Refactored SPI peripheral based on SPI controller module. Works in tests/custom/spitest.

This commit is contained in:
Jacob Pease 2024-10-29 17:50:36 -05:00
parent 784630b945
commit b667581ffa
2 changed files with 335 additions and 495 deletions

View File

@ -62,10 +62,6 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
localparam SPI_IE = 8'h70;
localparam SPI_IP = 8'h74;
// receive shift register states
typedef enum logic [1:0] {ReceiveShiftFullState, ReceiveShiftNotFullState, ReceiveShiftDelayState} rsrstatetype;
// SPI control registers. Refer to SiFive FU540-C000 manual
logic [11:0] SckDiv;
logic [1:0] SckMode;
@ -75,89 +71,68 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
logic [15:0] Delay0, Delay1;
logic [4:0] Format;
logic [7:0] ReceiveData;
logic [2:0] TransmitWatermark, ReceiveWatermark;
logic [8:0] TransmitData;
logic [2:0] TransmitWatermark, ReceiveWatermark;
logic [1:0] InterruptEnable, InterruptPending;
// Bus interface signals
logic [7:0] Entry;
logic Memwrite;
logic [31:0] Din, Dout;
logic TransmitInactive; // High when there is no transmission, used as hardware interlock signal
// SPI Controller signals
logic SCLKenable;
logic EndOfFrame;
logic EndOfFrameDelay;
logic Transmitting;
logic InactiveState;
logic ResetSCLKenable;
logic TransmitStart;
// Transmit Start State Machine Variables
typedef enum logic [1:0] {READY, START, WAIT} txState;
txState CurrState, NextState;
// FIFO FSM signals
// Watermark signals - TransmitReadMark = ip[0], ReceiveWriteMark = ip[1]
logic TransmitWriteMark, TransmitReadMark, RecieveWriteMark, RecieveReadMark;
logic TransmitFIFOWriteFull, TransmitFIFOReadEmpty;
logic TransmitFIFOWriteIncrement;
logic ReceiveFiFoWriteInc;
logic [7:0] TransmitFIFOReadData;
logic ReceiveFIFOWriteInc;
logic ReceiveFIFOReadIncrement;
logic ReceiveFIFOWriteFull, ReceiveFIFOReadEmpty;
logic [7:0] TransmitFIFOReadData;
/* verilator lint_off UNDRIVEN */
logic [2:0] TransmitWriteWatermarkLevel, ReceiveReadWatermarkLevel; // unused generic FIFO outputs
/* verilator lint_off UNDRIVEN */
logic [7:0] ReceiveShiftRegEndian; // Reverses ReceiveShiftReg if Format[2] set (little endian transmission)
rsrstatetype ReceiveState;
logic ReceiveFiFoTakingData;
// Transmission signals
logic ZeroDiv; // High when SckDiv is 0
logic [11:0] DivCounter; // Counter for sck
logic SCLKenable; // Flip flop enable high every sclk edge
// Delay signals
logic [8:0] ImplicitDelay1; // Adds implicit delay to cs-sck delay counter based on phase
logic [8:0] ImplicitDelay2; // Adds implicit delay to sck-cs delay counter based on phase
logic [8:0] CS_SCKCount; // Counter for cs-sck delay
logic [8:0] SCK_CSCount; // Counter for sck-cs delay
logic [8:0] InterCSCount; // Counter for inter cs delay
logic [8:0] InterXFRCount; // Counter for inter xfr delay
logic ZeroDelayHoldMode; // High when ChipSelectMode is hold and Delay1[15:8] (InterXFR delay) is 0
// Frame counting signals
logic FirstFrame;
logic [3:0] FrameCount; // Counter for number of frames in transmission
logic ReceivePenultimateFrame; // High when penultimate frame in transmission has been reached
// State fsm signals
logic Active; // High when state is either Active1 or Active0 (during transmission)
logic Active0; // High when state is Active0
// Shift reg signals
logic ShiftEdge; // Determines which edge of sck to shift from TransmitShiftReg
logic [7:0] TransmitShiftReg; // Transmit shift register
logic [7:0] ReceiveShiftReg; // Receive shift register
logic ShiftEdge; // Determines which edge of sck to shift from TransmitReg
logic SampleEdge; // Determines which edge of sck to sample from ReceiveShiftReg
logic [7:0] TransmitReg; // Transmit shift register
logic [7:0] ReceiveShiftReg; // Receive shift register
logic [7:0] TransmitDataEndian; // Reverses TransmitData from txFIFO if littleendian, since TransmitReg always shifts MSB
logic TransmitShiftRegLoad; // Determines when to load TransmitShiftReg
logic TransmitShiftRegLoadSingleCycle; // Version of TransmitShiftRegLoad which is only high for a single SCLK cycle to prevent double loads
logic TransmitShiftRegLoadDelay; // TransmitShiftRegLoad delayed by an SCLK cycle, inverted and anded with TransmitShiftRegLoad to create a single cycle signal
logic TransmitLoad; // Determines when to load TransmitReg
logic TransmitFIFOReadIncrement; // Increments Tx FIFO read ptr 1 cycle after Tx FIFO is read
logic ReceiveShiftFull; // High when receive shift register is full
logic TransmitShiftEmpty; // High when transmit shift register is empty
// Shift stuff due to Format register?
