] == 'x'))
{
hexmode = 1;
valstring += 2;
}
/* first look for digits */
if (hexmode)
{
while (((*valstring >= '0') && (*valstring <= '9'))
|| ((*valstring >= 'a') && (*valstring <= 'f')))
{
ee_s32 digit = *valstring - '0';
if (digit > 9)
digit = 10 + *valstring - 'a';
retval *= 16;
retval += digit;
valstring++;
}
}
else
{
while ((*valstring >= '0') && (*valstring <= '9'))
{
ee_s32 digit = *valstring - '0';
retval *= 10;
retval += digit;
valstring++;
}
}
/* now add qualifiers */
if (*valstring == 'K')
retval *= 1024;
if (*valstring == 'M')
retval *= 1024 * 1024;
retval*=neg;
return retval;
retval *= neg;
return retval;
}
ee_s32 get_seed_args(int i, int argc, char *argv[]) {
if (argc>i)
return parseval(argv[i]);
return 0;
ee_s32
get_seed_args(int i, int argc, char *argv[])
{
if (argc > i)
return parseval(argv[i]);
return 0;
}
#elif (SEED_METHOD==SEED_FUNC)
/* If using OS based function, you must define and implement the functions below in core_portme.h and core_portme.c ! */
ee_s32 get_seed_32(int i) {
ee_s32 retval;
switch (i) {
case 1:
retval=portme_sys1();
break;
case 2:
retval=portme_sys2();
break;
case 3:
retval=portme_sys3();
break;
case 4:
retval=portme_sys4();
break;
case 5:
retval=portme_sys5();
break;
default:
retval=0;
break;
}
return retval;
#elif (SEED_METHOD == SEED_FUNC)
/* If using OS based function, you must define and implement the functions below
* in core_portme.h and core_portme.c ! */
ee_s32
get_seed_32(int i)
{
ee_s32 retval;
switch (i)
{
case 1:
retval = portme_sys1();
break;
case 2:
retval = portme_sys2();
break;
case 3:
retval = portme_sys3();
break;
case 4:
retval = portme_sys4();
break;
case 5:
retval = portme_sys5();
break;
default:
retval = 0;
break;
}
return retval;
}
#endif
/* Function: crc*
Service functions to calculate 16b CRC code.
Service functions to calculate 16b CRC code.
*/
ee_u16 crcu8(ee_u8 data, ee_u16 crc )
ee_u16
crcu8(ee_u8 data, ee_u16 crc)
{
ee_u8 i=0,x16=0,carry=0;
ee_u8 i = 0, x16 = 0, carry = 0;
for (i = 0; i < 8; i++)
for (i = 0; i < 8; i++)
{
x16 = (ee_u8)((data & 1) ^ ((ee_u8)crc & 1));
data >>= 1;
x16 = (ee_u8)((data & 1) ^ ((ee_u8)crc & 1));
data >>= 1;
if (x16 == 1)
{
crc ^= 0x4002;
carry = 1;
}
else
carry = 0;
crc >>= 1;
if (carry)
crc |= 0x8000;
else
crc &= 0x7fff;
if (x16 == 1)
{
crc ^= 0x4002;
carry = 1;
}
else
carry = 0;
crc >>= 1;
if (carry)
crc |= 0x8000;
else
crc &= 0x7fff;
}
return crc;
return crc;
}
ee_u16 crcu16(ee_u16 newval, ee_u16 crc) {
crc=crcu8( (ee_u8) (newval) ,crc);
crc=crcu8( (ee_u8) ((newval)>>8) ,crc);
return crc;
ee_u16
crcu16(ee_u16 newval, ee_u16 crc)
{
crc = crcu8((ee_u8)(newval), crc);
crc = crcu8((ee_u8)((newval) >> 8), crc);
return crc;
}
ee_u16 crcu32(ee_u32 newval, ee_u16 crc) {
crc=crc16((ee_s16) newval ,crc);
crc=crc16((ee_s16) (newval>>16) ,crc);
return crc;
ee_u16
crcu32(ee_u32 newval, ee_u16 crc)
{
crc = crc16((ee_s16)newval, crc);
crc = crc16((ee_s16)(newval >> 16), crc);
return crc;
}
ee_u16 crc16(ee_s16 newval, ee_u16 crc) {
return crcu16((ee_u16)newval, crc);
ee_u16
crc16(ee_s16 newval, ee_u16 crc)
{
return crcu16((ee_u16)newval, crc);
}
ee_u8 check_data_types() {
ee_u8 retval=0;
if (sizeof(ee_u8) != 1) {
ee_printf("ERROR: ee_u8 is not an 8b datatype!\n");
retval++;
}
if (sizeof(ee_u16) != 2) {
ee_printf("ERROR: ee_u16 is not a 16b datatype!\n");
retval++;
}
if (sizeof(ee_s16) != 2) {
ee_printf("ERROR: ee_s16 is not a 16b datatype!\n");
retval++;
}
if (sizeof(ee_s32) != 4) {
ee_printf("ERROR: ee_s32 is not a 32b datatype!\n");
retval++;
}
if (sizeof(ee_u32) != 4) {
ee_printf("ERROR: ee_u32 is not a 32b datatype!\n");
retval++;
}
if (sizeof(ee_ptr_int) != sizeof(int *)) {
ee_printf("ERROR: ee_ptr_int is not a datatype that holds an int pointer!\n");
retval++;
}
if (retval>0) {
ee_printf("ERROR: Please modify the datatypes in core_portme.h!\n");
}
return retval;
ee_u8
check_data_types()
{
ee_u8 retval = 0;
if (sizeof(ee_u8) != 1)
{
ee_printf("ERROR: ee_u8 is not an 8b datatype!\n");
retval++;
}
if (sizeof(ee_u16) != 2)
{
ee_printf("ERROR: ee_u16 is not a 16b datatype!\n");
retval++;
}
if (sizeof(ee_s16) != 2)
{
ee_printf("ERROR: ee_s16 is not a 16b datatype!\n");
retval++;
}
if (sizeof(ee_s32) != 4)
{
ee_printf("ERROR: ee_s32 is not a 32b datatype!\n");
retval++;
}
if (sizeof(ee_u32) != 4)
{
ee_printf("ERROR: ee_u32 is not a 32b datatype!\n");
retval++;
}
if (sizeof(ee_ptr_int) != sizeof(int *))
{
ee_printf(
"ERROR: ee_ptr_int is not a datatype that holds an int pointer!\n");
retval++;
}
if (retval > 0)
{
ee_printf("ERROR: Please modify the datatypes in core_portme.h!\n");
}
return retval;
}

