Refactored SPI peripheral based on SPI controller module. Works in tests/custom/spitest.

This commit is contained in:
Jacob Pease 2024-10-29 17:50:36 -05:00
parent 784630b945
commit b667581ffa
2 changed files with 335 additions and 495 deletions

View File

@ -62,10 +62,6 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
localparam SPI_IE = 8'h70; localparam SPI_IE = 8'h70;
localparam SPI_IP = 8'h74; localparam SPI_IP = 8'h74;
// receive shift register states
typedef enum logic [1:0] {ReceiveShiftFullState, ReceiveShiftNotFullState, ReceiveShiftDelayState} rsrstatetype;
// SPI control registers. Refer to SiFive FU540-C000 manual // SPI control registers. Refer to SiFive FU540-C000 manual
logic [11:0] SckDiv; logic [11:0] SckDiv;
logic [1:0] SckMode; logic [1:0] SckMode;
@ -75,89 +71,68 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
logic [15:0] Delay0, Delay1; logic [15:0] Delay0, Delay1;
logic [4:0] Format; logic [4:0] Format;
logic [7:0] ReceiveData; logic [7:0] ReceiveData;
logic [2:0] TransmitWatermark, ReceiveWatermark;
logic [8:0] TransmitData; logic [8:0] TransmitData;
logic [2:0] TransmitWatermark, ReceiveWatermark;
logic [1:0] InterruptEnable, InterruptPending; logic [1:0] InterruptEnable, InterruptPending;
// Bus interface signals // Bus interface signals
logic [7:0] Entry; logic [7:0] Entry;
logic Memwrite; logic Memwrite;
logic [31:0] Din, Dout; logic [31:0] Din, Dout;
logic TransmitInactive; // High when there is no transmission, used as hardware interlock signal
// SPI Controller signals
logic SCLKenable;
logic EndOfFrame;
logic EndOfFrameDelay;
logic Transmitting;
logic InactiveState;
logic ResetSCLKenable;
logic TransmitStart;
// Transmit Start State Machine Variables
typedef enum logic [1:0] {READY, START, WAIT} txState;
txState CurrState, NextState;
// FIFO FSM signals // FIFO FSM signals
// Watermark signals - TransmitReadMark = ip[0], ReceiveWriteMark = ip[1] // Watermark signals - TransmitReadMark = ip[0], ReceiveWriteMark = ip[1]
logic TransmitWriteMark, TransmitReadMark, RecieveWriteMark, RecieveReadMark; logic TransmitWriteMark, TransmitReadMark, RecieveWriteMark, RecieveReadMark;
logic TransmitFIFOWriteFull, TransmitFIFOReadEmpty; logic TransmitFIFOWriteFull, TransmitFIFOReadEmpty;
logic TransmitFIFOWriteIncrement; logic TransmitFIFOWriteIncrement;
logic ReceiveFiFoWriteInc; logic [7:0] TransmitFIFOReadData;
logic ReceiveFIFOWriteInc;
logic ReceiveFIFOReadIncrement; logic ReceiveFIFOReadIncrement;
logic ReceiveFIFOWriteFull, ReceiveFIFOReadEmpty; logic ReceiveFIFOWriteFull, ReceiveFIFOReadEmpty;
logic [7:0] TransmitFIFOReadData;
/* verilator lint_off UNDRIVEN */ /* verilator lint_off UNDRIVEN */
logic [2:0] TransmitWriteWatermarkLevel, ReceiveReadWatermarkLevel; // unused generic FIFO outputs logic [2:0] TransmitWriteWatermarkLevel, ReceiveReadWatermarkLevel; // unused generic FIFO outputs
/* verilator lint_off UNDRIVEN */ /* verilator lint_off UNDRIVEN */