logic ShiftIn; // Determines whether to shift from SPIIn or SPIOut (if SPI_LOOPBACK_TEST)
logic [3:0] LeftShiftAmount; // Determines left shift amount to left-align data when little endian
logic [7:0] ASR; // AlignedReceiveShiftReg
logic ShiftEdgeSPICLK; // Changes ShiftEdge when SckDiv is 0
// CS signals
logic [3:0] ChipSelectAuto; // Assigns ChipSelect value to selected CS signal based on CS ID
logic [3:0] ChipSelectInternal; // Defines what each ChipSelect signal should be based on transmission status and ChipSelectDef
logic DelayMode; // Determines where to place implicit half cycle delay based on sck phase for CS assertion
// Miscellaneous signals delayed/early by 1 PCLK cycle
logic ReceiveShiftFullDelay; // Delays ReceiveShiftFull signal by 1 PCLK cycle
logic ReceiveShiftFullDelayPCLK; // ReceiveShiftFull delayed by 1 PCLK cycle
logic TransmitFIFOReadEmptyDelay;
logic SCLKenableEarly; // SCLKenable 1 PCLK cycle early, needed for on time register changes when ChipSelectMode is hold and Delay1[15:8] (InterXFR delay) is 0
// APB access
assign Entry = {PADDR[7:2],2'b00}; // 32-bit word-aligned accesses
assign Memwrite = PWRITE & PENABLE & PSEL; // Only write in access phase
assign PREADY = Entry == SPI_TXDATA | Entry == SPI_RXDATA | Entry == SPI_IP | TransmitInactive; // Tie PREADY to transmission for hardware interlock
// assign PREADY = Entry == SPI_TXDATA | Entry == SPI_RXDATA | Entry == SPI_IP;
assign PREADY = 1'b1;
// Account for subword read/write circuitry
// -- Note SPI registers are 32 bits no matter what; access them with LW SW.
@ -183,10 +158,8 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
InterruptEnable <= 2'b0;
InterruptPending <= 2'b0;
end else begin // writes
/* verilator lint_off CASEINCOMPLETE */
if (Memwrite & TransmitInactive)
if (Memwrite)
case(Entry) // flop to sample inputs
SPI_SCKDIV: SckDiv <= Din[11:0];
SPI_SCKMODE: SckMode <= Din[1:0];
@ -234,227 +207,121 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
// SPI enable generation, where SCLK = PCLK/(2*(SckDiv + 1))
// Asserts SCLKenable at the rising and falling edge of SCLK by counting from 0 to SckDiv
// Active at 2x SCLK frequency to account for implicit half cycle delays and actions on both clock edges depending on phase
// When SckDiv is 0, count doesn't work and SCLKenable is simply PCLK *** dh 10/26/24: this logic is seriously broken. SCLK is not scaled to PCLK/(2*(SckDiv + 1)). SCLKenableEarly doesn't work right for SckDiv=0
assign ZeroDiv = ~|(SckDiv[10:0]);
assign SCLKenable = ZeroDiv ? 1 : (DivCounter == SckDiv);
assign SCLKenableEarly = ((DivCounter + 12'b1) == SckDiv);
always_ff @(posedge PCLK)
if (~PRESETn) DivCounter <= '0;
else if (SCLKenable) DivCounter <= 12'b0;
else DivCounter <= DivCounter + 12'b1;
// When SckDiv is 0, count doesn't work and SCLKenable is simply PCLK *** dh 10/26/24: this logic is seriously broken. SCLK is not scaled to PCLK/(2*(SckDiv + 1)).