View File

@ -17,23 +17,23 @@ Original Author: Shay Gal-on
*/
/* Topic: Description
This file contains declarations of the various benchmark functions.
This file contains declarations of the various benchmark functions.
*/
/* Configuration: TOTAL_DATA_SIZE
Define total size for data algorithms will operate on
Define total size for data algorithms will operate on
*/
#ifndef TOTAL_DATA_SIZE
#define TOTAL_DATA_SIZE 2*1000
#define TOTAL_DATA_SIZE 2 * 1000
#endif
#define SEED_ARG 0
#define SEED_FUNC 1
#define SEED_ARG 0
#define SEED_FUNC 1
#define SEED_VOLATILE 2
#define MEM_STATIC 0
#define MEM_MALLOC 1
#define MEM_STACK 2
#define MEM_STACK 2
#include "core_portme.h"
@ -48,8 +48,8 @@ Original Author: Shay Gal-on
void *iterate(void *pres);
/* Typedef: secs_ret
For machines that have floating point support, get number of seconds as a double.
Otherwise an unsigned int.
For machines that have floating point support, get number of seconds as
a double. Otherwise an unsigned int.
*/
#if HAS_FLOAT
typedef double secs_ret;
@ -61,44 +61,45 @@ typedef ee_u32 secs_ret;
#define MAIN_RETURN_VAL
#define MAIN_RETURN_TYPE void
#else
#define MAIN_RETURN_VAL 0
#define MAIN_RETURN_VAL 0
#define MAIN_RETURN_TYPE int
#endif
void start_time(void);
void stop_time(void);
void start_time(void);
void stop_time(void);
CORE_TICKS get_time(void);
secs_ret time_in_secs(CORE_TICKS ticks);
secs_ret time_in_secs(CORE_TICKS ticks);
/* Misc useful functions */
ee_u16 crcu8(ee_u8 data, ee_u16 crc);
ee_u16 crc16(ee_s16 newval, ee_u16 crc);
ee_u16 crcu16(ee_u16 newval, ee_u16 crc);
ee_u16 crcu32(ee_u32 newval, ee_u16 crc);
ee_u8 check_data_types();
void *portable_malloc(ee_size_t size);
void portable_free(void *p);
ee_u8 check_data_types(void);
void * portable_malloc(ee_size_t size);
void portable_free(void *p);
ee_s32 parseval(char *valstring);
/* Algorithm IDS */
#define ID_LIST (1<<0)
#define ID_MATRIX (1<<1)
#define ID_STATE (1<<2)
#define ALL_ALGORITHMS_MASK (ID_LIST|ID_MATRIX|ID_STATE)
#define NUM_ALGORITHMS 3
#define ID_LIST (1 << 0)
#define ID_MATRIX (1 << 1)
#define ID_STATE (1 << 2)
#define ALL_ALGORITHMS_MASK (ID_LIST | ID_MATRIX | ID_STATE)
#define NUM_ALGORITHMS 3
/* list data structures */
typedef struct list_data_s {
ee_s16 data16;
ee_s16 idx;
typedef struct list_data_s
{
ee_s16 data16;
ee_s16 idx;
} list_data;
typedef struct list_head_s {
struct list_head_s *next;
struct list_data_s *info;
typedef struct list_head_s
{
struct list_head_s *next;
struct list_data_s *info;
} list_head;
/*matrix benchmark related stuff */
#define MATDAT_INT 1
#if MATDAT_INT
@ -109,66 +110,74 @@ typedef ee_f16 MATDAT;
typedef ee_f32 MATRES;
#endif
typedef struct MAT_PARAMS_S {
int N;
MATDAT *A;
MATDAT *B;
MATRES *C;
typedef struct MAT_PARAMS_S
{
int N;
MATDAT *A;
MATDAT *B;
MATRES *C;
} mat_params;
/* state machine related stuff */
/* List of all the possible states for the FSM */
typedef enum CORE_STATE {
CORE_START=0,
CORE_INVALID,
CORE_S1,
CORE_S2,
CORE_INT,
CORE_FLOAT,
CORE_EXPONENT,
CORE_SCIENTIFIC,
NUM_CORE_STATES
} core_state_e ;
typedef enum CORE_STATE
{
CORE_START = 0,
CORE_INVALID,
CORE_S1,
CORE_S2,
CORE_INT,
CORE_FLOAT,
CORE_EXPONENT,
CORE_SCIENTIFIC,
NUM_CORE_STATES
} core_state_e;
/* Helper structure to hold results */
typedef struct RESULTS_S {
/* inputs */
ee_s16 seed1; /* Initializing seed */
ee_s16 seed2; /* Initializing seed */
ee_s16 seed3; /* Initializing seed */
void *memblock[4]; /* Pointer to safe memory location */
ee_u32 size; /* Size of the data */
ee_u32 iterations; /* Number of iterations to execute */
ee_u32 execs; /* Bitmask of operations to execute */
struct list_head_s *list;
mat_params mat;
/* outputs */
ee_u16 crc;
ee_u16 crclist;
ee_u16 crcmatrix;
ee_u16 crcstate;
ee_s16 err;
/* ultithread specific */
core_portable port;
typedef struct RESULTS_S
{
/* inputs */
ee_s16 seed1; /* Initializing seed */
ee_s16 seed2; /* Initializing seed */
ee_s16 seed3; /* Initializing seed */
void * memblock[4]; /* Pointer to safe memory location */
ee_u32 size; /* Size of the data */
ee_u32 iterations; /* Number of iterations to execute */
ee_u32 execs; /* Bitmask of operations to execute */
struct list_head_s *list;
mat_params mat;
/* outputs */
ee_u16 crc;
ee_u16 crclist;
ee_u16 crcmatrix;
ee_u16 crcstate;
ee_s16 err;
/* ultithread specific */
core_portable port;
} core_results;
/* Multicore execution handling */
#if (MULTITHREAD>1)
#if (MULTITHREAD > 1)
ee_u8 core_start_parallel(core_results *res);
ee_u8 core_stop_parallel(core_results *res);
#endif
/* list benchmark functions */
list_head *core_list_init(ee_u32 blksize, list_head *memblock, ee_s16 seed);
ee_u16 core_bench_list(core_results *res, ee_s16 finder_idx);
ee_u16 core_bench_list(core_results *res, ee_s16 finder_idx);
/* state benchmark functions */
void core_init_state(ee_u32 size, ee_s16 seed, ee_u8 *p);
ee_u16 core_bench_state(ee_u32 blksize, ee_u8 *memblock,
ee_s16 seed1, ee_s16 seed2, ee_s16 step, ee_u16 crc);
void core_init_state(ee_u32 size, ee_s16 seed, ee_u8 *p);
ee_u16 core_bench_state(ee_u32 blksize,
ee_u8 *memblock,
ee_s16 seed1,
ee_s16 seed2,
ee_s16 step,
ee_u16 crc);
/* matrix benchmark functions */
ee_u32 core_init_matrix(ee_u32 blksize, void *memblk, ee_s32 seed, mat_params *p);
ee_u32 core_init_matrix(ee_u32 blksize,
void * memblk,
ee_s32 seed,
mat_params *p);
ee_u16 core_bench_matrix(mat_params *p, ee_s16 seed, ee_u16 crc);

View File

@ -0,0 +1,6 @@
8d082dc4a9676c02731a8cf209339072 core_list_join.c
c984863b84b59185d8b5fb81c1ca7535 core_main.c
5fa21a0f7c3964167c9691db531ca652 core_matrix.c
edcfc7a0b146a50028014f06e6826aa3 core_state.c
45540ba2145adea1ec7ea2c72a1fbbcb core_util.c
8ca974c013b380dc7f0d6d1afb76eb2d coremark.h

126
riscv-coremark/coremark/cygwin/core_portme.mak Executable file → Normal file
View File

@ -14,128 +14,4 @@
#
# Original Author: Shay Gal-on
#File: core_portme.mak
# Flag: OUTFLAG
# Use this flag to define how to to get an executable (e.g -o)
OUTFLAG= -o
# Flag: CC
# Use this flag to define compiler to use
CC = gcc
# Flag: CFLAGS
# Use this flag to define compiler options. Note, you can add compiler options from the command line using XCFLAGS="other flags"
PORT_CFLAGS = -O2
FLAGS_STR = "$(PORT_CFLAGS) $(XCFLAGS) $(XLFLAGS) $(LFLAGS_END)"
CFLAGS = $(PORT_CFLAGS) -I$(PORT_DIR) -I. -DFLAGS_STR=\"$(FLAGS_STR)\"
#Flag: LFLAGS_END
# Define any libraries needed for linking or other flags that should come at the end of the link line (e.g. linker scripts).
# Note: On certain platforms, the default clock_gettime implementation is supported but requires linking of librt.
LFLAGS_END =
# Flag: PORT_SRCS
# Port specific source files can be added here
PORT_SRCS = $(PORT_DIR)/core_portme.c
# Flag: LOAD
# Define this flag if you need to load to a target, as in a cross compile environment.
# Flag: RUN
# Define this flag if running does not consist of simple invocation of the binary.
# In a cross compile environment, you need to define this.
#For flashing and using a tera term macro, you could use
#LOAD = flash ADDR
#RUN = ttpmacro coremark.ttl
#For copying to target and executing via SSH connection, you could use
#LOAD = scp $(OUTFILE) user@target:~
#RUN = ssh user@target -c
#For native compilation and execution
LOAD = echo Loading done
RUN =
OEXT = .o
EXE = .exe
# Flag: SEPARATE_COMPILE
# Define if you need to separate compilation from link stage.
# In this case, you also need to define below how to create an object file, and how to link.
ifdef SEPARATE_COMPILE
LD = gcc
OBJOUT = -o
LFLAGS =
OFLAG = -o
COUT = -c
# Flag: PORT_OBJS
# Port specific object files can be added here
PORT_OBJS = $(PORT_DIR)/core_portme$(OEXT)
PORT_CLEAN = *$(OEXT)
$(OPATH)%$(OEXT) : %.c
$(CC) $(CFLAGS) $(XCFLAGS) $(COUT) $< $(OBJOUT) $@
endif
# Target: port_prebuild
# Generate any files that are needed before actual build starts.
# E.g. generate profile guidance files. Sample PGO generation for gcc enabled with PGO=1
# - First, check if PGO was defined on the command line, if so, need to add -fprofile-use to compile line.
# - Second, if PGO reference has not yet been generated, add a step to the prebuild that will build a profile-generate version and run it.
# Note - Using REBUILD=1
#
# Use make PGO=1 to invoke this sample processing.
ifdef PGO
ifeq (,$(findstring $(PGO),gen))
PGO_STAGE=build_pgo_gcc
CFLAGS+=-fprofile-use
endif
PORT_CLEAN+=*.gcda *.gcno gmon.out
endif
.PHONY: port_prebuild
port_prebuild: $(PGO_STAGE)
.PHONY: build_pgo_gcc
build_pgo_gcc:
$(MAKE) PGO=gen XCFLAGS="$(XCFLAGS) -fprofile-generate -DTOTAL_DATA_SIZE=1200" ITERATIONS=10 gen_pgo_data REBUILD=1
# Target: port_postbuild
# Generate any files that are needed after actual build end.
# E.g. change format to srec, bin, zip in order to be able to load into flash
.PHONY: port_postbuild
port_postbuild:
# Target: port_postrun
# Do platform specific after run stuff.
# E.g. reset the board, backup the logfiles etc.
.PHONY: port_postrun
port_postrun:
# Target: port_prerun
# Do platform specific after run stuff.
# E.g. reset the board, backup the logfiles etc.
.PHONY: port_prerun
port_prerun:
# Target: port_postload
# Do platform specific after load stuff.
# E.g. reset the reset power to the flash eraser
.PHONY: port_postload
port_postload:
# Target: port_preload
# Do platform specific before load stuff.
# E.g. reset the reset power to the flash eraser
.PHONY: port_preload
port_preload:
# FLAG: OPATH
# Path to the output folder. Default - current folder.
OPATH = ./
MKDIR = mkdir -p
# FLAG: PERL
# Define perl executable to calculate the geomean if running separate.
PERL=perl
include posix/core_portme.mak

