mirror of
https://github.com/openhwgroup/cvw
synced 2025-02-11 06:05:49 +00:00
Merge branch 'main' of https://github.com/davidharrishmc/riscv-wally into main
This commit is contained in:
commit
caf3c2de9b
3
.gitmodules
vendored
3
.gitmodules
vendored
@ -0,0 +1,3 @@
|
|||||||
|
[submodule "sky130/sky130_osu_sc_t12"]
|
||||||
|
path = sky130/sky130_osu_sc_t12
|
||||||
|
url = https://foss-eda-tools.googlesource.com/skywater-pdk/libs/sky130_osu_sc_t12/
|
@ -139,12 +139,12 @@ assign ansnan = FmtE ? &ans[`FLEN-2:`NF] && |ans[`NF-1:0] : &ans[30:23] && |ans[
|
|||||||
logic [8:0] NormCntE, NormCntM;
|
logic [8:0] NormCntE, NormCntM;
|
||||||
|
|
||||||
fma1 fma1 (.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE({XAssumed1E,XFracE}), .YManE({YAssumed1E,YFracE}), .ZManE({ZAssumed1E,ZFracE}),
|
fma1 fma1 (.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE({XAssumed1E,XFracE}), .YManE({YAssumed1E,YFracE}), .ZManE({ZAssumed1E,ZFracE}),
|
||||||
.BiasE, .XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
|
.XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
|
||||||
.FOpCtrlE, .FmtE, .SumE, .NegSumE, .InvZE, .NormCntE, .ZSgnEffE, .PSgnE,
|
.FOpCtrlE, .FmtE, .SumE, .NegSumE, .InvZE, .NormCntE, .ZSgnEffE, .PSgnE,
|
||||||
.ProdExpE, .AddendStickyE, .KillProdE);
|
.ProdExpE, .AddendStickyE, .KillProdE);
|
||||||
fma2 UUT2(.XSgnM(XSgnE), .YSgnM(YSgnE), .XExpM(XExpE), .YExpM(YExpE), .ZExpM(ZExpE), .XManM({XAssumed1E,XFracE}), .YManM({YAssumed1E,YFracE}), .ZManM({ZAssumed1E,ZFracE}), .XNaNM(XNaNE), .YNaNM(YNaNE), .ZNaNM(ZNaNE), .XZeroM(XZeroE), .YZeroM(YZeroE), .ZZeroM(ZZeroE), .XInfM(XInfE), .YInfM(YInfE), .ZInfM(ZInfE), .XSNaNM(XSNaNE), .YSNaNM(YSNaNE), .ZSNaNM(ZSNaNE),
|
fma2 UUT2(.XSgnM(XSgnE), .YSgnM(YSgnE), .XExpM(XExpE), .YExpM(YExpE), .ZExpM(ZExpE), .XManM({XAssumed1E,XFracE}), .YManM({YAssumed1E,YFracE}), .ZManM({ZAssumed1E,ZFracE}), .XNaNM(XNaNE), .YNaNM(YNaNE), .ZNaNM(ZNaNE), .XZeroM(XZeroE), .YZeroM(YZeroE), .ZZeroM(ZZeroE), .XInfM(XInfE), .YInfM(YInfE), .ZInfM(ZInfE), .XSNaNM(XSNaNE), .YSNaNM(YSNaNE), .ZSNaNM(ZSNaNE),
|
||||||
// .FSrcXE, .FSrcYE, .FSrcZE, .FSrcXM, .FSrcYM, .FSrcZM,
|
// .FSrcXE, .FSrcYE, .FSrcZE, .FSrcXM, .FSrcYM, .FSrcZM,
|
||||||
.FOpCtrlM(FOpCtrlE[2:0]), .KillProdM(KillProdE), .AddendStickyM(AddendStickyE), .ProdExpM(ProdExpE), .SumM(SumE), .NegSumM(NegSumE), .InvZM(InvZE), .NormCntM(NormCntE), .ZSgnEffM(ZSgnEffE), .PSgnM(PSgnE),
|
.KillProdM(KillProdE), .AddendStickyM(AddendStickyE), .ProdExpM(ProdExpE), .SumM(SumE), .NegSumM(NegSumE), .InvZM(InvZE), .NormCntM(NormCntE), .ZSgnEffM(ZSgnEffE), .PSgnM(PSgnE),
|
||||||
.FmtM(FmtE), .FrmM(FrmE), .FMAFlgM, .FMAResM);
|
.FmtM(FmtE), .FrmM(FrmE), .FMAFlgM, .FMAResM);
|
||||||
|
|
||||||
|
|
||||||
|
@ -23,7 +23,7 @@
|
|||||||
///////////////////////////////////////////
|
///////////////////////////////////////////
|
||||||
|
|
||||||
`include "wally-config.vh"
|
`include "wally-config.vh"
|
||||||
// `include "../../../config/rv64icfd/wally-config.vh"
|
// `include "../../../config/rv64icfd/wally-config.vh"
|
||||||
|
|
||||||
module fma(
|
module fma(
|
||||||
input logic clk,
|
input logic clk,
|
||||||
@ -45,7 +45,6 @@ module fma(
|
|||||||
input logic XSNaNM, YSNaNM, ZSNaNM, // is signaling NaN
|
input logic XSNaNM, YSNaNM, ZSNaNM, // is signaling NaN
|
||||||
input logic XZeroM, YZeroM, ZZeroM, // is zero - memory stage
|
input logic XZeroM, YZeroM, ZZeroM, // is zero - memory stage
|
||||||
input logic XInfM, YInfM, ZInfM, // is infinity
|
input logic XInfM, YInfM, ZInfM, // is infinity
|
||||||
input logic [10:0] BiasE, // bias (max exponent/2) ***parameterize in unpacking unit
|
|
||||||
output logic [`FLEN-1:0] FMAResM, // FMA result
|
output logic [`FLEN-1:0] FMAResM, // FMA result
|
||||||
output logic [4:0] FMAFlgM); // FMA flags
|
output logic [4:0] FMAFlgM); // FMA flags
|
||||||
|
|
||||||
@ -70,7 +69,7 @@ module fma(
|
|||||||
logic [8:0] NormCntE, NormCntM;
|
logic [8:0] NormCntE, NormCntM;
|
||||||
|
|
||||||
fma1 fma1 (.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
|
fma1 fma1 (.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
|
||||||
.BiasE, .XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
|
.XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
|
||||||
.FOpCtrlE, .FmtE, .SumE, .NegSumE, .InvZE, .NormCntE, .ZSgnEffE, .PSgnE,
|
.FOpCtrlE, .FmtE, .SumE, .NegSumE, .InvZE, .NormCntE, .ZSgnEffE, .PSgnE,
|
||||||
.ProdExpE, .AddendStickyE, .KillProdE);
|
.ProdExpE, .AddendStickyE, .KillProdE);
|
||||||
|
|
||||||
@ -96,7 +95,6 @@ module fma1(
|
|||||||
input logic [`NF:0] XManE, YManE, ZManE, // fractions in U(0.NF) format
|
input logic [`NF:0] XManE, YManE, ZManE, // fractions in U(0.NF) format
|
||||||
input logic XDenormE, YDenormE, ZDenormE, // is the input denormal
|
input logic XDenormE, YDenormE, ZDenormE, // is the input denormal
|
||||||
input logic XZeroE, YZeroE, ZZeroE, // is the input zero
|
input logic XZeroE, YZeroE, ZZeroE, // is the input zero
|
||||||
input logic [`NE-1:0] BiasE, // bias (max exponent/2)
|
|
||||||
input logic [2:0] FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
|
input logic [2:0] FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
|
||||||
input logic FmtE, // precision 1 = double 0 = single
|
input logic FmtE, // precision 1 = double 0 = single
|
||||||