// Asserts when transmission is one frame before complete
assign ReceivePenultimateFrame = ((FrameCount + 4'b0001) == Format[4:1]);
assign FirstFrame = (FrameCount == 4'b0);
// SPI Controller module -------------------------------------------
// This module controls state and timing signals that drive the rest of this module
assign ResetSCLKenable = Memwrite & (Entry == SPI_SCKDIV);
// Computing delays
// When sckmode.pha = 0, an extra half-period delay is implicit in the cs-sck delay, and vice-versa for sck-cs
assign ImplicitDelay1 = SckMode[0] ? 9'b0 : 9'b1;
assign ImplicitDelay2 = SckMode[0] ? 9'b1 : 9'b0;
// Calculate when tx/rx shift registers are full/empty
// Transmit Shift FSM
always_ff @(posedge PCLK)
if (~PRESETn) TransmitShiftEmpty <= 1'b1;
else if (TransmitShiftEmpty) begin
if (TransmitFIFOReadEmpty | (~TransmitFIFOReadEmpty & (ReceivePenultimateFrame & Active0))) TransmitShiftEmpty <= 1'b1;
else if (~TransmitFIFOReadEmpty) TransmitShiftEmpty <= 1'b0;
end else begin
if (ReceivePenultimateFrame & Active0) TransmitShiftEmpty <= 1'b1;
else TransmitShiftEmpty <= 1'b0;
end
// Receive Shift FSM
always_ff @(posedge PCLK)
if (~PRESETn) ReceiveState <= ReceiveShiftNotFullState;
else if (SCLKenable) begin
case (ReceiveState)
ReceiveShiftFullState: ReceiveState <= ReceiveShiftNotFullState;
ReceiveShiftNotFullState: if (ReceivePenultimateFrame & (SampleEdge)) ReceiveState <= ReceiveShiftDelayState;
else ReceiveState <= ReceiveShiftNotFullState;
ReceiveShiftDelayState: ReceiveState <= ReceiveShiftFullState;
endcase
end
assign ReceiveShiftFull = SckMode[0] ? (ReceiveState == ReceiveShiftFullState) : (ReceiveState == ReceiveShiftDelayState);
// Calculate tx/rx fifo write and recieve increment signals
always_ff @(posedge PCLK)
if (~PRESETn) TransmitFIFOWriteIncrement <= 1'b0;
else TransmitFIFOWriteIncrement <= (Memwrite & (Entry == SPI_TXDATA) & ~TransmitFIFOWriteFull);
always_ff @(posedge PCLK)
if (~PRESETn) ReceiveFIFOReadIncrement <= 1'b0;
else ReceiveFIFOReadIncrement <= ((Entry == SPI_RXDATA) & ~ReceiveFIFOReadEmpty & PSEL & ~ReceiveFIFOReadIncrement);
assign TransmitShiftRegLoad = ~TransmitShiftEmpty & ~Active | (((ChipSelectMode == 2'b10) & ~|(Delay1[15:8])) & ((ReceiveShiftFullDelay | ReceiveShiftFull) & ~SampleEdge & ~TransmitFIFOReadEmpty));
always_ff @(posedge PCLK)
if (~PRESETn) TransmitShiftRegLoadDelay <=0;
else if (SCLKenable) TransmitShiftRegLoadDelay <= TransmitShiftRegLoad;
assign TransmitShiftRegLoadSingleCycle = TransmitShiftRegLoad & ~TransmitShiftRegLoadDelay;
always_ff @(posedge PCLK)
if (~PRESETn) TransmitFIFOReadIncrement <= 0;
else if (SCLKenable) TransmitFIFOReadIncrement <= TransmitShiftRegLoadSingleCycle;
// Tx/Rx FIFOs
spi_fifo #(3,8) txFIFO(PCLK, 1'b1, SCLKenable, PRESETn, TransmitFIFOWriteIncrement, TransmitFIFOReadIncrement, TransmitData[7:0], TransmitWriteWatermarkLevel, TransmitWatermark[2:0],