View File

@ -0,0 +1,17 @@
# Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Original Author: Shay Gal-on
include posix/core_portme.mak

125
riscv-coremark/coremark/linux/core_portme.mak Executable file → Normal file
View File

@ -14,127 +14,4 @@
#
# Original Author: Shay Gal-on
#File: core_portme.mak
# Flag: OUTFLAG
# Use this flag to define how to to get an executable (e.g -o)
OUTFLAG= -o
# Flag: CC
# Use this flag to define compiler to use
CC = gcc
# Flag: CFLAGS
# Use this flag to define compiler options. Note, you can add compiler options from the command line using XCFLAGS="other flags"
PORT_CFLAGS = -O2
FLAGS_STR = "$(PORT_CFLAGS) $(XCFLAGS) $(XLFLAGS) $(LFLAGS_END)"
CFLAGS = $(PORT_CFLAGS) -I$(PORT_DIR) -I. -DFLAGS_STR=\"$(FLAGS_STR)\"
#Flag: LFLAGS_END
# Define any libraries needed for linking or other flags that should come at the end of the link line (e.g. linker scripts).
# Note: On certain platforms, the default clock_gettime implementation is supported but requires linking of librt.
LFLAGS_END += -lrt
# Flag: PORT_SRCS
# Port specific source files can be added here
PORT_SRCS = $(PORT_DIR)/core_portme.c
# Flag: LOAD
# Define this flag if you need to load to a target, as in a cross compile environment.
# Flag: RUN
# Define this flag if running does not consist of simple invocation of the binary.
# In a cross compile environment, you need to define this.
#For flashing and using a tera term macro, you could use
#LOAD = flash ADDR
#RUN = ttpmacro coremark.ttl
#For copying to target and executing via SSH connection, you could use
#LOAD = scp $(OUTFILE) user@target:~
#RUN = ssh user@target -c
#For native compilation and execution
LOAD = echo Loading done
RUN =
OEXT = .o
EXE = .exe
# Flag: SEPARATE_COMPILE
# Define if you need to separate compilation from link stage.
# In this case, you also need to define below how to create an object file, and how to link.
ifdef SEPARATE_COMPILE
LD = gcc
OBJOUT = -o
LFLAGS =
OFLAG = -o
COUT = -c
# Flag: PORT_OBJS
# Port specific object files can be added here
PORT_OBJS = $(PORT_DIR)/core_portme$(OEXT)
PORT_CLEAN = *$(OEXT)
$(OPATH)%$(OEXT) : %.c
$(CC) $(CFLAGS) $(XCFLAGS) $(COUT) $< $(OBJOUT) $@
endif
# Target: port_prebuild
# Generate any files that are needed before actual build starts.
# E.g. generate profile guidance files. Sample PGO generation for gcc enabled with PGO=1
# - First, check if PGO was defined on the command line, if so, need to add -fprofile-use to compile line.
# - Second, if PGO reference has not yet been generated, add a step to the prebuild that will build a profile-generate version and run it.
# Note - Using REBUILD=1
#
# Use make PGO=1 to invoke this sample processing.
ifdef PGO
ifeq (,$(findstring $(PGO),gen))
PGO_STAGE=build_pgo_gcc
CFLAGS+=-fprofile-use
endif
PORT_CLEAN+=*.gcda *.gcno gmon.out
endif
.PHONY: port_prebuild
port_prebuild: $(PGO_STAGE)
.PHONY: build_pgo_gcc
build_pgo_gcc:
$(MAKE) PGO=gen XCFLAGS="$(XCFLAGS) -fprofile-generate -DTOTAL_DATA_SIZE=1200" ITERATIONS=10 gen_pgo_data REBUILD=1
# Target: port_postbuild
# Generate any files that are needed after actual build end.
# E.g. change format to srec, bin, zip in order to be able to load into flash
.PHONY: port_postbuild
port_postbuild:
# Target: port_postrun
# Do platform specific after run stuff.
# E.g. reset the board, backup the logfiles etc.
.PHONY: port_postrun
port_postrun:
# Target: port_prerun
# Do platform specific after run stuff.
# E.g. reset the board, backup the logfiles etc.
.PHONY: port_prerun
port_prerun:
# Target: port_postload
# Do platform specific after load stuff.
# E.g. reset the reset power to the flash eraser
.PHONY: port_postload
port_postload:
# Target: port_preload
# Do platform specific before load stuff.
# E.g. reset the reset power to the flash eraser
.PHONY: port_preload
port_preload:
# FLAG: OPATH
# Path to the output folder. Default - current folder.
OPATH = ./
MKDIR = mkdir -p
# FLAG: PERL
# Define perl executable to calculate the geomean if running separate.
PERL=/usr/bin/perl
include posix/core_portme.mak

View File

@ -0,0 +1,18 @@
# Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Original Author: Shay Gal-on
NO_LIBRT = 1
include posix/core_portme.mak