logic [7:0] ReceiveShiftRegEndian; // Reverses ReceiveShiftReg if Format[2] set (little endian transmission) logic [7:0] ReceiveShiftRegEndian; // Reverses ReceiveShiftReg if Format[2] set (little endian transmission)
rsrstatetype ReceiveState;
logic ReceiveFiFoTakingData;
// Transmission signals
logic ZeroDiv; // High when SckDiv is 0
logic [11:0] DivCounter; // Counter for sck
logic SCLKenable; // Flip flop enable high every sclk edge
// Delay signals
logic [8:0] ImplicitDelay1; // Adds implicit delay to cs-sck delay counter based on phase
logic [8:0] ImplicitDelay2; // Adds implicit delay to sck-cs delay counter based on phase
logic [8:0] CS_SCKCount; // Counter for cs-sck delay
logic [8:0] SCK_CSCount; // Counter for sck-cs delay
logic [8:0] InterCSCount; // Counter for inter cs delay
logic [8:0] InterXFRCount; // Counter for inter xfr delay
logic ZeroDelayHoldMode; // High when ChipSelectMode is hold and Delay1[15:8] (InterXFR delay) is 0
// Frame counting signals
logic FirstFrame;
logic [3:0] FrameCount; // Counter for number of frames in transmission
logic ReceivePenultimateFrame; // High when penultimate frame in transmission has been reached
// State fsm signals
logic Active; // High when state is either Active1 or Active0 (during transmission)
logic Active0; // High when state is Active0
// Shift reg signals // Shift reg signals
logic ShiftEdge; // Determines which edge of sck to shift from TransmitShiftReg logic ShiftEdge; // Determines which edge of sck to shift from TransmitReg
logic [7:0] TransmitShiftReg; // Transmit shift register
logic [7:0] ReceiveShiftReg; // Receive shift register
logic SampleEdge; // Determines which edge of sck to sample from ReceiveShiftReg logic SampleEdge; // Determines which edge of sck to sample from ReceiveShiftReg
logic [7:0] TransmitReg; // Transmit shift register
logic [7:0] ReceiveShiftReg; // Receive shift register
logic [7:0] TransmitDataEndian; // Reverses TransmitData from txFIFO if littleendian, since TransmitReg always shifts MSB logic [7:0] TransmitDataEndian; // Reverses TransmitData from txFIFO if littleendian, since TransmitReg always shifts MSB
logic TransmitShiftRegLoad; // Determines when to load TransmitShiftReg logic TransmitLoad; // Determines when to load TransmitReg
logic TransmitShiftRegLoadSingleCycle; // Version of TransmitShiftRegLoad which is only high for a single SCLK cycle to prevent double loads
logic TransmitShiftRegLoadDelay; // TransmitShiftRegLoad delayed by an SCLK cycle, inverted and anded with TransmitShiftRegLoad to create a single cycle signal
logic TransmitFIFOReadIncrement; // Increments Tx FIFO read ptr 1 cycle after Tx FIFO is read logic TransmitFIFOReadIncrement; // Increments Tx FIFO read ptr 1 cycle after Tx FIFO is read
logic ReceiveShiftFull; // High when receive shift register is full
logic TransmitShiftEmpty; // High when transmit shift register is empty // Shift stuff due to Format register?