output logic [`NE+1:0] ProdExpE, // X exponent + Y exponent - bias in B(NE+2.0) format; adds 2 bits to allow for size of number and negative sign
|
output logic [`NE+1:0] ProdExpE, // X exponent + Y exponent - bias in B(NE+2.0) format; adds 2 bits to allow for size of number and negative sign
|
||||||
@ -111,25 +109,26 @@ module fma1(
|
|||||||
);
|
);
|
||||||
|
|
||||||
logic [`NE-1:0] Denorm; // value of a denormaized number based on precision
|
logic [`NE-1:0] Denorm; // value of a denormaized number based on precision
|
||||||
logic [`NE-1:0] XExpVal, YExpVal; // Exponent value after taking into account denormals
|
|
||||||
logic [2*`NF+1:0] ProdManE; // 1.X frac * 1.Y frac in U(2.2Nf) format
|
logic [2*`NF+1:0] ProdManE; // 1.X frac * 1.Y frac in U(2.2Nf) format
|
||||||
logic [3*`NF+5:0] AlignedAddendE; // Z aligned for addition in U(NF+5.2NF+1)
|
logic [3*`NF+5:0] AlignedAddendE; // Z aligned for addition in U(NF+5.2NF+1)
|
||||||
|
logic [3*`NF+6:0] AlignedAddendInv; // aligned addend possibly inverted
|
||||||
|
logic [2*`NF+1:0] ProdManKilled; // the product's mantissa possibly killed
|
||||||
|
logic [3*`NF+6:0] NegProdManKilled; // a negated ProdManKilled
|
||||||
|
logic [8:0] PNormCnt, NNormCnt; // the positive and nagitive LOA results
|
||||||
|
logic [3*`NF+6:0] PreSum, NegPreSum; // positive and negitve versions of the sum
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
// Calculate the product
|
// Calculate the product
|
||||||
// - When multipliying two fp numbers, add the exponents
|
// - When multipliying two fp numbers, add the exponents
|
||||||
// - Subtract the bias (XExp + YExp has two biases, one from each exponent)
|
// - Subtract the bias (XExp + YExp has two biases, one from each exponent)
|
||||||
// - If the product is zero then kill the exponent - this is a problem
|
// - If the product is zero then kill the exponent
|
||||||
|
// - Multiply the mantissas
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
// denormalized numbers have diffrent values depending on which precison it is.
|
|
||||||
// double - 1
|
// calculate the product's exponent
|
||||||
// single - 1024-128+1 = 897
|
expadd expadd(.FmtE, .XExpE, .YExpE, .XZeroE, .YZeroE, .XDenormE, .YDenormE,
|
||||||
assign Denorm = FmtE ? 1 : 897;
|
.Denorm, .ProdExpE);
|
||||||
assign XExpVal = XDenormE ? Denorm : XExpE;
|
|
||||||
assign YExpVal = YDenormE ? Denorm : YExpE;
|
|
||||||
// take into account if the product is zero, the product's exponent does not compute properly if X or Y is zero
|
|
||||||
assign ProdExpE = (XExpVal + YExpVal - BiasE)&{`NE+2{~(XZeroE|YZeroE)}};
|
|
||||||
|
|
||||||
// multiplication of the mantissa's
|
// multiplication of the mantissa's
|
||||||
mult mult(.XManE, .YManE, .ProdManE);
|
mult mult(.XManE, .YManE, .ProdManE);
|
||||||
@ -138,174 +137,49 @@ module fma1(
|
|||||||
// Alignment shifter
|
// Alignment shifter
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
alignshift alignshift(.ZExpE, .ZManE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .Denorm,
|
align align(.ZExpE, .ZManE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .Denorm,
|
||||||
.AlignedAddendE, .AddendStickyE, .KillProdE);
|
.AlignedAddendE, .AddendStickyE, .KillProdE);
|
||||||
|
|
||||||
|
// calculate the signs and take the opperation into account
|
||||||
// Calculate the product's sign
|
sign sign(.FOpCtrlE, .XSgnE, .YSgnE, .ZSgnE, .PSgnE, .ZSgnEffE);
|
||||||
// Negate product's sign if FNMADD or FNMSUB
|
|
||||||
|
|
||||||
assign PSgnE = XSgnE ^ YSgnE ^ (FOpCtrlE[1]&~FOpCtrlE[2]);
|
|
||||||
assign ZSgnEffE = ZSgnE^FOpCtrlE[0]; // Swap sign of Z for subtract
|
|
||||||
|
|
||||||
|
|
||||||
// ///////////////////////////////////////////////////////////////////////////////
|
// ///////////////////////////////////////////////////////////////////////////////
|
||||||
// // Addition/LZA
|
// // Addition/LZA
|
||||||
// ///////////////////////////////////////////////////////////////////////////////
|
// ///////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
fmaadd fmaadd(.AlignedAddendE, .ProdManE, .PSgnE, .ZSgnEffE, .KillProdE, .SumE, .NegSumE, .InvZE, .NormCntE, .XZeroE, .YZeroE);
|
add add(.AlignedAddendE, .ProdManE, .PSgnE, .ZSgnEffE, .KillProdE, .AlignedAddendInv, .ProdManKilled, .NegProdManKilled, .NegSumE, .PreSum, .NegPreSum, .InvZE, .XZeroE, .YZeroE);
|
||||||
|
|
||||||
|
loa loa(.AlignedAddendE, .AlignedAddendInv, .ProdManKilled, .NegProdManKilled, .PNormCnt, .NNormCnt);
|
||||||
|
|
||||||
|
// Choose the positive sum and accompanying LZA result.
|
||||||
|
assign SumE = NegSumE ? NegPreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
|
||||||
|
assign NormCntE = NegSumE ? NNormCnt : PNormCnt;
|
||||||
|
|
||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
|
|
||||||
|
module expadd(
|
||||||
|
input logic FmtE, // precision
|
||||||
|
input logic [`NE-1:0] XExpE, YExpE, // input exponents
|
||||||
|
input logic XDenormE, YDenormE, // are the inputs denormalized
|
||||||
|
input logic XZeroE, YZeroE, // are the inputs zero
|
||||||
|
output logic [`NE-1:0] Denorm, // value of denormalized exponent
|
||||||
|
output logic [`NE+1:0] ProdExpE // product's exponent B^(1023)NE+2
|
||||||
|
);
|
||||||
|
|
||||||
|
logic [`NE-1:0] XExpVal, YExpVal; // Exponent value after taking into account denormals
|
||||||
|
|
||||||
|
// denormalized numbers have diffrent values depending on which precison it is.