View File

@ -0,0 +1,419 @@
/*
Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Original Author: Shay Gal-on
*/
#include <stdio.h>
#include <stdlib.h>
#include "coremark.h"
#if CALLGRIND_RUN
#include <valgrind/callgrind.h>
#endif
#if (MEM_METHOD == MEM_MALLOC)
/* Function: portable_malloc
Provide malloc() functionality in a platform specific way.
*/
void *
portable_malloc(size_t size)
{
return malloc(size);
}
/* Function: portable_free
Provide free() functionality in a platform specific way.
*/
void
portable_free(void *p)
{
free(p);
}
#else
void *
portable_malloc(size_t size)
{
return NULL;
}
void
portable_free(void *p)
{
p = NULL;
}
#endif
#if (SEED_METHOD == SEED_VOLATILE)
#if VALIDATION_RUN
volatile ee_s32 seed1_volatile = 0x3415;
volatile ee_s32 seed2_volatile = 0x3415;
volatile ee_s32 seed3_volatile = 0x66;
#endif
#if PERFORMANCE_RUN
volatile ee_s32 seed1_volatile = 0x0;
volatile ee_s32 seed2_volatile = 0x0;
volatile ee_s32 seed3_volatile = 0x66;
#endif
#if PROFILE_RUN
volatile ee_s32 seed1_volatile = 0x8;
volatile ee_s32 seed2_volatile = 0x8;
volatile ee_s32 seed3_volatile = 0x8;
#endif
volatile ee_s32 seed4_volatile = ITERATIONS;
volatile ee_s32 seed5_volatile = 0;
#endif
/* Porting: Timing functions
How to capture time and convert to seconds must be ported to whatever is
supported by the platform. e.g. Read value from on board RTC, read value from
cpu clock cycles performance counter etc. Sample implementation for standard
time.h and windows.h definitions included.
*/
/* Define: TIMER_RES_DIVIDER
Divider to trade off timer resolution and total time that can be
measured.
Use lower values to increase resolution, but make sure that overflow
does not occur. If there are issues with the return value overflowing,
increase this value.
*/
#if USE_CLOCK
#define NSECS_PER_SEC CLOCKS_PER_SEC
#define EE_TIMER_TICKER_RATE 1000
#define CORETIMETYPE clock_t
#define GETMYTIME(_t) (*_t = clock())
#define MYTIMEDIFF(fin, ini) ((fin) - (ini))
#define TIMER_RES_DIVIDER 1
#define SAMPLE_TIME_IMPLEMENTATION 1
#elif defined(_MSC_VER)
#define NSECS_PER_SEC 10000000
#define EE_TIMER_TICKER_RATE 1000
#define CORETIMETYPE FILETIME
#define GETMYTIME(_t) GetSystemTimeAsFileTime(_t)
#define MYTIMEDIFF(fin, ini) \
(((*(__int64 *)&fin) - (*(__int64 *)&ini)) / TIMER_RES_DIVIDER)
/* setting to millisces resolution by default with MSDEV */
#ifndef TIMER_RES_DIVIDER
#define TIMER_RES_DIVIDER 1000
#endif
#define SAMPLE_TIME_IMPLEMENTATION 1
#elif HAS_TIME_H
#define NSECS_PER_SEC 1000000000
#define EE_TIMER_TICKER_RATE 1000
#define CORETIMETYPE struct timespec
#define GETMYTIME(_t) clock_gettime(CLOCK_REALTIME, _t)
#define MYTIMEDIFF(fin, ini) \
((fin.tv_sec - ini.tv_sec) * (NSECS_PER_SEC / TIMER_RES_DIVIDER) \
+ (fin.tv_nsec - ini.tv_nsec) / TIMER_RES_DIVIDER)
/* setting to 1/1000 of a second resolution by default with linux */
#ifndef TIMER_RES_DIVIDER
#define TIMER_RES_DIVIDER 1000000
#endif
#define SAMPLE_TIME_IMPLEMENTATION 1
#else
#define SAMPLE_TIME_IMPLEMENTATION 0
#endif
#define EE_TICKS_PER_SEC (NSECS_PER_SEC / TIMER_RES_DIVIDER)
#if SAMPLE_TIME_IMPLEMENTATION
/** Define Host specific (POSIX), or target specific global time variables. */
static CORETIMETYPE start_time_val, stop_time_val;
/* Function: start_time
This function will be called right before starting the timed portion of
the benchmark.
Implementation may be capturing a system timer (as implemented in the
example code) or zeroing some system parameters - e.g. setting the cpu clocks
cycles to 0.
*/
void
start_time(void)
{
GETMYTIME(&start_time_val);
#if CALLGRIND_RUN
CALLGRIND_START_INSTRUMENTATION
#endif
#if MICA
asm volatile("int3"); /*1 */
#endif
}
/* Function: stop_time
This function will be called right after ending the timed portion of the
benchmark.
Implementation may be capturing a system timer (as implemented in the
example code) or other system parameters - e.g. reading the current value of
cpu cycles counter.
*/
void
stop_time(void)
{
#if CALLGRIND_RUN
CALLGRIND_STOP_INSTRUMENTATION
#endif
#if MICA
asm volatile("int3"); /*1 */
#endif
GETMYTIME(&stop_time_val);
}
/* Function: get_time
Return an abstract "ticks" number that signifies time on the system.
Actual value returned may be cpu cycles, milliseconds or any other
value, as long as it can be converted to seconds by <time_in_secs>. This
methodology is taken to accomodate any hardware or simulated platform. The
sample implementation returns millisecs by default, and the resolution is
controlled by <TIMER_RES_DIVIDER>
*/
CORE_TICKS
get_time(void)
{
CORE_TICKS elapsed
= (CORE_TICKS)(MYTIMEDIFF(stop_time_val, start_time_val));
return elapsed;
}
/* Function: time_in_secs
Convert the value returned by get_time to seconds.
The <secs_ret> type is used to accomodate systems with no support for
floating point. Default implementation implemented by the EE_TICKS_PER_SEC
macro above.
*/
secs_ret
time_in_secs(CORE_TICKS ticks)
{
secs_ret retval = ((secs_ret)ticks) / (secs_ret)EE_TICKS_PER_SEC;
return retval;
}
#else
#error "Please implement timing functionality in core_portme.c"
#endif /* SAMPLE_TIME_IMPLEMENTATION */
ee_u32 default_num_contexts = MULTITHREAD;
/* Function: portable_init
Target specific initialization code
Test for some common mistakes.
*/
void
portable_init(core_portable *p, int *argc, char *argv[])
{
#if PRINT_ARGS
int i;
for (i = 0; i < *argc; i++)
{
ee_printf("Arg[%d]=%s\n", i, argv[i]);
}
#endif
if (sizeof(ee_ptr_int) != sizeof(ee_u8 *))
{
ee_printf(
"ERROR! Please define ee_ptr_int to a type that holds a "
"pointer!\n");
}
if (sizeof(ee_u32) != 4)
{
ee_printf("ERROR! Please define ee_u32 to a 32b unsigned type!\n");
}
#if (MAIN_HAS_NOARGC && (SEED_METHOD == SEED_ARG))
ee_printf(
"ERROR! Main has no argc, but SEED_METHOD defined to SEED_ARG!\n");
#endif
#if (MULTITHREAD > 1) && (SEED_METHOD == SEED_ARG)
int nargs = *argc, i;
if ((nargs > 1) && (*argv[1] == 'M'))
{
default_num_contexts = parseval(argv[1] + 1);
if (default_num_contexts > MULTITHREAD)
default_num_contexts = MULTITHREAD;
/* Shift args since first arg is directed to the portable part and not
* to coremark main */
--nargs;
for (i = 1; i < nargs; i++)
argv[i] = argv[i + 1];
*argc = nargs;
}
#endif /* sample of potential platform specific init via command line, reset \
the number of contexts being used if first argument is M<n>*/
p->portable_id = 1;
}
/* Function: portable_fini
Target specific final code
*/
void
portable_fini(core_portable *p)
{
p->portable_id = 0;
}
#if (MULTITHREAD > 1)
/* Function: core_start_parallel
Start benchmarking in a parallel context.
Three implementations are provided, one using pthreads, one using fork
and shared mem, and one using fork and sockets. Other implementations using
MCAPI or other standards can easily be devised.
*/
/* Function: core_stop_parallel
Stop a parallel context execution of coremark, and gather the results.
Three implementations are provided, one using pthreads, one using fork
and shared mem, and one using fork and sockets. Other implementations using
MCAPI or other standards can easily be devised.
*/
#if USE_PTHREAD
ee_u8
core_start_parallel(core_results *res)
{
return (ee_u8)pthread_create(
&(res->port.thread), NULL, iterate, (void *)res);
}
ee_u8
core_stop_parallel(core_results *res)
{
void *retval;
return (ee_u8)pthread_join(res->port.thread, &retval);
}
#elif USE_FORK
static int key_id = 0;
ee_u8
core_start_parallel(core_results *res)
{
key_t key = 4321 + key_id;
key_id++;
res->port.pid = fork();
res->port.shmid = shmget(key, 8, IPC_CREAT | 0666);
if (res->port.shmid < 0)
{
ee_printf("ERROR in shmget!\n");
}
if (res->port.pid == 0)
{
iterate(res);
res->port.shm = shmat(res->port.shmid, NULL, 0);
/* copy the validation values to the shared memory area and quit*/
if (res->port.shm == (char *)-1)
{
ee_printf("ERROR in child shmat!\n");
}
else
{
memcpy(res->port.shm, &(res->crc), 8);
shmdt(res->port.shm);
}
exit(0);
}
return 1;
}
ee_u8
core_stop_parallel(core_results *res)
{
int status;
pid_t wpid = waitpid(res->port.pid, &status, WUNTRACED);
if (wpid != res->port.pid)
{
ee_printf("ERROR waiting for child.\n");
if (errno == ECHILD)
ee_printf("errno=No such child %d\n", res->port.pid);
if (errno == EINTR)
ee_printf("errno=Interrupted\n");
return 0;
}
/* after process is done, get the values from the shared memory area */
res->port.shm = shmat(res->port.shmid, NULL, 0);
if (res->port.shm == (char *)-1)
{
ee_printf("ERROR in parent shmat!\n");
return 0;
}
memcpy(&(res->crc), res->port.shm, 8);
shmdt(res->port.shm);
return 1;
}
#elif USE_SOCKET
static int key_id = 0;
ee_u8
core_start_parallel(core_results *res)
{
int bound, buffer_length = 8;
res->port.sa.sin_family = AF_INET;
res->port.sa.sin_addr.s_addr = htonl(0x7F000001);
res->port.sa.sin_port = htons(7654 + key_id);
key_id++;
res->port.pid = fork();
if (res->port.pid == 0)
{ /* benchmark child */
iterate(res);
res->port.sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (-1 == res->port.sock) /* if socket failed to initialize, exit */
{
ee_printf("Error Creating Socket");
}
else
{
int bytes_sent = sendto(res->port.sock,
&(res->crc),
buffer_length,
0,
(struct sockaddr *)&(res->port.sa),
sizeof(struct sockaddr_in));
if (bytes_sent < 0)
ee_printf("Error sending packet: %s\n", strerror(errno));
close(res->port.sock); /* close the socket */
}
exit(0);
}
/* parent process, open the socket */
res->port.sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP);
bound = bind(res->port.sock,
(struct sockaddr *)&(res->port.sa),
sizeof(struct sockaddr));
if (bound < 0)
ee_printf("bind(): %s\n", strerror(errno));
return 1;
}
ee_u8
core_stop_parallel(core_results *res)
{
int status;
int fromlen = sizeof(struct sockaddr);
int recsize = recvfrom(res->port.sock,
&(res->crc),
8,
0,
(struct sockaddr *)&(res->port.sa),
&fromlen);
if (recsize < 0)
{
ee_printf("Error in receive: %s\n", strerror(errno));
return 0;
}
pid_t wpid = waitpid(res->port.pid, &status, WUNTRACED);
if (wpid != res->port.pid)
{
ee_printf("ERROR waiting for child.\n");
if (errno == ECHILD)
ee_printf("errno=No such child %d\n", res->port.pid);
if (errno == EINTR)
ee_printf("errno=Interrupted\n");
return 0;
}
return 1;
}
#else /* no standard multicore implementation */
#error \
"Please implement multicore functionality in core_portme.c to use multiple contexts."
#endif /* multithread implementations */
#endif