logic ShiftIn; // Determines whether to shift from SPIIn or SPIOut (if SPI_LOOPBACK_TEST) logic ShiftIn; // Determines whether to shift from SPIIn or SPIOut (if SPI_LOOPBACK_TEST)
logic [3:0] LeftShiftAmount; // Determines left shift amount to left-align data when little endian logic [3:0] LeftShiftAmount; // Determines left shift amount to left-align data when little endian
logic [7:0] ASR; // AlignedReceiveShiftReg logic [7:0] ASR; // AlignedReceiveShiftReg
logic ShiftEdgeSPICLK; // Changes ShiftEdge when SckDiv is 0
// CS signals // CS signals
logic [3:0] ChipSelectAuto; // Assigns ChipSelect value to selected CS signal based on CS ID logic [3:0] ChipSelectAuto; // Assigns ChipSelect value to selected CS signal based on CS ID
logic [3:0] ChipSelectInternal; // Defines what each ChipSelect signal should be based on transmission status and ChipSelectDef logic [3:0] ChipSelectInternal; // Defines what each ChipSelect signal should be based on transmission status and ChipSelectDef
logic DelayMode; // Determines where to place implicit half cycle delay based on sck phase for CS assertion
// Miscellaneous signals delayed/early by 1 PCLK cycle
logic ReceiveShiftFullDelay; // Delays ReceiveShiftFull signal by 1 PCLK cycle
logic ReceiveShiftFullDelayPCLK; // ReceiveShiftFull delayed by 1 PCLK cycle
logic TransmitFIFOReadEmptyDelay;
logic SCLKenableEarly; // SCLKenable 1 PCLK cycle early, needed for on time register changes when ChipSelectMode is hold and Delay1[15:8] (InterXFR delay) is 0
// APB access // APB access
assign Entry = {PADDR[7:2],2'b00}; // 32-bit word-aligned accesses assign Entry = {PADDR[7:2],2'b00}; // 32-bit word-aligned accesses
assign Memwrite = PWRITE & PENABLE & PSEL; // Only write in access phase assign Memwrite = PWRITE & PENABLE & PSEL; // Only write in access phase
assign PREADY = Entry == SPI_TXDATA | Entry == SPI_RXDATA | Entry == SPI_IP | TransmitInactive; // Tie PREADY to transmission for hardware interlock // assign PREADY = Entry == SPI_TXDATA | Entry == SPI_RXDATA | Entry == SPI_IP;
assign PREADY = 1'b1;
// Account for subword read/write circuitry // Account for subword read/write circuitry
// -- Note SPI registers are 32 bits no matter what; access them with LW SW. // -- Note SPI registers are 32 bits no matter what; access them with LW SW.
@ -183,10 +158,8 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
InterruptEnable <= 2'b0; InterruptEnable <= 2'b0;
InterruptPending <= 2'b0; InterruptPending <= 2'b0;
end else begin // writes end else begin // writes
/* verilator lint_off CASEINCOMPLETE */ /* verilator lint_off CASEINCOMPLETE */
if (Memwrite & TransmitInactive) if (Memwrite)
case(Entry) // flop to sample inputs case(Entry) // flop to sample inputs
SPI_SCKDIV: SckDiv <= Din[11:0]; SPI_SCKDIV: SckDiv <= Din[11:0];
SPI_SCKMODE: SckMode <= Din[1:0]; SPI_SCKMODE: SckMode <= Din[1:0];
@ -234,227 +207,121 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
// SPI enable generation, where SCLK = PCLK/(2*(SckDiv + 1)) // SPI enable generation, where SCLK = PCLK/(2*(SckDiv + 1))
// Asserts SCLKenable at the rising and falling edge of SCLK by counting from 0 to SckDiv // Asserts SCLKenable at the rising and falling edge of SCLK by counting from 0 to SckDiv
// Active at 2x SCLK frequency to account for implicit half cycle delays and actions on both clock edges depending on phase // Active at 2x SCLK frequency to account for implicit half cycle delays and actions on both clock edges depending on phase
// When SckDiv is 0, count doesn't work and SCLKenable is simply PCLK *** dh 10/26/24: this logic is seriously broken. SCLK is not scaled to PCLK/(2*(SckDiv + 1)). SCLKenableEarly doesn't work right for SckDiv=0 // When SckDiv is 0, count doesn't work and SCLKenable is simply PCLK *** dh 10/26/24: this logic is seriously broken. SCLK is not scaled to PCLK/(2*(SckDiv + 1)).