|
||||||
|
// double - 1
|
||||||
|
// single - 1024-128+1 = 897
|
||||||
|
assign Denorm = FmtE ? 1 : 897;
|
||||||
|
|
||||||
|
// pick denormalized value or exponent
|
||||||
|
assign XExpVal = XDenormE ? Denorm : XExpE;
|
||||||
|
assign YExpVal = YDenormE ? Denorm : YExpE;
|
||||||
|
// kill the exponent if the product is zero - either X or Y is 0
|
||||||
|
assign ProdExpE = (XExpVal + YExpVal - `NE'h3ff)&{`NE+2{~(XZeroE|YZeroE)}};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
module fma2(
|
|
||||||
|
|
||||||
input logic XSgnM, YSgnM, // input signs
|
|
||||||
input logic [`NE-1:0] XExpM, YExpM, ZExpM, // input exponents
|
|
||||||
input logic [`NF:0] XManM, YManM, ZManM, // input mantissas
|
|
||||||
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
|
|
||||||
input logic FmtM, // precision 1 = double 0 = single
|
|
||||||
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
|
|
||||||
input logic AddendStickyM, // sticky bit that is calculated during alignment
|
|
||||||
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
|
|
||||||
input logic XZeroM, YZeroM, ZZeroM, // inputs are zero
|
|
||||||
input logic XInfM, YInfM, ZInfM, // inputs are infinity
|
|
||||||
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
|
|
||||||
input logic XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs
|
|
||||||
input logic [3*`NF+5:0] SumM, // the positive sum
|
|
||||||
input logic NegSumM, // was the sum negitive
|
|
||||||
input logic InvZM, // do you invert Z
|
|
||||||
input logic ZSgnEffM, // the modified Z sign - depends on instruction
|
|
||||||
input logic PSgnM, // the product's sign
|
|
||||||
input logic [8:0] NormCntM, // the normalization shift count
|
|
||||||
output logic [`FLEN-1:0] FMAResM, // FMA final result
|
|
||||||
output logic [4:0] FMAFlgM); // FMA flags {invalid, divide by zero, overflow, underflow, inexact}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
logic [`NF-1:0] ResultFrac; // Result fraction
|
|
||||||
logic [`NE-1:0] ResultExp; // Result exponent
|
|
||||||
logic ResultSgn; // Result sign
|
|
||||||
logic [`NE+1:0] SumExp; // exponent of the normalized sum
|
|
||||||
logic [`NE+1:0] FullResultExp; // ResultExp with bits to determine sign and overflow
|
|
||||||
logic [`NF+2:0] NormSum; // normalized sum
|
|
||||||
logic NormSumSticky; // sticky bit calulated from the normalized sum
|
|
||||||
logic SumZero; // is the sum zero
|
|
||||||
logic ResultDenorm; // is the result denormalized
|
|
||||||
logic Sticky, UfSticky; // Sticky bit
|
|
||||||
logic Plus1, Minus1, CalcPlus1; // do you add or subtract one for rounding
|
|
||||||
logic UfPlus1; // do you add one (for determining underflow flag)
|
|
||||||
logic Invalid,Underflow,Overflow; // flags
|
|
||||||
logic ZeroSgn; // the result's sign if the sum is zero
|
|
||||||
logic ResultSgnTmp; // the result's sign assuming the result is not zero
|
|
||||||
logic Guard, Round; // bits needed to determine rounding
|
|
||||||
logic UfRound, UfLSBNormSum; // bits needed to determine rounding for underflow flag
|
|
||||||
logic [`FLEN-1:0] XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Normalization
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
normalize normalize(.SumM, .ZExpM, .ProdExpM, .NormCntM, .FmtM, .KillProdM, .AddendStickyM, .NormSum,
|
|
||||||
.SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm);
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Rounding
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
// round to nearest even
|
|
||||||
// round to zero
|
|
||||||
// round to -infinity
|
|
||||||
// round to infinity
|
|
||||||
// round to nearest max magnitude
|
|
||||||
|
|
||||||
fmaround fmaround(.FmtM, .FrmM, .Sticky, .UfSticky, .NormSum, .AddendStickyM, .NormSumSticky, .ZZeroM, .InvZM, .ResultSgn, .SumExp,
|
|
||||||
.CalcPlus1, .Plus1, .UfPlus1, .Minus1, .FullResultExp, .ResultFrac, .ResultExp, .Round, .Guard, .UfRound, .UfLSBNormSum);
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Sign calculation
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
// Determine the sign if the sum is zero
|
|
||||||
// if cancelation then 0 unless round to -infinity
|
|
||||||
// otherwise psign
|
|
||||||
assign ZeroSgn = (PSgnM^ZSgnEffM)&~Underflow ? FrmM[1:0] == 2'b10 : PSgnM;
|
|
||||||
|
|
||||||
// is the result negitive
|
|
||||||
// if p - z is the Sum negitive
|
|
||||||
// if -p + z is the Sum positive
|
|
||||||
// if -p - z then the Sum is negitive
|
|
||||||
assign ResultSgnTmp = InvZM&(ZSgnEffM)&NegSumM | InvZM&PSgnM&~NegSumM | ((ZSgnEffM)&PSgnM);
|
|
||||||
assign ResultSgn = SumZero ? ZeroSgn : ResultSgnTmp;
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Flags
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
fmaflags fmaflags(.XSNaNM, .YSNaNM, .ZSNaNM, .XInfM, .YInfM, .ZInfM, .XZeroM, .YZeroM,
|
|
||||||
.XNaNM, .YNaNM, .ZNaNM, .FullResultExp, .SumExp, .ZSgnEffM, .PSgnM, .Round, .Guard, .UfRound, .UfLSBNormSum, .Sticky, .UfPlus1,
|
|
||||||
.FmtM, .Invalid, .Overflow, .Underflow, .FMAFlgM);
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Select the result
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
|
||||||
assign XNaNResult = FmtM ? {XSgnM, XExpM, 1'b1, XManM[`NF-2:0]} : {{32{1'b1}}, XSgnM, XExpM[7:0], 1'b1, XManM[50:29]};
|
|
||||||
assign YNaNResult = FmtM ? {YSgnM, YExpM, 1'b1, YManM[`NF-2:0]} : {{32{1'b1}}, YSgnM, YExpM[7:0], 1'b1, YManM[50:29]};
|
|
||||||
assign ZNaNResult = FmtM ? {ZSgnEffM, ZExpM, 1'b1, ZManM[`NF-2:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], 1'b1, ZManM[50:29]};
|
|
||||||
assign OverflowResult = FmtM ? ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
|
|
||||||
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
|
|
||||||
((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{32{1'b1}}, ResultSgn, 8'hfe, {23{1'b1}}} :
|
|
||||||
{{32{1'b1}}, ResultSgn, 8'hff, 23'b0};
|
|
||||||
assign InvalidResult = FmtM ? {ResultSgn, {`NE{1'b1}}, 1'b1, {`NF-1{1'b0}}} : {{32{1'b1}}, ResultSgn, 8'hff, 1'b1, 22'b0};
|
|
||||||
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM, ZManM[`NF-1:0]} - (Minus1&AddendStickyM) + (Plus1&AddendStickyM)} : {{32{1'b1}}, ResultSgn, {ZExpM[`NE-1],ZExpM[6:0], ZManM[51:29]} - {30'b0, (Minus1&AddendStickyM)} + {30'b0, (Plus1&AddendStickyM)}};
|
|
||||||
assign UnderflowResult = FmtM ? {ResultSgn, {`FLEN-1{1'b0}}} + (CalcPlus1&(AddendStickyM|FrmM[1])) : {{32{1'b1}}, {ResultSgn, 31'b0} + {31'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))}};