View File

@ -0,0 +1,314 @@
/*
Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Original Author: Shay Gal-on
*/
/* Topic: Description
This file contains configuration constants required to execute on
different platforms
*/
#ifndef CORE_PORTME_H
#define CORE_PORTME_H
#include "core_portme_posix_overrides.h"
/************************/
/* Data types and settings */
/************************/
/* Configuration: HAS_FLOAT
Define to 1 if the platform supports floating point.
*/
#ifndef HAS_FLOAT
#define HAS_FLOAT 1
#endif
/* Configuration: HAS_TIME_H
Define to 1 if platform has the time.h header file,
and implementation of functions thereof.
*/
#ifndef HAS_TIME_H
#define HAS_TIME_H 1
#endif
/* Configuration: USE_CLOCK
Define to 1 if platform has the time.h header file,
and implementation of functions thereof.
*/
#ifndef USE_CLOCK
#define USE_CLOCK 0
#endif
/* Configuration: HAS_STDIO
Define to 1 if the platform has stdio.h.
*/
#ifndef HAS_STDIO
#define HAS_STDIO 1
#endif
/* Configuration: HAS_PRINTF
Define to 1 if the platform has stdio.h and implements the printf
function.
*/
#ifndef HAS_PRINTF
#define HAS_PRINTF 1
#endif
/* Configuration: CORE_TICKS
Define type of return from the timing functions.
*/
#if defined(_MSC_VER)
#include <windows.h>
typedef size_t CORE_TICKS;
#elif HAS_TIME_H
#include <time.h>
typedef clock_t CORE_TICKS;
#else
#error \
"Please define type of CORE_TICKS and implement start_time, end_time get_time and time_in_secs functions!"
#endif
/* Definitions: COMPILER_VERSION, COMPILER_FLAGS, MEM_LOCATION
Initialize these strings per platform
*/
#ifndef COMPILER_VERSION
#ifdef __GNUC__
#define COMPILER_VERSION "GCC"__VERSION__
#else
#define COMPILER_VERSION "Please put compiler version here (e.g. gcc 4.1)"
#endif
#endif
#ifndef COMPILER_FLAGS
#define COMPILER_FLAGS \
FLAGS_STR /* "Please put compiler flags here (e.g. -o3)" */
#endif
#ifndef MEM_LOCATION
#define MEM_LOCATION \
"Please put data memory location here\n\t\t\t(e.g. code in flash, data " \
"on heap etc)"
#define MEM_LOCATION_UNSPEC 1
#endif
#include <stdint.h>
/* Data Types:
To avoid compiler issues, define the data types that need ot be used for
8b, 16b and 32b in <core_portme.h>.
*Imprtant*:
ee_ptr_int needs to be the data type used to hold pointers, otherwise
coremark may fail!!!
*/
typedef signed short ee_s16;
typedef unsigned short ee_u16;
typedef signed int ee_s32;
typedef double ee_f32;
typedef unsigned char ee_u8;
typedef unsigned int ee_u32;
typedef uintptr_t ee_ptr_int;
typedef size_t ee_size_t;
/* align an offset to point to a 32b value */
#define align_mem(x) (void *)(4 + (((ee_ptr_int)(x)-1) & ~3))
/* Configuration: SEED_METHOD
Defines method to get seed values that cannot be computed at compile
time.
Valid values:
SEED_ARG - from command line.
SEED_FUNC - from a system function.
SEED_VOLATILE - from volatile variables.
*/
#ifndef SEED_METHOD
#define SEED_METHOD SEED_ARG
#endif
/* Configuration: MEM_METHOD
Defines method to get a block of memry.
Valid values:
MEM_MALLOC - for platforms that implement malloc and have malloc.h.
MEM_STATIC - to use a static memory array.
MEM_STACK - to allocate the data block on the stack (NYI).
*/
#ifndef MEM_METHOD
#define MEM_METHOD MEM_MALLOC
#endif
/* Configuration: MULTITHREAD
Define for parallel execution
Valid values:
1 - only one context (default).
N>1 - will execute N copies in parallel.
Note:
If this flag is defined to more then 1, an implementation for launching
parallel contexts must be defined.
Two sample implementations are provided. Use <USE_PTHREAD> or <USE_FORK>
to enable them.
It is valid to have a different implementation of <core_start_parallel>
and <core_end_parallel> in <core_portme.c>, to fit a particular architecture.
*/
#ifndef MULTITHREAD
#define MULTITHREAD 1
#endif
/* Configuration: USE_PTHREAD
Sample implementation for launching parallel contexts
This implementation uses pthread_thread_create and pthread_join.
Valid values:
0 - Do not use pthreads API.
1 - Use pthreads API
Note:
This flag only matters if MULTITHREAD has been defined to a value
greater then 1.
*/
#ifndef USE_PTHREAD
#define USE_PTHREAD 0
#endif
/* Configuration: USE_FORK
Sample implementation for launching parallel contexts
This implementation uses fork, waitpid, shmget,shmat and shmdt.
Valid values:
0 - Do not use fork API.
1 - Use fork API
Note:
This flag only matters if MULTITHREAD has been defined to a value
greater then 1.
*/
#ifndef USE_FORK
#define USE_FORK 0
#endif
/* Configuration: USE_SOCKET
Sample implementation for launching parallel contexts
This implementation uses fork, socket, sendto and recvfrom
Valid values:
0 - Do not use fork and sockets API.
1 - Use fork and sockets API
Note:
This flag only matters if MULTITHREAD has been defined to a value
greater then 1.
*/
#ifndef USE_SOCKET
#define USE_SOCKET 0
#endif
/* Configuration: MAIN_HAS_NOARGC
Needed if platform does not support getting arguments to main.
Valid values:
0 - argc/argv to main is supported
1 - argc/argv to main is not supported
*/
#ifndef MAIN_HAS_NOARGC
#define MAIN_HAS_NOARGC 0
#endif
/* Configuration: MAIN_HAS_NORETURN
Needed if platform does not support returning a value from main.
Valid values:
0 - main returns an int, and return value will be 0.
1 - platform does not support returning a value from main
*/
#ifndef MAIN_HAS_NORETURN
#define MAIN_HAS_NORETURN 0
#endif
/* Variable: default_num_contexts
Number of contexts to spawn in multicore context.
Override this global value to change number of contexts used.
Note:
This value may not be set higher then the <MULTITHREAD> define.
To experiment, you can set the <MULTITHREAD> define to the highest value
expected, and use argc/argv in the <portable_init> to set this value from the
command line.
*/
extern ee_u32 default_num_contexts;
#if (MULTITHREAD > 1)
#if USE_PTHREAD
#include <pthread.h>
#define PARALLEL_METHOD "PThreads"
#elif USE_FORK
#include <unistd.h>
#include <errno.h>
#include <sys/wait.h>
#include <sys/shm.h>
#include <string.h> /* for memcpy */
#define PARALLEL_METHOD "Fork"
#elif USE_SOCKET
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/wait.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#define PARALLEL_METHOD "Sockets"
#else
#define PARALLEL_METHOD "Proprietary"
#error \
"Please implement multicore functionality in core_portme.c to use multiple contexts."
#endif /* Method for multithreading */
#endif /* MULTITHREAD > 1 */
typedef struct CORE_PORTABLE_S
{
#if (MULTITHREAD > 1)
#if USE_PTHREAD
pthread_t thread;
#elif USE_FORK
pid_t pid;
int shmid;
void *shm;
#elif USE_SOCKET
pid_t pid;
int sock;
struct sockaddr_in sa;
#endif /* Method for multithreading */
#endif /* MULTITHREAD>1 */
ee_u8 portable_id;
} core_portable;
/* target specific init/fini */
void portable_init(core_portable *p, int *argc, char *argv[]);
void portable_fini(core_portable *p);
#if (SEED_METHOD == SEED_VOLATILE)
#if (VALIDATION_RUN || PERFORMANCE_RUN || PROFILE_RUN)
#define RUN_TYPE_FLAG 1
#else
#if (TOTAL_DATA_SIZE == 1200)
#define PROFILE_RUN 1
#else
#define PERFORMANCE_RUN 1
#endif
#endif
#endif /* SEED_METHOD==SEED_VOLATILE */
#endif /* CORE_PORTME_H */