assign ZeroDiv = ~|(SckDiv[10:0]);
assign SCLKenable = ZeroDiv ? 1 : (DivCounter == SckDiv);
assign SCLKenableEarly = ((DivCounter + 12'b1) == SckDiv);
always_ff @(posedge PCLK)
if (~PRESETn) DivCounter <= '0;
else if (SCLKenable) DivCounter <= 12'b0;
else DivCounter <= DivCounter + 12'b1;
// Asserts when transmission is one frame before complete // SPI Controller module -------------------------------------------
assign ReceivePenultimateFrame = ((FrameCount + 4'b0001) == Format[4:1]); // This module controls state and timing signals that drive the rest of this module
assign FirstFrame = (FrameCount == 4'b0); assign ResetSCLKenable = Memwrite & (Entry == SPI_SCKDIV);
// Computing delays spi_controller controller(PCLK, PRESETn,
// When sckmode.pha = 0, an extra half-period delay is implicit in the cs-sck delay, and vice-versa for sck-cs // Transmit Signals
assign ImplicitDelay1 = SckMode[0] ? 9'b0 : 9'b1; TransmitStart, ResetSCLKenable,
assign ImplicitDelay2 = SckMode[0] ? 9'b1 : 9'b0; // Register Inputs
SckDiv, SckMode, ChipSelectMode, Delay0, Delay1,
// Calculate when tx/rx shift registers are full/empty // txFIFO stuff
TransmitFIFOReadEmpty,
// Transmit Shift FSM // Timing
always_ff @(posedge PCLK) SCLKenable, ShiftEdge, SampleEdge, EndOfFrame, EndOfFrameDelay,
if (~PRESETn) TransmitShiftEmpty <= 1'b1; // State stuff
else if (TransmitShiftEmpty) begin Transmitting, InactiveState,
if (TransmitFIFOReadEmpty | (~TransmitFIFOReadEmpty & (ReceivePenultimateFrame & Active0))) TransmitShiftEmpty <= 1'b1; // Outputs
else if (~TransmitFIFOReadEmpty) TransmitShiftEmpty <= 1'b0; SPICLK);
end else begin
if (ReceivePenultimateFrame & Active0) TransmitShiftEmpty <= 1'b1;
else TransmitShiftEmpty <= 1'b0;
end
// Receive Shift FSM
always_ff @(posedge PCLK)
if (~PRESETn) ReceiveState <= ReceiveShiftNotFullState;
else if (SCLKenable) begin
case (ReceiveState)
ReceiveShiftFullState: ReceiveState <= ReceiveShiftNotFullState;
ReceiveShiftNotFullState: if (ReceivePenultimateFrame & (SampleEdge)) ReceiveState <= ReceiveShiftDelayState;
else ReceiveState <= ReceiveShiftNotFullState;
ReceiveShiftDelayState: ReceiveState <= ReceiveShiftFullState;
endcase
end
assign ReceiveShiftFull = SckMode[0] ? (ReceiveState == ReceiveShiftFullState) : (ReceiveState == ReceiveShiftDelayState);
// Calculate tx/rx fifo write and recieve increment signals
always_ff @(posedge PCLK)
if (~PRESETn) TransmitFIFOWriteIncrement <= 1'b0;
else TransmitFIFOWriteIncrement <= (Memwrite & (Entry == SPI_TXDATA) & ~TransmitFIFOWriteFull);
always_ff @(posedge PCLK)
if (~PRESETn) ReceiveFIFOReadIncrement <= 1'b0;
else ReceiveFIFOReadIncrement <= ((Entry == SPI_RXDATA) & ~ReceiveFIFOReadEmpty & PSEL & ~ReceiveFIFOReadIncrement);
assign TransmitShiftRegLoad = ~TransmitShiftEmpty & ~Active | (((ChipSelectMode == 2'b10) & ~|(Delay1[15:8])) & ((ReceiveShiftFullDelay | ReceiveShiftFull) & ~SampleEdge & ~TransmitFIFOReadEmpty));
always_ff @(posedge PCLK)
if (~PRESETn) TransmitShiftRegLoadDelay <=0;