TransmitFIFOReadData[7:0], TransmitFIFOWriteFull, TransmitFIFOReadEmpty, TransmitWriteMark, TransmitReadMark);
spi_fifo #(3,8) rxFIFO(PCLK, SCLKenable, 1'b1, PRESETn, ReceiveFiFoWriteInc, ReceiveFIFOReadIncrement, ReceiveShiftRegEndian, ReceiveWatermark[2:0], ReceiveReadWatermarkLevel,
ReceiveData[7:0], ReceiveFIFOWriteFull, ReceiveFIFOReadEmpty, RecieveWriteMark, RecieveReadMark);
always_ff @(posedge PCLK)
if (~PRESETn) TransmitFIFOReadEmptyDelay <= 1'b1;
else if (SCLKenable) TransmitFIFOReadEmptyDelay <= TransmitFIFOReadEmpty;
always_ff @(posedge PCLK)
if (~PRESETn) ReceiveShiftFullDelay <= 1'b0;
else if (SCLKenable) ReceiveShiftFullDelay <= ReceiveShiftFull;
assign ReceiveFiFoTakingData = ReceiveFiFoWriteInc & ~ReceiveFIFOWriteFull;
always_ff @(posedge PCLK)
if (~PRESETn) ReceiveFiFoWriteInc <= 1'b0;
else if (SCLKenable & ReceiveShiftFull) ReceiveFiFoWriteInc <= 1'b1;
else if (SCLKenable & ReceiveFiFoTakingData) ReceiveFiFoWriteInc <= 1'b0;
always_ff @(posedge PCLK)
if (~PRESETn) ReceiveShiftFullDelayPCLK <= 1'b0;
else if (SCLKenableEarly) ReceiveShiftFullDelayPCLK <= ReceiveShiftFull;
// Main FSM which controls SPI transmission
typedef enum logic [2:0] {CS_INACTIVE, DELAY_0, ACTIVE_0, ACTIVE_1, DELAY_1,INTER_CS, INTER_XFR} statetype;
statetype state;
spi_controller controller(PCLK, PRESETn,
// Transmit Signals
TransmitStart, ResetSCLKenable,
// Register Inputs
SckDiv, SckMode, ChipSelectMode, Delay0, Delay1,
// txFIFO stuff
TransmitFIFOReadEmpty,
// Timing
SCLKenable, ShiftEdge, SampleEdge, EndOfFrame, EndOfFrameDelay,
// State stuff
Transmitting, InactiveState,
// Outputs
SPICLK);
// Transmit FIFO ---------------------------------------------------
always_ff @(posedge PCLK)
if (~PRESETn) begin
state <= CS_INACTIVE;
FrameCount <= 4'b0;
SPICLK <= SckMode[1];
TransmitFIFOWriteIncrement <= 1'b0;
TransmitFIFOReadIncrement <= 1'b0;
end else begin
TransmitFIFOWriteIncrement <= (Memwrite & (Entry == SPI_TXDATA) & ~TransmitFIFOWriteFull);
TransmitFIFOReadIncrement <= TransmitLoad;
end
// Setup TransmitStart state machine
always_ff @(posedge PCLK) begin
if (~PRESETn) begin
CurrState <= READY;
end else if (SCLKenable) begin
/* verilator lint_off CASEINCOMPLETE */
case (state)
CS_INACTIVE: begin
CS_SCKCount <= 9'b1;
SCK_CSCount <= 9'b10;
FrameCount <= 4'b0;
InterCSCount <= 9'b10;
InterXFRCount <= 9'b1;
if ((~TransmitFIFOReadEmpty | ~TransmitShiftEmpty) & ((|(Delay0[7:0])) | ~SckMode[0])) state <= DELAY_0;
else if ((~TransmitFIFOReadEmpty | ~TransmitShiftEmpty)) begin
state <= ACTIVE_0;
SPICLK <= ~SckMode[1];
end else SPICLK <= SckMode[1];
end
DELAY_0: begin
CS_SCKCount <= CS_SCKCount + 9'b1;
if (CS_SCKCount >= (({Delay0[7:0], 1'b0}) + ImplicitDelay1)) begin
state <= ACTIVE_0;
SPICLK <= ~SckMode[1];
CurrState <= NextState;
end
end
ACTIVE_0: begin
FrameCount <= FrameCount + 4'b1;