View File

@ -0,0 +1,151 @@
# Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Original Author: Shay Gal-on
#File: core_portme.mak
# Flag: OUTFLAG
# Use this flag to define how to to get an executable (e.g -o)
OUTFLAG= -o
# Flag: CC
# Use this flag to define compiler to use
CC?= cc
# Flag: CFLAGS
# Use this flag to define compiler options. Note, you can add compiler options from the command line using XCFLAGS="other flags"
PORT_CFLAGS = -O2
FLAGS_STR = "$(PORT_CFLAGS) $(XCFLAGS) $(XLFLAGS) $(LFLAGS_END)"
CFLAGS = $(PORT_CFLAGS) -I$(PORT_DIR) -Iposix -I. -DFLAGS_STR=\"$(FLAGS_STR)\"
# Flag: NO_LIBRT
# Define if the platform does not provide a librt
ifndef NO_LIBRT
#Flag: LFLAGS_END
# Define any libraries needed for linking or other flags that should come at the end of the link line (e.g. linker scripts).
# Note: On certain platforms, the default clock_gettime implementation is supported but requires linking of librt.
LFLAGS_END += -lrt
endif
# Flag: PORT_SRCS
# Port specific source files can be added here
PORT_SRCS = posix/core_portme.c
vpath %.c posix
vpath %.h posix
vpath %.mak posix
# Flag: EXTRA_DEPENDS
# Port specific extra build dependencies.
# Some ports inherit from us, so ensure this Makefile is always a dependency.
EXTRA_DEPENDS += posix/core_portme.mak
# Flag: LOAD
# Define this flag if you need to load to a target, as in a cross compile environment.
# Flag: RUN
# Define this flag if running does not consist of simple invocation of the binary.
# In a cross compile environment, you need to define this.
#For flashing and using a tera term macro, you could use
#LOAD = flash ADDR
#RUN = ttpmacro coremark.ttl
#For copying to target and executing via SSH connection, you could use
#LOAD = scp $(OUTFILE) user@target:~
#RUN = ssh user@target -c
#For native compilation and execution
LOAD = echo Loading done
RUN =
OEXT = .o
EXE = .exe
# Flag: SEPARATE_COMPILE
# Define if you need to separate compilation from link stage.
# In this case, you also need to define below how to create an object file, and how to link.
ifdef SEPARATE_COMPILE
LD = gcc
OBJOUT = -o
LFLAGS =
OFLAG = -o
COUT = -c
# Flag: PORT_OBJS
# Port specific object files can be added here
PORT_OBJS = $(PORT_DIR)/core_portme$(OEXT)
PORT_CLEAN = *$(OEXT)
$(OPATH)%$(OEXT) : %.c
$(CC) $(CFLAGS) $(XCFLAGS) $(COUT) $< $(OBJOUT) $@
endif
# Target: port_prebuild
# Generate any files that are needed before actual build starts.
# E.g. generate profile guidance files. Sample PGO generation for gcc enabled with PGO=1
# - First, check if PGO was defined on the command line, if so, need to add -fprofile-use to compile line.
# - Second, if PGO reference has not yet been generated, add a step to the prebuild that will build a profile-generate version and run it.
# Note - Using REBUILD=1
#
# Use make PGO=1 to invoke this sample processing.
ifdef PGO
ifeq (,$(findstring $(PGO),gen))
PGO_STAGE=build_pgo_gcc
CFLAGS+=-fprofile-use
endif
PORT_CLEAN+=*.gcda *.gcno gmon.out
endif
.PHONY: port_prebuild
port_prebuild: $(PGO_STAGE)
.PHONY: build_pgo_gcc
build_pgo_gcc:
$(MAKE) PGO=gen XCFLAGS="$(XCFLAGS) -fprofile-generate -DTOTAL_DATA_SIZE=1200" ITERATIONS=10 gen_pgo_data REBUILD=1
# Target: port_postbuild
# Generate any files that are needed after actual build end.
# E.g. change format to srec, bin, zip in order to be able to load into flash
.PHONY: port_postbuild
port_postbuild:
# Target: port_postrun
# Do platform specific after run stuff.
# E.g. reset the board, backup the logfiles etc.
.PHONY: port_postrun
port_postrun:
# Target: port_prerun
# Do platform specific after run stuff.
# E.g. reset the board, backup the logfiles etc.
.PHONY: port_prerun
port_prerun:
# Target: port_postload
# Do platform specific after load stuff.
# E.g. reset the reset power to the flash eraser
.PHONY: port_postload
port_postload:
# Target: port_preload
# Do platform specific before load stuff.
# E.g. reset the reset power to the flash eraser
.PHONY: port_preload
port_preload:
# FLAG: OPATH
# Path to the output folder. Default - current folder.
OPATH = ./
MKDIR = mkdir -p
# FLAG: PERL
# Define perl executable to calculate the geomean if running separate.
PERL=/usr/bin/perl

View File

@ -0,0 +1,28 @@
/*
Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Original Author: Shay Gal-on
*/
/* Topic: Description
This file contains additional configuration constants required to execute on
different platforms over and above the POSIX defaults
*/
#ifndef CORE_PORTME_POSIX_OVERRIDES_H
#define CORE_PORTME_POSIX_OVERRIDES_H
/* None by default */
#endif

View File

@ -0,0 +1,18 @@
# Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Original Author: Shay Gal-on
NO_LIBRT = 1
include posix/core_portme.mak

View File

@ -0,0 +1,63 @@
/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2021 Hesham Almatary
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory (Department of Computer Science and
* Technology) under DARPA contract HR0011-18-C-0016 ("ECATS"), as part of the
* DARPA SSITH research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <stdlib.h>
#include <bsp.h>
int main(
int argc,
void **args
);
rtems_task Init(
rtems_task_argument ignored
);
rtems_task Init(
rtems_task_argument ignored
)
{
int ret = main(0, NULL);
exit(ret);
}
/* configuration information */
#define CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER
#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
#define CONFIGURE_MAXIMUM_TASKS 20
#define CONFIGURE_RTEMS_INIT_TASKS_TABLE
#define CONFIGURE_INIT
#include <rtems/confdefs.h>