else if (SCLKenable) TransmitShiftRegLoadDelay <= TransmitShiftRegLoad;
assign TransmitShiftRegLoadSingleCycle = TransmitShiftRegLoad & ~TransmitShiftRegLoadDelay;
always_ff @(posedge PCLK)
if (~PRESETn) TransmitFIFOReadIncrement <= 0;
else if (SCLKenable) TransmitFIFOReadIncrement <= TransmitShiftRegLoadSingleCycle;
// Tx/Rx FIFOs
spi_fifo #(3,8) txFIFO(PCLK, 1'b1, SCLKenable, PRESETn, TransmitFIFOWriteIncrement, TransmitFIFOReadIncrement, TransmitData[7:0], TransmitWriteWatermarkLevel, TransmitWatermark[2:0],
TransmitFIFOReadData[7:0], TransmitFIFOWriteFull, TransmitFIFOReadEmpty, TransmitWriteMark, TransmitReadMark);
spi_fifo #(3,8) rxFIFO(PCLK, SCLKenable, 1'b1, PRESETn, ReceiveFiFoWriteInc, ReceiveFIFOReadIncrement, ReceiveShiftRegEndian, ReceiveWatermark[2:0], ReceiveReadWatermarkLevel,
ReceiveData[7:0], ReceiveFIFOWriteFull, ReceiveFIFOReadEmpty, RecieveWriteMark, RecieveReadMark);
always_ff @(posedge PCLK)
if (~PRESETn) TransmitFIFOReadEmptyDelay <= 1'b1;
else if (SCLKenable) TransmitFIFOReadEmptyDelay <= TransmitFIFOReadEmpty;
always_ff @(posedge PCLK)
if (~PRESETn) ReceiveShiftFullDelay <= 1'b0;
else if (SCLKenable) ReceiveShiftFullDelay <= ReceiveShiftFull;
assign ReceiveFiFoTakingData = ReceiveFiFoWriteInc & ~ReceiveFIFOWriteFull;
always_ff @(posedge PCLK)
if (~PRESETn) ReceiveFiFoWriteInc <= 1'b0;
else if (SCLKenable & ReceiveShiftFull) ReceiveFiFoWriteInc <= 1'b1;
else if (SCLKenable & ReceiveFiFoTakingData) ReceiveFiFoWriteInc <= 1'b0;
always_ff @(posedge PCLK)
if (~PRESETn) ReceiveShiftFullDelayPCLK <= 1'b0;
else if (SCLKenableEarly) ReceiveShiftFullDelayPCLK <= ReceiveShiftFull;
// Main FSM which controls SPI transmission
typedef enum logic [2:0] {CS_INACTIVE, DELAY_0, ACTIVE_0, ACTIVE_1, DELAY_1,INTER_CS, INTER_XFR} statetype;
statetype state;
// Transmit FIFO ---------------------------------------------------
always_ff @(posedge PCLK) always_ff @(posedge PCLK)
if (~PRESETn) begin if (~PRESETn) begin
state <= CS_INACTIVE; TransmitFIFOWriteIncrement <= 1'b0;
FrameCount <= 4'b0; TransmitFIFOReadIncrement <= 1'b0;
SPICLK <= SckMode[1]; end else begin
TransmitFIFOWriteIncrement <= (Memwrite & (Entry == SPI_TXDATA) & ~TransmitFIFOWriteFull);
TransmitFIFOReadIncrement <= TransmitLoad;
end
// Setup TransmitStart state machine
always_ff @(posedge PCLK) begin
if (~PRESETn) begin
CurrState <= READY;
end else if (SCLKenable) begin end else if (SCLKenable) begin
/* verilator lint_off CASEINCOMPLETE */ CurrState <= NextState;
case (state)
CS_INACTIVE: begin
CS_SCKCount <= 9'b1;
SCK_CSCount <= 9'b10;
FrameCount <= 4'b0;
InterCSCount <= 9'b10;
InterXFRCount <= 9'b1;
if ((~TransmitFIFOReadEmpty | ~TransmitShiftEmpty) & ((|(Delay0[7:0])) | ~SckMode[0])) state <= DELAY_0;
else if ((~TransmitFIFOReadEmpty | ~TransmitShiftEmpty)) begin
state <= ACTIVE_0;
SPICLK <= ~SckMode[1];
end else SPICLK <= SckMode[1];
end
DELAY_0: begin
CS_SCKCount <= CS_SCKCount + 9'b1;
if (CS_SCKCount >= (({Delay0[7:0], 1'b0}) + ImplicitDelay1)) begin
state <= ACTIVE_0;
SPICLK <= ~SckMode[1];