SPICLK <= SckMode[1];
state <= ACTIVE_1;
end
ACTIVE_1: begin
InterXFRCount <= 9'b1;
if (FrameCount < Format[4:1]) begin
state <= ACTIVE_0;
SPICLK <= ~SckMode[1];
end
else if ((ChipSelectMode[1:0] == 2'b10) & ~|(Delay1[15:8]) & (~TransmitFIFOReadEmpty)) begin
state <= ACTIVE_0;
SPICLK <= ~SckMode[1];
CS_SCKCount <= 9'b1;
SCK_CSCount <= 9'b10;
FrameCount <= 4'b0;
InterCSCount <= 9'b10;
end
else if (ChipSelectMode[1:0] == 2'b10) state <= INTER_XFR;
else if (~|(Delay0[15:8]) & (~SckMode[0])) state <= INTER_CS;
else state <= DELAY_1;
end
DELAY_1: begin
SCK_CSCount <= SCK_CSCount + 9'b1;
if (SCK_CSCount >= (({Delay0[15:8], 1'b0}) + ImplicitDelay2)) state <= INTER_CS;
end
INTER_CS: begin
InterCSCount <= InterCSCount + 9'b1;
SPICLK <= SckMode[1];
if (InterCSCount >= ({Delay1[7:0],1'b0})) state <= CS_INACTIVE;
end
INTER_XFR: begin
CS_SCKCount <= 9'b1;
SCK_CSCount <= 9'b10;
FrameCount <= 4'b0;
InterCSCount <= 9'b10;
InterXFRCount <= InterXFRCount + 9'b1;
if ((InterXFRCount >= ({Delay1[15:8], 1'b0})) & (~TransmitFIFOReadEmptyDelay | ~TransmitShiftEmpty)) begin
state <= ACTIVE_0;
SPICLK <= ~SckMode[1];
end else if (~|ChipSelectMode[1:0]) state <= CS_INACTIVE;
else SPICLK <= SckMode[1];
end
// State machine for starting transmissions
always_comb begin
case (CurrState)
READY: if (~TransmitFIFOReadEmpty) NextState = START;
else NextState = READY;
START: NextState = WAIT;
WAIT: if (TransmitFIFOReadEmpty & ~Transmitting) NextState = READY;
else NextState = WAIT;
endcase
/* verilator lint_off CASEINCOMPLETE */
end
assign TransmitStart = (CurrState == START);
spi_fifo #(3,8) txFIFO(PCLK, 1'b1, SCLKenable, PRESETn,
TransmitFIFOWriteIncrement, TransmitFIFOReadIncrement,
TransmitData[7:0],
TransmitWriteWatermarkLevel, TransmitWatermark[2:0],
TransmitFIFOReadData[7:0],
TransmitFIFOWriteFull,
TransmitFIFOReadEmpty,
TransmitWriteMark, TransmitReadMark);
assign DelayMode = SckMode[0] ? (state == DELAY_1) : (state == ACTIVE_1 & ReceiveShiftFull);
assign ChipSelectInternal = (state == CS_INACTIVE | state == INTER_CS | DelayMode & ~|(Delay0[15:8])) ? ChipSelectDef : ~ChipSelectDef;
assign Active = (state == ACTIVE_0 | state == ACTIVE_1);
assign SampleEdge = SckMode[0] ? (state == ACTIVE_1) : (state == ACTIVE_0);
assign ZeroDelayHoldMode = ((ChipSelectMode == 2'b10) & (~|(Delay1[7:4])));
assign TransmitInactive = ((state == INTER_CS) | (state == CS_INACTIVE) | (state == INTER_XFR) | (ReceiveShiftFullDelayPCLK & ZeroDelayHoldMode) | ((state == ACTIVE_1) & ((ChipSelectMode[1:0] == 2'b10) & ~|(Delay1[15:8]) & (~TransmitFIFOReadEmpty) & (FrameCount == Format[4:1]))));
assign Active0 = (state == ACTIVE_0);
assign ShiftEdgeSPICLK = ZeroDiv ? ~SPICLK : SPICLK;
// Receive FIFO ----------------------------------------------------
always_ff @(posedge PCLK)
if (~PRESETn) begin
ReceiveFIFOReadIncrement <= 1'b0;
ReceiveFIFOWriteInc <= 1'b0;