151
riscv-coremark/coremark/simple/core_portme.c Executable file → Normal file
View File

@ -21,108 +21,129 @@ Original Author: Shay Gal-on
#include "coremark.h"
#if VALIDATION_RUN
volatile ee_s32 seed1_volatile=0x3415;
volatile ee_s32 seed2_volatile=0x3415;
volatile ee_s32 seed3_volatile=0x66;
volatile ee_s32 seed1_volatile = 0x3415;
volatile ee_s32 seed2_volatile = 0x3415;
volatile ee_s32 seed3_volatile = 0x66;
#endif
#if PERFORMANCE_RUN
volatile ee_s32 seed1_volatile=0x0;
volatile ee_s32 seed2_volatile=0x0;
volatile ee_s32 seed3_volatile=0x66;
volatile ee_s32 seed1_volatile = 0x0;
volatile ee_s32 seed2_volatile = 0x0;
volatile ee_s32 seed3_volatile = 0x66;
#endif
#if PROFILE_RUN
volatile ee_s32 seed1_volatile=0x8;
volatile ee_s32 seed2_volatile=0x8;
volatile ee_s32 seed3_volatile=0x8;
volatile ee_s32 seed1_volatile = 0x8;
volatile ee_s32 seed2_volatile = 0x8;
volatile ee_s32 seed3_volatile = 0x8;
#endif
volatile ee_s32 seed4_volatile=ITERATIONS;
volatile ee_s32 seed5_volatile=0;
volatile ee_s32 seed4_volatile = ITERATIONS;
volatile ee_s32 seed5_volatile = 0;
/* Porting : Timing functions
How to capture time and convert to seconds must be ported to whatever is supported by the platform.
e.g. Read value from on board RTC, read value from cpu clock cycles performance counter etc.
Sample implementation for standard time.h and windows.h definitions included.
How to capture time and convert to seconds must be ported to whatever is
supported by the platform. e.g. Read value from on board RTC, read value from
cpu clock cycles performance counter etc. Sample implementation for standard
time.h and windows.h definitions included.
*/
/* Define : TIMER_RES_DIVIDER
Divider to trade off timer resolution and total time that can be measured.
Divider to trade off timer resolution and total time that can be
measured.
Use lower values to increase resolution, but make sure that overflow does not occur.
If there are issues with the return value overflowing, increase this value.
*/
#define NSECS_PER_SEC CLOCKS_PER_SEC
#define CORETIMETYPE clock_t
#define GETMYTIME(_t) (*_t=clock())
#define MYTIMEDIFF(fin,ini) ((fin)-(ini))
#define TIMER_RES_DIVIDER 1
Use lower values to increase resolution, but make sure that overflow
does not occur. If there are issues with the return value overflowing,
increase this value.
*/
#define NSECS_PER_SEC CLOCKS_PER_SEC
#define CORETIMETYPE clock_t
#define GETMYTIME(_t) (*_t = clock())
#define MYTIMEDIFF(fin, ini) ((fin) - (ini))
#define TIMER_RES_DIVIDER 1
#define SAMPLE_TIME_IMPLEMENTATION 1
#define EE_TICKS_PER_SEC (NSECS_PER_SEC / TIMER_RES_DIVIDER)
#define EE_TICKS_PER_SEC (NSECS_PER_SEC / TIMER_RES_DIVIDER)
/** Define Host specific (POSIX), or target specific global time variables. */
static CORETIMETYPE start_time_val, stop_time_val;
/* Function : start_time
This function will be called right before starting the timed portion of the benchmark.
This function will be called right before starting the timed portion of
the benchmark.
Implementation may be capturing a system timer (as implemented in the example code)
or zeroing some system parameters - e.g. setting the cpu clocks cycles to 0.
Implementation may be capturing a system timer (as implemented in the
example code) or zeroing some system parameters - e.g. setting the cpu clocks
cycles to 0.
*/
void start_time(void) {
GETMYTIME(&start_time_val );
void
start_time(void)
{
GETMYTIME(&start_time_val);
}
/* Function : stop_time
This function will be called right after ending the timed portion of the benchmark.
This function will be called right after ending the timed portion of the
benchmark.
Implementation may be capturing a system timer (as implemented in the example code)
or other system parameters - e.g. reading the current value of cpu cycles counter.
Implementation may be capturing a system timer (as implemented in the
example code) or other system parameters - e.g. reading the current value of
cpu cycles counter.
*/
void stop_time(void) {
GETMYTIME(&stop_time_val );
void
stop_time(void)
{
GETMYTIME(&stop_time_val);
}
/* Function : get_time
Return an abstract "ticks" number that signifies time on the system.
Return an abstract "ticks" number that signifies time on the system.
Actual value returned may be cpu cycles, milliseconds or any other value,
as long as it can be converted to seconds by <time_in_secs>.
This methodology is taken to accomodate any hardware or simulated platform.
The sample implementation returns millisecs by default,
and the resolution is controlled by <TIMER_RES_DIVIDER>
Actual value returned may be cpu cycles, milliseconds or any other
value, as long as it can be converted to seconds by <time_in_secs>. This
methodology is taken to accomodate any hardware or simulated platform. The
sample implementation returns millisecs by default, and the resolution is
controlled by <TIMER_RES_DIVIDER>
*/
CORE_TICKS get_time(void) {
CORE_TICKS elapsed=(CORE_TICKS)(MYTIMEDIFF(stop_time_val, start_time_val));
return elapsed;
CORE_TICKS
get_time(void)
{
CORE_TICKS elapsed
= (CORE_TICKS)(MYTIMEDIFF(stop_time_val, start_time_val));
return elapsed;
}
/* Function : time_in_secs
Convert the value returned by get_time to seconds.
Convert the value returned by get_time to seconds.
The <secs_ret> type is used to accomodate systems with no support for floating point.
Default implementation implemented by the EE_TICKS_PER_SEC macro above.
The <secs_ret> type is used to accomodate systems with no support for
floating point. Default implementation implemented by the EE_TICKS_PER_SEC
macro above.
*/
secs_ret time_in_secs(CORE_TICKS ticks) {
secs_ret retval=((secs_ret)ticks) / (secs_ret)EE_TICKS_PER_SEC;
return retval;
secs_ret
time_in_secs(CORE_TICKS ticks)
{
secs_ret retval = ((secs_ret)ticks) / (secs_ret)EE_TICKS_PER_SEC;
return retval;
}
ee_u32 default_num_contexts=1;
ee_u32 default_num_contexts = 1;
/* Function : portable_init
Target specific initialization code
Test for some common mistakes.
Target specific initialization code
Test for some common mistakes.
*/
void portable_init(core_portable *p, int *argc, char *argv[])
void
portable_init(core_portable *p, int *argc, char *argv[])
{
if (sizeof(ee_ptr_int) != sizeof(ee_u8 *)) {
ee_printf("ERROR! Please define ee_ptr_int to a type that holds a pointer!\n");
}
if (sizeof(ee_u32) != 4) {
ee_printf("ERROR! Please define ee_u32 to a 32b unsigned type!\n");
}
p->portable_id=1;
if (sizeof(ee_ptr_int) != sizeof(ee_u8 *))
{
ee_printf(
"ERROR! Please define ee_ptr_int to a type that holds a "
"pointer!\n");
}
if (sizeof(ee_u32) != 4)
{
ee_printf("ERROR! Please define ee_u32 to a 32b unsigned type!\n");
}
p->portable_id = 1;
}
/* Function : portable_fini
Target specific final code
Target specific final code
*/
void portable_fini(core_portable *p)
void
portable_fini(core_portable *p)
{
p->portable_id=0;
p->portable_id = 0;
}

144
riscv-coremark/coremark/simple/core_portme.h Executable file → Normal file
View File