end end
end end
ACTIVE_0: begin
FrameCount <= FrameCount + 4'b1; // State machine for starting transmissions
SPICLK <= SckMode[1]; always_comb begin
state <= ACTIVE_1; case (CurrState)
end READY: if (~TransmitFIFOReadEmpty) NextState = START;
ACTIVE_1: begin else NextState = READY;
InterXFRCount <= 9'b1; START: NextState = WAIT;
if (FrameCount < Format[4:1]) begin WAIT: if (TransmitFIFOReadEmpty & ~Transmitting) NextState = READY;
state <= ACTIVE_0; else NextState = WAIT;
SPICLK <= ~SckMode[1];
end
else if ((ChipSelectMode[1:0] == 2'b10) & ~|(Delay1[15:8]) & (~TransmitFIFOReadEmpty)) begin
state <= ACTIVE_0;
SPICLK <= ~SckMode[1];
CS_SCKCount <= 9'b1;
SCK_CSCount <= 9'b10;
FrameCount <= 4'b0;
InterCSCount <= 9'b10;
end
else if (ChipSelectMode[1:0] == 2'b10) state <= INTER_XFR;
else if (~|(Delay0[15:8]) & (~SckMode[0])) state <= INTER_CS;
else state <= DELAY_1;
end
DELAY_1: begin
SCK_CSCount <= SCK_CSCount + 9'b1;
if (SCK_CSCount >= (({Delay0[15:8], 1'b0}) + ImplicitDelay2)) state <= INTER_CS;
end
INTER_CS: begin
InterCSCount <= InterCSCount + 9'b1;
SPICLK <= SckMode[1];
if (InterCSCount >= ({Delay1[7:0],1'b0})) state <= CS_INACTIVE;
end
INTER_XFR: begin
CS_SCKCount <= 9'b1;
SCK_CSCount <= 9'b10;
FrameCount <= 4'b0;
InterCSCount <= 9'b10;
InterXFRCount <= InterXFRCount + 9'b1;
if ((InterXFRCount >= ({Delay1[15:8], 1'b0})) & (~TransmitFIFOReadEmptyDelay | ~TransmitShiftEmpty)) begin
state <= ACTIVE_0;
SPICLK <= ~SckMode[1];
end else if (~|ChipSelectMode[1:0]) state <= CS_INACTIVE;
else SPICLK <= SckMode[1];
end
endcase endcase
/* verilator lint_off CASEINCOMPLETE */
end end
assign TransmitStart = (CurrState == START);
spi_fifo #(3,8) txFIFO(PCLK, 1'b1, SCLKenable, PRESETn,
TransmitFIFOWriteIncrement, TransmitFIFOReadIncrement,
TransmitData[7:0],
TransmitWriteWatermarkLevel, TransmitWatermark[2:0],
TransmitFIFOReadData[7:0],
TransmitFIFOWriteFull,
TransmitFIFOReadEmpty,
TransmitWriteMark, TransmitReadMark);
assign DelayMode = SckMode[0] ? (state == DELAY_1) : (state == ACTIVE_1 & ReceiveShiftFull); // Receive FIFO ----------------------------------------------------
assign ChipSelectInternal = (state == CS_INACTIVE | state == INTER_CS | DelayMode & ~|(Delay0[15:8])) ? ChipSelectDef : ~ChipSelectDef; always_ff @(posedge PCLK)
assign Active = (state == ACTIVE_0 | state == ACTIVE_1); if (~PRESETn) begin
assign SampleEdge = SckMode[0] ? (state == ACTIVE_1) : (state == ACTIVE_0); ReceiveFIFOReadIncrement <= 1'b0;
assign ZeroDelayHoldMode = ((ChipSelectMode == 2'b10) & (~|(Delay1[7:4]))); ReceiveFIFOWriteInc <= 1'b0;
assign TransmitInactive = ((state == INTER_CS) | (state == CS_INACTIVE) | (state == INTER_XFR) | (ReceiveShiftFullDelayPCLK & ZeroDelayHoldMode) | ((state == ACTIVE_1) & ((ChipSelectMode[1:0] == 2'b10) & ~|(Delay1[15:8]) & (~TransmitFIFOReadEmpty) & (FrameCount == Format[4:1])))); end else begin
assign Active0 = (state == ACTIVE_0); ReceiveFIFOReadIncrement <= ((Entry == SPI_RXDATA) & ~ReceiveFIFOReadEmpty & PSEL & ~ReceiveFIFOReadIncrement);