|
|
||||||
assign FMAResM = XNaNM ? XNaNResult :
|
|
||||||
YNaNM ? YNaNResult :
|
|
||||||
ZNaNM ? ZNaNResult :
|
|
||||||
Invalid ? InvalidResult :
|
|
||||||
XInfM ? FmtM ? {PSgnM, XExpM, XManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, XExpM[7:0], XManM[51:29]} :
|
|
||||||
YInfM ? FmtM ? {PSgnM, YExpM, YManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, YExpM[7:0], YManM[51:29]} :
|
|
||||||
ZInfM ? FmtM ? {ZSgnEffM, ZExpM, ZManM[`NF-1:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], ZManM[51:29]} :
|
|
||||||
KillProdM ? KillProdResult :
|
|
||||||
Overflow ? OverflowResult :
|
|
||||||
Underflow & ~ResultDenorm & (ResultExp!=1) ? UnderflowResult :
|
|
||||||
FmtM ? {ResultSgn, ResultExp, ResultFrac} :
|
|
||||||
{{32{1'b1}}, ResultSgn, ResultExp[7:0], ResultFrac[51:29]};
|
|
||||||
|
|
||||||
// *** use NF where needed
|
|
||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
@ -313,7 +187,6 @@ endmodule
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
module mult(
|
module mult(
|
||||||
input logic [`NF:0] XManE, YManE,
|
input logic [`NF:0] XManE, YManE,
|
||||||
output logic [2*`NF+1:0] ProdManE
|
output logic [2*`NF+1:0] ProdManE
|
||||||
@ -325,7 +198,34 @@ endmodule
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
module alignshift(
|
|
||||||
|
|
||||||
|
|
||||||
|
module sign(
|
||||||
|
input logic [2:0] FOpCtrlE, // precision
|
||||||
|
input logic XSgnE, YSgnE, ZSgnE, // are the inputs denormalized
|
||||||
|
output logic PSgnE, // the product's sign - takes opperation into account
|
||||||
|
output logic ZSgnEffE // Z sign used in fma - takes opperation into account
|
||||||
|
);
|
||||||
|
|
||||||
|
// Calculate the product's sign
|
||||||
|
// Negate product's sign if FNMADD or FNMSUB
|
||||||
|
|
||||||
|
// flip is negation opperation
|
||||||
|
assign PSgnE = XSgnE ^ YSgnE ^ (FOpCtrlE[1]&~FOpCtrlE[2]);
|
||||||
|
// flip if subtraction
|
||||||
|
assign ZSgnEffE = ZSgnE^FOpCtrlE[0];
|
||||||
|
|
||||||
|
endmodule
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
module align(
|
||||||
input logic [`NE-1:0] ZExpE, // biased exponents in B(NE.0) format
|
input logic [`NE-1:0] ZExpE, // biased exponents in B(NE.0) format
|
||||||
input logic [`NF:0] ZManE, // fractions in U(0.NF) format]
|
input logic [`NF:0] ZManE, // fractions in U(0.NF) format]
|
||||||
input logic ZDenormE, // is the input denormal
|
input logic ZDenormE, // is the input denormal
|
||||||
@ -397,22 +297,25 @@ module alignshift(
|
|||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
module fmaadd(
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
module add(
|
||||||
input logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
|
input logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
|
||||||
input logic [2*`NF+1:0] ProdManE, // the product's mantissa
|
input logic [2*`NF+1:0] ProdManE, // the product's mantissa
|
||||||
input logic PSgnE, ZSgnEffE,// the product and modified Z signs
|
input logic PSgnE, ZSgnEffE,// the product and modified Z signs
|
||||||
input logic KillProdE, // should the product be set to 0
|
input logic KillProdE, // should the product be set to 0
|
||||||
input logic XZeroE, YZeroE, // is the input zero
|
input logic XZeroE, YZeroE, // is the input zero
|
||||||
output logic [3*`NF+5:0] SumE, // the positive sum
|
output logic [3*`NF+6:0] AlignedAddendInv, // aligned addend possibly inverted
|
||||||
|
output logic [2*`NF+1:0] ProdManKilled, // the product's mantissa possibly killed
|
||||||
|
output logic [3*`NF+6:0] NegProdManKilled, // a negated ProdManKilled
|
||||||
output logic NegSumE, // was the sum negitive
|
output logic NegSumE, // was the sum negitive
|
||||||
output logic InvZE, // do you invert Z
|
output logic InvZE, // do you invert Z
|
||||||
output logic [8:0] NormCntE // normalization shift count
|
output logic [3*`NF+6:0] PreSum, NegPreSum// possibly negitive sum
|
||||||
);
|
);
|
||||||
logic [3*`NF+6:0] PreSum, NegPreSum; // possibly negitive sum
|
|
||||||
logic [2*`NF+1:0] ProdMan2; // product being added
|
|
||||||
logic [3*`NF+6:0] AlignedAddend2; // possibly inverted aligned Z
|
|
||||||
logic [3*`NF+6:0] NegProdMan2; // a negated ProdMan2
|
|
||||||
logic [8:0] PNormCnt, NNormCnt; // results from the LZA
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
// Addition
|
// Addition
|
||||||
@ -424,36 +327,42 @@ module fmaadd(
|
|||||||
assign InvZE = ZSgnEffE ^ PSgnE;
|
assign InvZE = ZSgnEffE ^ PSgnE;
|
||||||
|
|
||||||
// Choose an inverted or non-inverted addend - the one has to be added now for the LZA
|
// Choose an inverted or non-inverted addend - the one has to be added now for the LZA
|
||||||
assign AlignedAddend2 = InvZE ? -{1'b0, AlignedAddendE} : {1'b0, AlignedAddendE};
|
assign AlignedAddendInv = InvZE ? -{1'b0, AlignedAddendE} : {1'b0, AlignedAddendE};
|
||||||
// Kill the product if the product is too small to effect the addition (determined in fma1.sv)
|
// Kill the product if the product is too small to effect the addition (determined in fma1.sv)
|
||||||
assign ProdMan2 = ProdManE&{2*`NF+2{~KillProdE}};
|
assign ProdManKilled = ProdManE&{2*`NF+2{~KillProdE}};
|
||||||
// Negate ProdMan for LZA and the negitive sum calculation
|
// Negate ProdMan for LZA and the negitive sum calculation
|
||||||
assign NegProdMan2 = {{`NF+3{~(XZeroE|YZeroE|KillProdE)}}, -ProdMan2, 2'b0};
|
assign NegProdManKilled = {{`NF+3{~(XZeroE|YZeroE|KillProdE)}}, -ProdManKilled, 2'b0};
|
||||||
|
|
||||||
// LZAs one for the positive result and one for the negitive
|
|
||||||
// - the +1 from inverting causes problems for normalization
|
|
||||||
poslza poslza(AlignedAddend2, ProdMan2, PNormCnt);
|
|
||||||
neglza neglza({1'b0,AlignedAddendE}, NegProdMan2, NNormCnt);
|
|
||||||
|
|
||||||
|
|
||||||
// Do the addition
|
// Do the addition
|
||||||
// - calculate a positive and negitive sum in parallel
|
// - calculate a positive and negitive sum in parallel
|
||||||
assign PreSum = AlignedAddend2 + {ProdMan2, 2'b0};
|
assign PreSum = AlignedAddendInv + {ProdManKilled, 2'b0};
|
||||||
assign NegPreSum = AlignedAddendE + NegProdMan2;
|
assign NegPreSum = AlignedAddendE + NegProdManKilled;
|
||||||
|
|
||||||
// Is the sum negitive
|
// Is the sum negitive
|
||||||
assign NegSumE = PreSum[3*`NF+6];
|
assign NegSumE = PreSum[3*`NF+6];
|
||||||
// Choose the positive sum and accompanying LZA result.