end else begin
ReceiveFIFOReadIncrement <= ((Entry == SPI_RXDATA) & ~ReceiveFIFOReadEmpty & PSEL & ~ReceiveFIFOReadIncrement);
ReceiveFIFOWriteInc <= EndOfFrameDelay;
end
// Signal tracks which edge of sck to shift data
always_comb
case(SckMode[1:0])
2'b00: ShiftEdge = ShiftEdgeSPICLK & SCLKenable;
2'b01: ShiftEdge = (~ShiftEdgeSPICLK & ~FirstFrame & (|(FrameCount) | (CS_SCKCount >= (({Delay0[7:0], 1'b0}) + ImplicitDelay1))) & SCLKenable & (FrameCount != Format[4:1]) & ~TransmitInactive);
2'b10: ShiftEdge = ~ShiftEdgeSPICLK & SCLKenable;
2'b11: ShiftEdge = (ShiftEdgeSPICLK & ~FirstFrame & (|(FrameCount) | (CS_SCKCount >= (({Delay0[7:0], 1'b0}) + ImplicitDelay1))) & SCLKenable & (FrameCount != Format[4:1]) & ~TransmitInactive);
default: ShiftEdge = ShiftEdgeSPICLK & SCLKenable;
endcase
spi_fifo #(3,8) rxFIFO(PCLK, SCLKenable, 1'b1, PRESETn,
ReceiveFIFOWriteInc, ReceiveFIFOReadIncrement,
ReceiveShiftRegEndian, ReceiveWatermark[2:0],
ReceiveReadWatermarkLevel,
ReceiveData[7:0],
ReceiveFIFOWriteFull,
ReceiveFIFOReadEmpty,
RecieveWriteMark, RecieveReadMark);
// Transmit shift register
assign TransmitDataEndian = Format[0] ? {TransmitFIFOReadData[0], TransmitFIFOReadData[1], TransmitFIFOReadData[2], TransmitFIFOReadData[3], TransmitFIFOReadData[4], TransmitFIFOReadData[5], TransmitFIFOReadData[6], TransmitFIFOReadData[7]} : TransmitFIFOReadData[7:0];
assign TransmitLoad = TransmitStart | (EndOfFrameDelay & ~TransmitFIFOReadEmpty);
assign TransmitDataEndian = Format[0] ? {<<{TransmitFIFOReadData[7:0]}} : TransmitFIFOReadData[7:0];
always_ff @(posedge PCLK)
if(~PRESETn) TransmitShiftReg <= 8'b0;
else if (TransmitShiftRegLoadSingleCycle) TransmitShiftReg <= TransmitDataEndian;
else if (ShiftEdge & Active) TransmitShiftReg <= {TransmitShiftReg[6:0], TransmitShiftReg[0]};
if(~PRESETn) TransmitReg <= 8'b0;
else if (TransmitLoad) TransmitReg <= TransmitDataEndian;
else if (ShiftEdge) TransmitReg <= {TransmitReg[6:0], TransmitReg[0]};
assign SPIOut = TransmitShiftReg[7];
assign SPIOut = TransmitReg[7];
// If in loopback mode, receive shift register is connected directly to module's output pins. Else, connected to SPIIn
// There are no setup/hold time issues because transmit shift register and receive shift register always shift/sample on opposite edges
// If in loopback mode, receive shift register is connected directly
// to module's output pins. Else, connected to SPIIn. There are no
// setup/hold time issues because transmit shift register and receive
// shift register always shift/sample on opposite edges
assign ShiftIn = P.SPI_LOOPBACK_TEST ? SPIOut : SPIIn;
// Receive shift register
always_ff @(posedge PCLK)
if(~PRESETn) ReceiveShiftReg <= 8'b0;
else if (SampleEdge & SCLKenable) begin
if (~Active) ReceiveShiftReg <= 8'b0;
else if (SampleEdge) begin
if (~Transmitting) ReceiveShiftReg <= 8'b0;