assign ShiftEdgeSPICLK = ZeroDiv ? ~SPICLK : SPICLK; ReceiveFIFOWriteInc <= EndOfFrameDelay;
end
// Signal tracks which edge of sck to shift data spi_fifo #(3,8) rxFIFO(PCLK, SCLKenable, 1'b1, PRESETn,
always_comb ReceiveFIFOWriteInc, ReceiveFIFOReadIncrement,
case(SckMode[1:0]) ReceiveShiftRegEndian, ReceiveWatermark[2:0],
2'b00: ShiftEdge = ShiftEdgeSPICLK & SCLKenable; ReceiveReadWatermarkLevel,
2'b01: ShiftEdge = (~ShiftEdgeSPICLK & ~FirstFrame & (|(FrameCount) | (CS_SCKCount >= (({Delay0[7:0], 1'b0}) + ImplicitDelay1))) & SCLKenable & (FrameCount != Format[4:1]) & ~TransmitInactive); ReceiveData[7:0],
2'b10: ShiftEdge = ~ShiftEdgeSPICLK & SCLKenable; ReceiveFIFOWriteFull,
2'b11: ShiftEdge = (ShiftEdgeSPICLK & ~FirstFrame & (|(FrameCount) | (CS_SCKCount >= (({Delay0[7:0], 1'b0}) + ImplicitDelay1))) & SCLKenable & (FrameCount != Format[4:1]) & ~TransmitInactive); ReceiveFIFOReadEmpty,
default: ShiftEdge = ShiftEdgeSPICLK & SCLKenable; RecieveWriteMark, RecieveReadMark);
endcase
// Transmit shift register // Transmit shift register
assign TransmitDataEndian = Format[0] ? {TransmitFIFOReadData[0], TransmitFIFOReadData[1], TransmitFIFOReadData[2], TransmitFIFOReadData[3], TransmitFIFOReadData[4], TransmitFIFOReadData[5], TransmitFIFOReadData[6], TransmitFIFOReadData[7]} : TransmitFIFOReadData[7:0]; assign TransmitLoad = TransmitStart | (EndOfFrameDelay & ~TransmitFIFOReadEmpty);
assign TransmitDataEndian = Format[0] ? {<<{TransmitFIFOReadData[7:0]}} : TransmitFIFOReadData[7:0];
always_ff @(posedge PCLK) always_ff @(posedge PCLK)
if(~PRESETn) TransmitShiftReg <= 8'b0; if(~PRESETn) TransmitReg <= 8'b0;
else if (TransmitShiftRegLoadSingleCycle) TransmitShiftReg <= TransmitDataEndian; else if (TransmitLoad) TransmitReg <= TransmitDataEndian;
else if (ShiftEdge & Active) TransmitShiftReg <= {TransmitShiftReg[6:0], TransmitShiftReg[0]}; else if (ShiftEdge) TransmitReg <= {TransmitReg[6:0], TransmitReg[0]};
assign SPIOut = TransmitShiftReg[7]; assign SPIOut = TransmitReg[7];
// If in loopback mode, receive shift register is connected directly to module's output pins. Else, connected to SPIIn // If in loopback mode, receive shift register is connected directly
// There are no setup/hold time issues because transmit shift register and receive shift register always shift/sample on opposite edges // to module's output pins. Else, connected to SPIIn. There are no
// setup/hold time issues because transmit shift register and receive
// shift register always shift/sample on opposite edges
assign ShiftIn = P.SPI_LOOPBACK_TEST ? SPIOut : SPIIn; assign ShiftIn = P.SPI_LOOPBACK_TEST ? SPIOut : SPIIn;
// Receive shift register // Receive shift register
always_ff @(posedge PCLK) always_ff @(posedge PCLK)
if(~PRESETn) ReceiveShiftReg <= 8'b0; if(~PRESETn) ReceiveShiftReg <= 8'b0;
else if (SampleEdge & SCLKenable) begin else if (SampleEdge) begin
if (~Active) ReceiveShiftReg <= 8'b0; if (~Transmitting) ReceiveShiftReg <= 8'b0;