|
|
||||||
assign SumE = NegSumE ? NegPreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
|
|
||||||
assign NormCntE = NegSumE ? NNormCnt : PNormCnt;
|
|
||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
|
|
||||||
|
module loa(
|
||||||
|
input logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
|
||||||
|
input logic [3*`NF+6:0] AlignedAddendInv, // aligned addend possibly inverted
|
||||||
|
input logic [2*`NF+1:0] ProdManKilled, // the product's mantissa possibly killed
|
||||||
|
input logic [3*`NF+6:0] NegProdManKilled, // a negated ProdManKilled
|
||||||
|
output logic [8:0] PNormCnt, NNormCnt // positive and negitive LOA result
|
||||||
|
);
|
||||||
|
|
||||||
|
// LZAs one for the positive result and one for the negitive
|
||||||
|
// - the +1 from inverting causes problems for normalization
|
||||||
|
posloa posloa(AlignedAddendInv, ProdManKilled, PNormCnt);
|
||||||
|
negloa negloa({1'b0,AlignedAddendE}, NegProdManKilled, NNormCnt);
|
||||||
|
|
||||||
|
endmodule
|
||||||
|
|
||||||
|
|
||||||
|
module posloa(
|
||||||
module poslza(
|
|
||||||
input logic [3*`NF+6:0] A, // addend
|
input logic [3*`NF+6:0] A, // addend
|
||||||
input logic [2*`NF+1:0] P, // product
|
input logic [2*`NF+1:0] P, // product
|
||||||
output logic [8:0] PCnt // normalization shift count for the positive result
|
output logic [8:0] PCnt // normalization shift count for the positive result
|
||||||
@ -484,7 +393,7 @@ module poslza(
|
|||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
module neglza(
|
module negloa(
|
||||||
input logic [3*`NF+6:0] A, // addend
|
input logic [3*`NF+6:0] A, // addend
|
||||||
input logic [3*`NF+6:0] P, // product
|
input logic [3*`NF+6:0] P, // product
|
||||||
output logic [8:0] NCnt // normalization shift count for the negitive result
|
output logic [8:0] NCnt // normalization shift count for the negitive result
|
||||||
@ -512,6 +421,197 @@ endmodule
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
module fma2(
|
||||||
|
|
||||||
|
input logic XSgnM, YSgnM, // input signs
|
||||||
|
input logic [`NE-1:0] XExpM, YExpM, ZExpM, // input exponents
|
||||||
|
input logic [`NF:0] XManM, YManM, ZManM, // input mantissas
|
||||||
|
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
|
||||||
|
input logic FmtM, // precision 1 = double 0 = single
|
||||||
|
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
|
||||||
|
input logic AddendStickyM, // sticky bit that is calculated during alignment
|
||||||
|
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
|
||||||
|
input logic XZeroM, YZeroM, ZZeroM, // inputs are zero
|
||||||
|
input logic XInfM, YInfM, ZInfM, // inputs are infinity
|
||||||
|
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
|
||||||
|
input logic XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs
|
||||||
|
input logic [3*`NF+5:0] SumM, // the positive sum
|
||||||
|
input logic NegSumM, // was the sum negitive
|
||||||
|
input logic InvZM, // do you invert Z
|
||||||
|
input logic ZSgnEffM, // the modified Z sign - depends on instruction
|
||||||
|
input logic PSgnM, // the product's sign
|
||||||
|
input logic [8:0] NormCntM, // the normalization shift count
|
||||||
|
output logic [`FLEN-1:0] FMAResM, // FMA final result
|
||||||
|
output logic [4:0] FMAFlgM); // FMA flags {invalid, divide by zero, overflow, underflow, inexact}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
logic [`NF-1:0] ResultFrac; // Result fraction
|
||||||
|
logic [`NE-1:0] ResultExp; // Result exponent
|
||||||
|
logic ResultSgn; // Result sign
|
||||||
|
logic [`NE+1:0] SumExp; // exponent of the normalized sum
|
||||||
|
logic [`NE+1:0] FullResultExp; // ResultExp with bits to determine sign and overflow
|
||||||
|
logic [`NF+2:0] NormSum; // normalized sum
|
||||||
|
logic NormSumSticky; // sticky bit calulated from the normalized sum
|
||||||
|
logic SumZero; // is the sum zero
|
||||||
|
logic ResultDenorm; // is the result denormalized
|
||||||
|
logic Sticky, UfSticky; // Sticky bit
|
||||||
|
logic Plus1, Minus1, CalcPlus1; // do you add or subtract one for rounding
|
||||||
|
logic UfPlus1; // do you add one (for determining underflow flag)
|
||||||
|
logic Invalid,Underflow,Overflow; // flags
|
||||||
|
logic ZeroSgn; // the result's sign if the sum is zero
|
||||||
|
logic ResultSgnTmp; // the result's sign assuming the result is not zero
|
||||||
|
logic Guard, Round; // bits needed to determine rounding
|
||||||
|
logic UfRound, UfLSBNormSum; // bits needed to determine rounding for underflow flag
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
// Normalization
|
||||||
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
normalize normalize(.SumM, .ZExpM, .ProdExpM, .NormCntM, .FmtM, .KillProdM, .AddendStickyM, .NormSum,
|
||||||
|
.SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
// Rounding
|
||||||
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
// round to nearest even
|
||||||
|
// round to zero
|
||||||
|
// round to -infinity
|
||||||
|
// round to infinity
|
||||||
|
// round to nearest max magnitude
|
||||||
|
|
||||||
|
fmaround fmaround(.FmtM, .FrmM, .Sticky, .UfSticky, .NormSum, .AddendStickyM, .NormSumSticky, .ZZeroM, .InvZM, .ResultSgn, .SumExp,
|
||||||
|
.CalcPlus1, .Plus1, .UfPlus1, .Minus1, .FullResultExp, .ResultFrac, .ResultExp, .Round, .Guard, .UfRound, .UfLSBNormSum);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
// Sign calculation
|
||||||
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
|
||||||
|
resultsign resultsign(.FrmM, .PSgnM, .ZSgnEffM, .Underflow, .InvZM, .NegSumM, .SumZero, .ResultSgn);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
// Flags
|
||||||
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
fmaflags fmaflags(.XSNaNM, .YSNaNM, .ZSNaNM, .XInfM, .YInfM, .ZInfM, .XZeroM, .YZeroM,
|
||||||
|
.XNaNM, .YNaNM, .ZNaNM, .FullResultExp, .SumExp, .ZSgnEffM, .PSgnM, .Round, .Guard, .UfRound, .UfLSBNormSum, .Sticky, .UfPlus1,
|
||||||
|
.FmtM, .Invalid, .Overflow, .Underflow, .FMAFlgM);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
// Select the result
|
||||||
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
resultselect resultselect(.XSgnM, .YSgnM, .XExpM, .YExpM, .ZExpM, .XManM, .YManM, .ZManM,