@ -17,7 +17,8 @@ Original Author: Shay Gal-on
*/
/* Topic : Description
This file contains configuration constants required to execute on different platforms
This file contains configuration constants required to execute on
different platforms
*/
#ifndef CORE_PORTME_H
#define CORE_PORTME_H
@ -25,168 +26,179 @@ Original Author: Shay Gal-on
/* Data types and settings */
/************************/
/* Configuration : HAS_FLOAT
Define to 1 if the platform supports floating point.
Define to 1 if the platform supports floating point.
*/
#ifndef HAS_FLOAT
#define HAS_FLOAT 1
#endif
/* Configuration : HAS_TIME_H
Define to 1 if platform has the time.h header file,
and implementation of functions thereof.
Define to 1 if platform has the time.h header file,
and implementation of functions thereof.
*/
#ifndef HAS_TIME_H
#define HAS_TIME_H 1
#endif
/* Configuration : USE_CLOCK
Define to 1 if platform has the time.h header file,
and implementation of functions thereof.
Define to 1 if platform has the time.h header file,
and implementation of functions thereof.
*/
#ifndef USE_CLOCK
#define USE_CLOCK 1
#endif
/* Configuration : HAS_STDIO
Define to 1 if the platform has stdio.h.
Define to 1 if the platform has stdio.h.
*/
#ifndef HAS_STDIO
#define HAS_STDIO 1
#endif
/* Configuration : HAS_PRINTF
Define to 1 if the platform has stdio.h and implements the printf function.
Define to 1 if the platform has stdio.h and implements the printf
function.
*/
#ifndef HAS_PRINTF
#define HAS_PRINTF 1
#endif
/* Configuration : CORE_TICKS
Define type of return from the timing functions.
Define type of return from the timing functions.
*/
#include <time.h>
typedef clock_t CORE_TICKS;
/* Definitions : COMPILER_VERSION, COMPILER_FLAGS, MEM_LOCATION
Initialize these strings per platform
Initialize these strings per platform
*/
#ifndef COMPILER_VERSION
#ifdef __GNUC__
#define COMPILER_VERSION "GCC"__VERSION__
#else
#define COMPILER_VERSION "Please put compiler version here (e.g. gcc 4.1)"
#endif
#ifdef __GNUC__
#define COMPILER_VERSION "GCC"__VERSION__
#else
#define COMPILER_VERSION "Please put compiler version here (e.g. gcc 4.1)"
#endif
#endif
#ifndef COMPILER_FLAGS
#define COMPILER_FLAGS FLAGS_STR /* "Please put compiler flags here (e.g. -o3)" */
#define COMPILER_FLAGS \
FLAGS_STR /* "Please put compiler flags here (e.g. -o3)" */
#endif
#ifndef MEM_LOCATION
#define MEM_LOCATION "STACK"
#define MEM_LOCATION "STACK"
#endif
/* Data Types :
To avoid compiler issues, define the data types that need ot be used for 8b, 16b and 32b in <core_portme.h>.
To avoid compiler issues, define the data types that need ot be used for
8b, 16b and 32b in <core_portme.h>.
*Imprtant* :
ee_ptr_int needs to be the data type used to hold pointers, otherwise coremark may fail!!!
*Imprtant* :
ee_ptr_int needs to be the data type used to hold pointers, otherwise
coremark may fail!!!
*/
typedef signed short ee_s16;
typedef signed short ee_s16;
typedef unsigned short ee_u16;
typedef signed int ee_s32;
typedef double ee_f32;
typedef unsigned char ee_u8;
typedef unsigned int ee_u32;
typedef ee_u32 ee_ptr_int;
typedef size_t ee_size_t;
typedef signed int ee_s32;
typedef double ee_f32;
typedef unsigned char ee_u8;
typedef unsigned int ee_u32;
typedef ee_u32 ee_ptr_int;
typedef size_t ee_size_t;
/* align_mem :
This macro is used to align an offset to point to a 32b value. It is used in the Matrix algorithm to initialize the input memory blocks.
This macro is used to align an offset to point to a 32b value. It is
used in the Matrix algorithm to initialize the input memory blocks.
*/
#define align_mem(x) (void *)(4 + (((ee_ptr_int)(x) - 1) & ~3))
#define align_mem(x) (void *)(4 + (((ee_ptr_int)(x)-1) & ~3))
/* Configuration : SEED_METHOD
Defines method to get seed values that cannot be computed at compile time.
Defines method to get seed values that cannot be computed at compile
time.
Valid values :
SEED_ARG - from command line.
SEED_FUNC - from a system function.
SEED_VOLATILE - from volatile variables.
Valid values :
SEED_ARG - from command line.
SEED_FUNC - from a system function.
SEED_VOLATILE - from volatile variables.
*/
#ifndef SEED_METHOD
#define SEED_METHOD SEED_VOLATILE
#endif
/* Configuration : MEM_METHOD
Defines method to get a block of memry.
Defines method to get a block of memry.
Valid values :
MEM_MALLOC - for platforms that implement malloc and have malloc.h.
MEM_STATIC - to use a static memory array.
MEM_STACK - to allocate the data block on the stack (NYI).
Valid values :
MEM_MALLOC - for platforms that implement malloc and have malloc.h.
MEM_STATIC - to use a static memory array.
MEM_STACK - to allocate the data block on the stack (NYI).
*/
#ifndef MEM_METHOD
#define MEM_METHOD MEM_STACK
#endif
/* Configuration : MULTITHREAD
Define for parallel execution
Define for parallel execution
Valid values :
1 - only one context (default).
N>1 - will execute N copies in parallel.
Valid values :
1 - only one context (default).
N>1 - will execute N copies in parallel.
Note :
If this flag is defined to more then 1, an implementation for launching parallel contexts must be defined.
Note :
If this flag is defined to more then 1, an implementation for launching
parallel contexts must be defined.
Two sample implementations are provided. Use <USE_PTHREAD> or <USE_FORK> to enable them.
Two sample implementations are provided. Use <USE_PTHREAD> or <USE_FORK>
to enable them.
It is valid to have a different implementation of <core_start_parallel> and <core_end_parallel> in <core_portme.c>,
to fit a particular architecture.
It is valid to have a different implementation of <core_start_parallel>
and <core_end_parallel> in <core_portme.c>, to fit a particular architecture.
*/
#ifndef MULTITHREAD
#define MULTITHREAD 1
#define USE_PTHREAD 0
#define USE_FORK 0
#define USE_SOCKET 0
#define USE_FORK 0
#define USE_SOCKET 0
#endif
/* Configuration : MAIN_HAS_NOARGC
Needed if platform does not support getting arguments to main.
Needed if platform does not support getting arguments to main.
Valid values :
0 - argc/argv to main is supported
1 - argc/argv to main is not supported
Valid values :
0 - argc/argv to main is supported
1 - argc/argv to main is not supported
Note :
This flag only matters if MULTITHREAD has been defined to a value greater then 1.
Note :
This flag only matters if MULTITHREAD has been defined to a value
greater then 1.
*/
#ifndef MAIN_HAS_NOARGC
#define MAIN_HAS_NOARGC 0
#endif
/* Configuration : MAIN_HAS_NORETURN
Needed if platform does not support returning a value from main.
Needed if platform does not support returning a value from main.
Valid values :
0 - main returns an int, and return value will be 0.
1 - platform does not support returning a value from main
Valid values :
0 - main returns an int, and return value will be 0.
1 - platform does not support returning a value from main
*/
#ifndef MAIN_HAS_NORETURN
#define MAIN_HAS_NORETURN 0
#endif
/* Variable : default_num_contexts
Not used for this simple port, must cintain the value 1.
Not used for this simple port, must cintain the value 1.
*/
extern ee_u32 default_num_contexts;
typedef struct CORE_PORTABLE_S {
ee_u8 portable_id;
typedef struct CORE_PORTABLE_S
{
ee_u8 portable_id;
} core_portable;
/* target specific init/fini */
void portable_init(core_portable *p, int *argc, char *argv[]);
void portable_fini(core_portable *p);
#if !defined(PROFILE_RUN) && !defined(PERFORMANCE_RUN) && !defined(VALIDATION_RUN)
#if (TOTAL_DATA_SIZE==1200)
#if !defined(PROFILE_RUN) && !defined(PERFORMANCE_RUN) \
&& !defined(VALIDATION_RUN)
#if (TOTAL_DATA_SIZE == 1200)
#define PROFILE_RUN 1
#elif (TOTAL_DATA_SIZE==2000)
#elif (TOTAL_DATA_SIZE == 2000)
#define PERFORMANCE_RUN 1
#else
#define VALIDATION_RUN 1