else ReceiveShiftReg <= {ReceiveShiftReg[6:0], ShiftIn};
end
// Aligns received data and reverses if little-endian
assign LeftShiftAmount = 4'h8 - Format[4:1];
assign ASR = ReceiveShiftReg << LeftShiftAmount[2:0];
assign ReceiveShiftRegEndian = Format[0] ? {ASR[0], ASR[1], ASR[2], ASR[3], ASR[4], ASR[5], ASR[6], ASR[7]} : ASR[7:0];
assign ReceiveShiftRegEndian = Format[0] ? {<<{ASR[7:0]}} : ASR[7:0];
// Interrupt logic: raise interrupt if any enabled interrupts are pending
assign SPIIntr = |(InterruptPending & InterruptEnable);
// Chip select logic
assign ChipSelectInternal = InactiveState ? ChipSelectDef : ~ChipSelectDef;
always_comb
case(ChipSelectID[1:0])
2'b00: ChipSelectAuto = {ChipSelectDef[3], ChipSelectDef[2], ChipSelectDef[1], ChipSelectInternal[0]};
@ -462,6 +329,6 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
2'b10: ChipSelectAuto = {ChipSelectDef[3],ChipSelectInternal[2], ChipSelectDef[1], ChipSelectDef[0]};
2'b11: ChipSelectAuto = {ChipSelectInternal[3],ChipSelectDef[2], ChipSelectDef[1], ChipSelectDef[0]};
endcase
assign SPICS = ChipSelectMode[0] ? ChipSelectDef : ChipSelectAuto;
endmodule

View File

@ -28,21 +28,33 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
module spi_controller (
input logic PCLK,
input logic PRESETn,
// Start Transmission
input logic TransmitStart,
input logic ResetSCLKenable,
// Registers
input logic [11:0] SckDiv,
input logic [1:0] SckMode,
input logic [1:0] CSMode,
input logic [15:0] Delay0,
input logic [15:0] Delay1,
input logic [7:0] txFIFORead,
// Is the Transmit FIFO Empty?
input logic txFIFOReadEmpty,
output logic SPICLK,
output logic SPIOUT,
output logic CS
// Control signals
output logic SCLKenable,
output logic ShiftEdge,
output logic SampleEdge,
output logic EndOfFrame,
output logic EndOfFrameDelay,
output logic Transmitting,
output logic InactiveState,
output logic SPICLK
);
// CSMode Stuff
@ -55,36 +67,32 @@ module spi_controller (
// SCLKenable stuff
logic [11:0] DivCounter;
logic SCLKenable;
logic SCLKenableEarly;
logic SCLKenableLate;
logic EdgeTiming;
// logic SCLKenable;
// logic SCLKenableEarly;
logic ZeroDiv;
logic Clock0;
logic Clock1;
logic SCK; // SUPER IMPORTANT, THIS CAN'T BE THE SAME AS SPICLK!
// Shift and Sample Edges
logic PreShiftEdge;
logic PreSampleEdge;
logic ShiftEdge;
logic SampleEdge;
// logic ShiftEdge;
// logic SampleEdge;
// Frame stuff
logic [2:0] BitNum;
logic LastBit;
logic EndOfFrame;
logic EndOfFrameDelay;
//logic EndOfFrame;
//logic EndOfFrameDelay;
logic PhaseOneOffset;
// Transmit Stuff
logic ContinueTransmit;
// SPIOUT Stuff
logic TransmitLoad;
// logic TransmitLoad;
logic [7:0] TransmitReg;
logic Transmitting;
//logic Transmitting;
logic EndTransmission;
logic HoldMode;
@ -135,13 +143,9 @@ module spi_controller (
// SampleEdge. This makes sure that SPICLK is an output of a register
// and it properly synchronizes signals.