|
||||||
|
.FrmM, .FmtM, .AddendStickyM, .KillProdM, .XInfM, .YInfM, .ZInfM, .XNaNM, .YNaNM, .ZNaNM,
|
||||||
|
.ZSgnEffM, .PSgnM, .ResultSgn, .Minus1, .Plus1, .CalcPlus1, .Invalid, .Overflow, .Underflow,
|
||||||
|
.ResultDenorm, .ResultExp, .ResultFrac, .FMAResM);
|
||||||
|
|
||||||
|
// *** use NF where needed
|
||||||
|
|
||||||
|
endmodule
|
||||||
|
|
||||||
|
module resultsign(
|
||||||
|
input logic [2:0] FrmM,
|
||||||
|
input logic PSgnM, ZSgnEffM,
|
||||||
|
input logic Underflow,
|
||||||
|
input logic InvZM,
|
||||||
|
input logic NegSumM,
|
||||||
|
input logic SumZero,
|
||||||
|
output logic ResultSgn
|
||||||
|
);
|
||||||
|
|
||||||
|
logic ZeroSgn;
|
||||||
|
logic ResultSgnTmp;
|
||||||
|
|
||||||
|
// Determine the sign if the sum is zero
|
||||||
|
// if cancelation then 0 unless round to -infinity
|
||||||
|
// otherwise psign
|
||||||
|
assign ZeroSgn = (PSgnM^ZSgnEffM)&~Underflow ? FrmM[1:0] == 2'b10 : PSgnM;
|
||||||
|
|
||||||
|
// is the result negitive
|
||||||
|
// if p - z is the Sum negitive
|
||||||
|
// if -p + z is the Sum positive
|
||||||
|
// if -p - z then the Sum is negitive
|
||||||
|
assign ResultSgnTmp = InvZM&(ZSgnEffM)&NegSumM | InvZM&PSgnM&~NegSumM | ((ZSgnEffM)&PSgnM);
|
||||||
|
assign ResultSgn = SumZero ? ZeroSgn : ResultSgnTmp;
|
||||||
|
|
||||||
|
endmodule
|
||||||
|
|
||||||
|
module resultselect(
|
||||||
|
input logic XSgnM, YSgnM, // input signs
|
||||||
|
input logic [`NE-1:0] XExpM, YExpM, ZExpM, // input exponents
|
||||||
|
input logic [`NF:0] XManM, YManM, ZManM, // input mantissas
|
||||||
|
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
|
||||||
|
input logic FmtM, // precision 1 = double 0 = single
|
||||||
|
input logic AddendStickyM, // sticky bit that is calculated during alignment
|
||||||
|
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
|
||||||
|
input logic XInfM, YInfM, ZInfM, // inputs are infinity
|
||||||
|
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
|
||||||
|
input logic ZSgnEffM, // the modified Z sign - depends on instruction
|
||||||
|
input logic PSgnM, // the product's sign
|
||||||
|
input logic ResultSgn, // the result's sign
|
||||||
|
input logic Minus1, Plus1, CalcPlus1, // rounding bits
|
||||||
|
input logic Invalid, Overflow, Underflow, // flags
|
||||||
|
input logic ResultDenorm, // is the result denormalized
|
||||||
|
input logic [`NE-1:0] ResultExp, // Result exponent
|
||||||
|
input logic [`NF-1:0] ResultFrac, // Result fraction
|
||||||
|
output logic [`FLEN-1:0] FMAResM // FMA final result
|
||||||
|
);
|
||||||
|
logic [`FLEN-1:0] XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
|
||||||
|
|
||||||
|
assign XNaNResult = FmtM ? {XSgnM, XExpM, 1'b1, XManM[`NF-2:0]} : {{32{1'b1}}, XSgnM, XExpM[7:0], 1'b1, XManM[50:29]};
|
||||||
|
assign YNaNResult = FmtM ? {YSgnM, YExpM, 1'b1, YManM[`NF-2:0]} : {{32{1'b1}}, YSgnM, YExpM[7:0], 1'b1, YManM[50:29]};
|
||||||
|
assign ZNaNResult = FmtM ? {ZSgnEffM, ZExpM, 1'b1, ZManM[`NF-2:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], 1'b1, ZManM[50:29]};
|
||||||
|
assign OverflowResult = FmtM ? ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
|
||||||
|
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
|
||||||
|
((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{32{1'b1}}, ResultSgn, 8'hfe, {23{1'b1}}} :
|
||||||
|
{{32{1'b1}}, ResultSgn, 8'hff, 23'b0};
|
||||||
|
assign InvalidResult = FmtM ? {ResultSgn, {`NE{1'b1}}, 1'b1, {`NF-1{1'b0}}} : {{32{1'b1}}, ResultSgn, 8'hff, 1'b1, 22'b0};
|
||||||
|
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM, ZManM[`NF-1:0]} - (Minus1&AddendStickyM) + (Plus1&AddendStickyM)} : {{32{1'b1}}, ResultSgn, {ZExpM[`NE-1],ZExpM[6:0], ZManM[51:29]} - {30'b0, (Minus1&AddendStickyM)} + {30'b0, (Plus1&AddendStickyM)}};
|
||||||
|
assign UnderflowResult = FmtM ? {ResultSgn, {`FLEN-1{1'b0}}} + (CalcPlus1&(AddendStickyM|FrmM[1])) : {{32{1'b1}}, {ResultSgn, 31'b0} + {31'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))}};
|
||||||
|
assign FMAResM = XNaNM ? XNaNResult :
|
||||||
|
YNaNM ? YNaNResult :
|
||||||
|
ZNaNM ? ZNaNResult :
|
||||||
|
Invalid ? InvalidResult :
|
||||||
|
XInfM ? FmtM ? {PSgnM, XExpM, XManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, XExpM[7:0], XManM[51:29]} :
|
||||||
|
YInfM ? FmtM ? {PSgnM, YExpM, YManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, YExpM[7:0], YManM[51:29]} :
|
||||||
|
ZInfM ? FmtM ? {ZSgnEffM, ZExpM, ZManM[`NF-1:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], ZManM[51:29]} :
|
||||||
|
KillProdM ? KillProdResult :
|
||||||
|
Overflow ? OverflowResult :
|
||||||
|
Underflow & ~ResultDenorm & (ResultExp!=1) ? UnderflowResult :
|
||||||
|
FmtM ? {ResultSgn, ResultExp, ResultFrac} :
|
||||||
|
{{32{1'b1}}, ResultSgn, ResultExp[7:0], ResultFrac[51:29]};
|
||||||
|
|
||||||
|
endmodule
|
||||||
|
|
||||||
|
|
||||||
module normalize(
|
module normalize(
|
||||||
input logic [3*`NF+5:0] SumM, // the positive sum
|
input logic [3*`NF+5:0] SumM, // the positive sum
|
||||||
input logic [`NE-1:0] ZExpM, // exponent of Z
|
input logic [`NE-1:0] ZExpM, // exponent of Z
|
||||||
|
@ -89,13 +89,16 @@ module fpu (
|
|||||||
logic [10:0] BiasE; // bias based on precision (single=7f double=3ff - max expoent/2)
|
logic [10:0] BiasE; // bias based on precision (single=7f double=3ff - max expoent/2)
|
||||||
logic XNaNE, YNaNE, ZNaNE; // is the input a NaN - execute stage
|
logic XNaNE, YNaNE, ZNaNE; // is the input a NaN - execute stage
|
||||||
logic XNaNM, YNaNM, ZNaNM; // is the input a NaN - memory stage
|
logic XNaNM, YNaNM, ZNaNM; // is the input a NaN - memory stage
|
||||||
|
logic XNaNQ, YNaNQ; // is the input a NaN - divide
|
||||||
logic XSNaNE, YSNaNE, ZSNaNE; // is the input a signaling NaN - execute stage
|
logic XSNaNE, YSNaNE, ZSNaNE; // is the input a signaling NaN - execute stage
|
||||||
logic XSNaNM, YSNaNM, ZSNaNM; // is the input a signaling NaN - memory stage
|
logic XSNaNM, YSNaNM, ZSNaNM; // is the input a signaling NaN - memory stage
|
||||||
logic XDenormE, YDenormE, ZDenormE; // is the input denormalized
|
logic XDenormE, YDenormE, ZDenormE; // is the input denormalized
|
||||||
logic XZeroE, YZeroE, ZZeroE; // is the input zero - execute stage
|
logic XZeroE, YZeroE, ZZeroE; // is the input zero - execute stage
|
||||||
logic XZeroM, YZeroM, ZZeroM; // is the input zero - memory stage
|
logic XZeroM, YZeroM, ZZeroM; // is the input zero - memory stage
|
||||||
|
logic XZeroQ, YZeroQ; // is the input zero - divide
|
||||||
logic XInfE, YInfE, ZInfE; // is the input infinity - execute stage
|
logic XInfE, YInfE, ZInfE; // is the input infinity - execute stage
|
||||||
logic XInfM, YInfM, ZInfM; // is the input infinity - memory stage
|
logic XInfM, YInfM, ZInfM; // is the input infinity - memory stage
|
||||||
|
logic XInfQ, YInfQ; // is the input infinity - divide
|
||||||
logic XExpMaxE; // is the exponent all ones (max value)
|
logic XExpMaxE; // is the exponent all ones (max value)
|
||||||
logic XNormE; // is normal
|
logic XNormE; // is normal
|
||||||
|
|
||||||
@ -180,7 +183,7 @@ module fpu (
|
|||||||
// - handles FMA and multiply instructions
|
// - handles FMA and multiply instructions
|
||||||
fma fma (.clk, .reset, .FlushM, .StallM,
|
fma fma (.clk, .reset, .FlushM, .StallM,
|
||||||
.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
|
.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
|
||||||
.XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .BiasE,
|
.XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
|
||||||
.XSgnM, .YSgnM, .XExpM, .YExpM, .ZExpM, .XManM, .YManM, .ZManM,
|
.XSgnM, .YSgnM, .XExpM, .YExpM, .ZExpM, .XManM, .YManM, .ZManM,
|
||||||
.XNaNM, .YNaNM, .ZNaNM, .XZeroM, .YZeroM, .ZZeroM,
|
.XNaNM, .YNaNM, .ZNaNM, .XZeroM, .YZeroM, .ZZeroM,
|
||||||
.XInfM, .YInfM, .ZInfM, .XSNaNM, .YSNaNM, .ZSNaNM,
|
.XInfM, .YInfM, .ZInfM, .XSNaNM, .YSNaNM, .ZSNaNM,
|
||||||
|
@ -34,10 +34,8 @@ module pmpadrdec (
|
|||||||
input logic [7:0] PMPCfg,
|
input logic [7:0] PMPCfg,
|
||||||
input logic [`XLEN-1:0] PMPAdr,
|
input logic [`XLEN-1:0] PMPAdr,
|
||||||
input logic PAgePMPAdrIn,
|
input logic PAgePMPAdrIn,
|
||||||
// input logic NoLowerMatchIn,
|
|
||||||
input logic FirstMatch,
|
input logic FirstMatch,
|
||||||
output logic PAgePMPAdrOut,
|
output logic PAgePMPAdrOut,
|
||||||
// output logic NoLowerMatchOut,
|
|
||||||
output logic Match, Active,
|
output logic Match, Active,
|
||||||
output logic L, X, W, R
|
output logic L, X, W, R
|
||||||
);
|
);
|
||||||
@ -48,7 +46,6 @@ module pmpadrdec (
|
|||||||
|
|
||||||
logic TORMatch, NAMatch;
|
logic TORMatch, NAMatch;
|
||||||
logic PAltPMPAdr;
|
logic PAltPMPAdr;
|
||||||
// logic FirstMatch;
|
|
||||||
logic [`PA_BITS-1:0] CurrentAdrFull;
|
logic [`PA_BITS-1:0] CurrentAdrFull;
|
||||||
logic [1:0] AdrMode;
|
logic [1:0] AdrMode;
|
||||||
|
|
||||||
@ -67,25 +64,15 @@ module pmpadrdec (
|
|||||||
assign TORMatch = PAgePMPAdrIn && PAltPMPAdr;
|
assign TORMatch = PAgePMPAdrIn && PAltPMPAdr;
|
||||||
|
|
||||||
// Naturally aligned regions
|
// Naturally aligned regions
|
||||||
logic [`PA_BITS-1:0] NAMask;
|
logic [`PA_BITS-1:0] NAMask, NABase;
|
||||||
//genvar i;
|
|
||||||
|
|
||||||
// create a mask of which bits to ignore
|
|
||||||
// generate
|
|
||||||
// assign Mask[1:0] = 2'b11;
|
|
||||||
// assign Mask[2] = (AdrMode == NAPOT); // mask has 0s in upper bis for NA4 region
|
|
||||||
// for (i=3; i < `PA_BITS; i=i+1) begin:mask
|
|
||||||
// assign Mask[i] = Mask[i-1] & PMPAdr[i-3]; // NAPOT mask: 1's indicate bits to ignore
|
|
||||||
// end
|
|
||||||
// endgenerate
|
|
||||||
|
|
||||||
assign NAMask[1:0] = {2'b11};
|
assign NAMask[1:0] = {2'b11};
|
||||||
|
assign NAMask[`PA_BITS-1:2] = (PMPAdr[`PA_BITS-3:0] + {{(`PA_BITS-3){1'b0}}, (AdrMode == NAPOT)}) ^ PMPAdr[`PA_BITS-3:0];
|
||||||
|
// generates a mask where the bottom k bits are 1, corresponding to a size of 2^k bytes for this memory region.
|
||||||
|
// This assumes we're using at least an NA4 region, but works for any size NAPOT region.
|
||||||
|
assign NABase = {(PMPAdr[`PA_BITS-3:0] & ~NAMask[`PA_BITS-1:2]), 2'b00}; // base physical address of the pmp.
|
||||||
|
|
||||||
prioritythemometer #(`PA_BITS-2) namaskgen(
|
assign NAMatch = &((NABase ~^ PhysicalAddress) | NAMask); // check if upper bits of base address match, ignore lower bits correspoonding to inside the memory range
|
||||||
.a({PMPAdr[`PA_BITS-4:0], (AdrMode == NAPOT)}),
|
|
||||||
.y(NAMask[`PA_BITS-1:2]));
|
|
||||||
|
|
||||||
assign NAMatch = &((PhysicalAddress ~^ CurrentAdrFull) | NAMask);
|
|
||||||
|
|
||||||
assign Match = (AdrMode == TOR) ? TORMatch :
|
assign Match = (AdrMode == TOR) ? TORMatch :
|
||||||
(AdrMode == NA4 || AdrMode == NAPOT) ? NAMatch :
|
(AdrMode == NA4 || AdrMode == NAPOT) ? NAMatch :
|
||||||
|
@ -54,8 +54,9 @@ module pmpchecker (
|
|||||||
|
|
||||||
// Bit i is high when the address falls in PMP region i
|
// Bit i is high when the address falls in PMP region i
|
||||||
logic EnforcePMP;
|
logic EnforcePMP;
|
||||||
logic [7:0] PMPCfg[`PMP_ENTRIES-1:0];
|
// logic [7:0] PMPCfg[`PMP_ENTRIES-1:0];
|
||||||
logic [`PMP_ENTRIES-1:0] Match, FirstMatch; // PMP Entry matches
|
logic [`PMP_ENTRIES-1:0] Match; // physical address matches one of the pmp ranges
|
||||||
|
logic [`PMP_ENTRIES-1:0] FirstMatch; // onehot encoding for the first pmpaddr to match the current address.
|
||||||
logic [`PMP_ENTRIES-1:0] Active; // PMP register i is non-null
|
logic [`PMP_ENTRIES-1:0] Active; // PMP register i is non-null
|
||||||
logic [`PMP_ENTRIES-1:0] L, X, W, R; // PMP matches and has flag set
|
logic [`PMP_ENTRIES-1:0] L, X, W, R; // PMP matches and has flag set
|
||||||
logic [`PMP_ENTRIES-1:0] PAgePMPAdr; // for TOR PMP matching, PhysicalAddress > PMPAdr[i]
|
logic [`PMP_ENTRIES-1:0] PAgePMPAdr; // for TOR PMP matching, PhysicalAddress > PMPAdr[i]
|
||||||
@ -69,7 +70,7 @@ module pmpchecker (
|
|||||||
.PAgePMPAdrOut(PAgePMPAdr),
|
.PAgePMPAdrOut(PAgePMPAdr),
|
||||||
.FirstMatch, .Match, .Active, .L, .X, .W, .R);
|
.FirstMatch, .Match, .Active, .L, .X, .W, .R);
|
||||||
|
|
||||||
priorityonehot #(`PMP_ENTRIES) pmppriority(.a(Match), .y(FirstMatch)); // Take the ripple gates/signals out of the pmpadrdec and into another unit.
|
priorityonehot #(`PMP_ENTRIES) pmppriority(.a(Match), .y(FirstMatch)); // combine the match signal from all the adress decoders to find the first one that matches.