assign SCLKenableLate = DivCounter > SckDiv;
assign SCLKenable = DivCounter == SckDiv;
assign SCLKenableEarly = (DivCounter + 1'b1) == SckDiv;
// assign SCLKenableEarly = (DivCounter + 1'b1) == SckDiv;
assign LastBit = BitNum == 3'd7;
assign EdgeTiming = SckDiv > 12'b0 ? SCLKenableEarly : SCLKenable;
//assign SPICLK = Clock0;
assign ContinueTransmit = ~txFIFOReadEmpty & EndOfFrame;
assign EndTransmission = txFIFOReadEmpty & EndOfFrameDelay;
@ -196,7 +200,7 @@ module spi_controller (
end
// Reset divider
if (SCLKenable | TransmitStart) begin
if (SCLKenable | TransmitStart | ResetSCLKenable) begin
DivCounter <= 12'b0;
end else begin
DivCounter = DivCounter + 12'd1;
@ -242,8 +246,8 @@ module spi_controller (
// typedef enum logic [2:0] {INACTIVE, CSSCK, TRANSMIT, SCKCS, HOLD, INTERCS, INTERXFR} statetype;
// statetype CurrState, NextState;
assign HoldMode = CSMode == 2'b10;
assign TransmitLoad = TransmitStart | (EndOfFrameDelay & ~txFIFOReadEmpty);
assign HoldMode = CSMode == HOLDMODE;
// assign TransmitLoad = TransmitStart | (EndOfFrameDelay & ~txFIFOReadEmpty);
always_ff @(posedge PCLK) begin
if (~PRESETn) begin
@ -255,61 +259,43 @@ module spi_controller (
always_comb begin
case (CurrState)
INACTIVE: begin // INACTIVE case --------------------------------
if (TransmitStart) begin
if (~HasCSSCK) begin
NextState = TRANSMIT;
end else begin
NextState = CSSCK;
end
end else begin
NextState = INACTIVE;
end
end
CSSCK: begin // DELAY0 case -------------------------------------
if (EndOfCSSCK) begin
NextState = TRANSMIT;
end
end
INACTIVE: if (TransmitStart)
if (~HasCSSCK) NextState = TRANSMIT;
else NextState = CSSCK;
else NextState = INACTIVE;
CSSCK: if (EndOfCSSCK) NextState = TRANSMIT;
else NextState = CSSCK;
TRANSMIT: begin // TRANSMIT case --------------------------------
case(CSMode)
AUTOMODE: begin
if (EndTransmission) begin
NextState = INACTIVE;
end else if (ContinueTransmit) begin
NextState = SCKCS;
end
if (EndTransmission) NextState = INACTIVE;
else if (ContinueTransmit) NextState = SCKCS;
end
HOLDMODE: begin
if (EndTransmission) begin
NextState = HOLD;
end else if (ContinueTransmit) begin
if (HasINTERXFR) NextState = INTERXFR;
end
if (EndTransmission) NextState = HOLD;
else if (ContinueTransmit & HasINTERXFR) NextState = INTERXFR;
else NextState = TRANSMIT;
end
OFFMODE: begin
end
endcase
end
SCKCS: begin // SCKCS case --------------------------------------
if (EndOfSCKCS) begin
if (EndTransmission) begin
if (EndOfSCKCS)
if (EndTransmission)
if (CSMode == AUTOMODE) NextState = INACTIVE;
else if (CSMode == HOLDMODE) NextState = HOLD;
end else if (ContinueTransmit) begin
else if (ContinueTransmit)
if (HasINTERCS) NextState = INTERCS;
else NextState = TRANSMIT;
end
end
end
HOLD: begin // HOLD mode case -----------------------------------
if (CSMode == AUTOMODE) begin
NextState = INACTIVE;
end else if (TransmitStart) begin // If FIFO is written to, start again.
NextState = TRANSMIT;
end
end else NextState = HOLD;
end
INTERCS: begin // INTERCS case ----------------------------------
if (EndOfINTERCS) begin
@ -330,19 +316,6 @@ module spi_controller (
assign Transmitting = CurrState == TRANSMIT;
assign DelayIsNext = (NextState == CSSCK | NextState == SCKCS | NextState == INTERCS | NextState == INTERXFR);
//
always_ff @(posedge PCLK) begin
if (~PRESETn) begin
TransmitReg <= 8'b0;
end else if (TransmitLoad) begin
TransmitReg <= txFIFORead;
end else if (ShiftEdge) begin
TransmitReg <= {TransmitReg[6:0], TransmitReg[0]};
end
end
assign SPIOUT = TransmitReg[7];
assign CS = CurrState == INACTIVE | CurrState == INTERCS;
assign InactiveState = CurrState == INACTIVE | CurrState == INTERCS;
endmodule