|
||||||
|
|
||||||
// Only enforce PMP checking for S and U modes when at least one PMP is active or in Machine mode when L bit is set in selected region
|
// Only enforce PMP checking for S and U modes when at least one PMP is active or in Machine mode when L bit is set in selected region
|
||||||
assign EnforcePMP = (PrivilegeModeW == `M_MODE) ? |L : |Active;
|
assign EnforcePMP = (PrivilegeModeW == `M_MODE) ? |L : |Active;
|
||||||
|
@ -40,13 +40,16 @@ module priorityonehot #(parameter ENTRIES = 8) (
|
|||||||
logic [ENTRIES-1:0] nolower;
|
logic [ENTRIES-1:0] nolower;
|
||||||
|
|
||||||
// generate thermometer code mask
|
// generate thermometer code mask
|
||||||
genvar i;
|
prioritythemometer #(ENTRIES) maskgen(.a({a[ENTRIES-2:0], 1'b1}), .y(nolower));
|
||||||
generate
|
// genvar i;
|
||||||
assign nolower[0] = 1'b1;
|
// generate
|
||||||
for (i=1; i<ENTRIES; i++) begin:therm
|
// assign nolower[0] = 1'b1;
|
||||||
assign nolower[i] = nolower[i-1] & ~a[i-1];
|
// for (i=1; i<ENTRIES; i++) begin:therm
|
||||||
end
|
// assign nolower[i] = nolower[i-1] & ~a[i-1];
|
||||||
endgenerate
|
// end
|
||||||
|
// endgenerate
|
||||||
|
// *** replace mask generation logic ^^^ with priority thermometer
|
||||||
|
|
||||||
|
|
||||||
assign y = a & nolower;
|
assign y = a & nolower;
|
||||||
|
|
||||||
|
@ -37,16 +37,20 @@ module prioritythemometer #(parameter N = 8) (
|
|||||||
output logic [N-1:0] y
|
output logic [N-1:0] y
|
||||||
);
|
);
|
||||||
|
|
||||||
|
// Carefully crafted so design compiler would synthesize into a fast tree structure
|
||||||
|
// Rather than linear.
|
||||||
|
|
||||||
// generate thermometer code mask
|
// generate thermometer code mask
|
||||||
genvar i;
|
genvar i;
|
||||||
generate
|
generate
|
||||||
assign y[0] = a[0];
|
assign y[0] = a[0];
|
||||||
for (i=1; i<N; i++) begin
|
for (i=1; i<N; i++) begin:therm
|
||||||
assign y[i] = y[i-1] & a[i];
|
assign y[i] = y[i-1] & ~a[i]; // *** made to be the same as onehot (without the inverter) to see if the probelme is something weird with synthesis
|
||||||
|
// assign y[i] = y[i-1] & a[i];
|
||||||
end
|
end
|
||||||
endgenerate
|
endgenerate
|
||||||
|
|
||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
|
|
||||||
|
@ -46,14 +46,14 @@ module testbench();
|
|||||||
|
|
||||||
string tests32mmu[] = '{
|
string tests32mmu[] = '{
|
||||||
"rv32mmu/WALLY-MMU-SV32", "3000"
|
"rv32mmu/WALLY-MMU-SV32", "3000"
|
||||||
//"rv32mmu/WALLY-PMA", "3000",
|
//"rv32mmu/WALLY-PMP", "3000",
|
||||||
//"rv32mmu/WALLY-PMA", "3000"
|
//"rv32mmu/WALLY-PMA", "3000"
|
||||||
};
|
};
|
||||||
|
|
||||||
string tests64mmu[] = '{
|
string tests64mmu[] = '{
|
||||||
"rv64mmu/WALLY-MMU-SV48", "3000",
|
"rv64mmu/WALLY-MMU-SV48", "3000",
|
||||||
"rv64mmu/WALLY-MMU-SV39", "3000"
|
"rv64mmu/WALLY-MMU-SV39", "3000",
|
||||||
//"rv64mmu/WALLY-PMA", "3000",
|
"rv64mmu/WALLY-PMP", "3000"
|
||||||
//"rv64mmu/WALLY-PMA", "3000"
|
//"rv64mmu/WALLY-PMA", "3000"
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -539,8 +539,8 @@ string tests32f[] = '{
|
|||||||
if (`F_SUPPORTED) tests = {tests64f, tests};
|
if (`F_SUPPORTED) tests = {tests64f, tests};
|
||||||
if (`D_SUPPORTED) tests = {tests64d, tests};
|
if (`D_SUPPORTED) tests = {tests64d, tests};
|
||||||
if (`MEM_VIRTMEM) tests = {tests64mmu, tests};
|
if (`MEM_VIRTMEM) tests = {tests64mmu, tests};
|
||||||
if (`A_SUPPORTED) tests = {tests64a, tests};
|
//if (`A_SUPPORTED) tests = {tests64a, tests};
|
||||||
if (`M_SUPPORTED) tests = {tests64m, tests};
|
//if (`M_SUPPORTED) tests = {tests64m, tests};
|
||||||
end
|
end
|
||||||
//tests = {tests64a, tests};
|
//tests = {tests64a, tests};
|
||||||
end else begin // RV32
|
end else begin // RV32
|
||||||
@ -676,7 +676,7 @@ string tests32f[] = '{
|
|||||||
errors = errors+1;
|
errors = errors+1;
|
||||||
$display(" Error on test %s result %d: adr = %h sim (D$) %h sim (TIM) = %h, signature = %h",
|
$display(" Error on test %s result %d: adr = %h sim (D$) %h sim (TIM) = %h, signature = %h",
|
||||||
tests[test], i, (testadr+i)*(`XLEN/8), DCacheFlushFSM.ShadowRAM[testadr+i], dut.uncore.dtim.RAM[testadr+i], signature[i]);
|
tests[test], i, (testadr+i)*(`XLEN/8), DCacheFlushFSM.ShadowRAM[testadr+i], dut.uncore.dtim.RAM[testadr+i], signature[i]);
|
||||||
$stop;//***debug
|
//$stop;//***debug
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
i = i + 1;
|
i = i + 1;
|
||||||
|
@ -27,7 +27,7 @@
|
|||||||
|
|
||||||
`include "wally-config.vh"
|
`include "wally-config.vh"
|
||||||
|
|
||||||
`define DEBUG_TRACE 0
|
`define DEBUG_TRACE 2
|
||||||
// Debug Levels
|
// Debug Levels
|
||||||
// 0: don't check against QEMU
|
// 0: don't check against QEMU
|
||||||
// 1: print disagreements with QEMU, but only halt on PCW disagreements
|
// 1: print disagreements with QEMU, but only halt on PCW disagreements
|
||||||
@ -359,7 +359,7 @@ module testbench();
|
|||||||
end
|
end
|
||||||
if (RegWriteW == "GPR") begin
|
if (RegWriteW == "GPR") begin
|
||||||
`checkEQ("Reg Write Address",dut.hart.ieu.dp.regf.a3,ExpectedRegAdrW)
|
`checkEQ("Reg Write Address",dut.hart.ieu.dp.regf.a3,ExpectedRegAdrW)
|
||||||
$sprintf(name,"RF[%02d]",ExpectedRegAdrW);
|
$sformat(name,"RF[%02d]",ExpectedRegAdrW);
|
||||||
`checkEQ(name, dut.hart.ieu.dp.regf.rf[ExpectedRegAdrW], ExpectedRegValueW)
|
`checkEQ(name, dut.hart.ieu.dp.regf.rf[ExpectedRegAdrW], ExpectedRegValueW)
|
||||||
end
|
end
|
||||||
if (MemOpW.substr(0,2) == "Mem") begin
|
if (MemOpW.substr(0,2) == "Mem") begin
|
||||||
|
Loading…
Reference in New Issue
Block a user