else ReceiveShiftReg <= {ReceiveShiftReg[6:0], ShiftIn}; else ReceiveShiftReg <= {ReceiveShiftReg[6:0], ShiftIn};
end end
// Aligns received data and reverses if little-endian // Aligns received data and reverses if little-endian
assign LeftShiftAmount = 4'h8 - Format[4:1]; assign LeftShiftAmount = 4'h8 - Format[4:1];
assign ASR = ReceiveShiftReg << LeftShiftAmount[2:0]; assign ASR = ReceiveShiftReg << LeftShiftAmount[2:0];
assign ReceiveShiftRegEndian = Format[0] ? {ASR[0], ASR[1], ASR[2], ASR[3], ASR[4], ASR[5], ASR[6], ASR[7]} : ASR[7:0]; assign ReceiveShiftRegEndian = Format[0] ? {<<{ASR[7:0]}} : ASR[7:0];
// Interrupt logic: raise interrupt if any enabled interrupts are pending // Interrupt logic: raise interrupt if any enabled interrupts are pending
assign SPIIntr = |(InterruptPending & InterruptEnable); assign SPIIntr = |(InterruptPending & InterruptEnable);
// Chip select logic // Chip select logic
assign ChipSelectInternal = InactiveState ? ChipSelectDef : ~ChipSelectDef;
always_comb always_comb
case(ChipSelectID[1:0]) case(ChipSelectID[1:0])
2'b00: ChipSelectAuto = {ChipSelectDef[3], ChipSelectDef[2], ChipSelectDef[1], ChipSelectInternal[0]}; 2'b00: ChipSelectAuto = {ChipSelectDef[3], ChipSelectDef[2], ChipSelectDef[1], ChipSelectInternal[0]};
@ -462,6 +329,6 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
2'b10: ChipSelectAuto = {ChipSelectDef[3],ChipSelectInternal[2], ChipSelectDef[1], ChipSelectDef[0]}; 2'b10: ChipSelectAuto = {ChipSelectDef[3],ChipSelectInternal[2], ChipSelectDef[1], ChipSelectDef[0]};
2'b11: ChipSelectAuto = {ChipSelectInternal[3],ChipSelectDef[2], ChipSelectDef[1], ChipSelectDef[0]}; 2'b11: ChipSelectAuto = {ChipSelectInternal[3],ChipSelectDef[2], ChipSelectDef[1], ChipSelectDef[0]};
endcase endcase
assign SPICS = ChipSelectMode[0] ? ChipSelectDef : ChipSelectAuto; assign SPICS = ChipSelectMode[0] ? ChipSelectDef : ChipSelectAuto;
endmodule endmodule

View File

@ -28,21 +28,33 @@
// and limitations under the License. // and limitations under the License.
//////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////
module spi_controller ( module spi_controller (
input logic PCLK, input logic PCLK,
input logic PRESETn, input logic PRESETn,
// Start Transmission
input logic TransmitStart, input logic TransmitStart,
input logic ResetSCLKenable,
// Registers
input logic [11:0] SckDiv, input logic [11:0] SckDiv,
input logic [1:0] SckMode, input logic [1:0] SckMode,
input logic [1:0] CSMode, input logic [1:0] CSMode,
input logic [15:0] Delay0, input logic [15:0] Delay0,
input logic [15:0] Delay1, input logic [15:0] Delay1,
input logic [7:0] txFIFORead,
// Is the Transmit FIFO Empty?
input logic txFIFOReadEmpty, input logic txFIFOReadEmpty,
output logic SPICLK,
output logic SPIOUT, // Control signals
output logic CS output logic SCLKenable,
output logic ShiftEdge,
output logic SampleEdge,
output logic EndOfFrame,
output logic EndOfFrameDelay,
output logic Transmitting,
output logic InactiveState,
output logic SPICLK
); );
// CSMode Stuff // CSMode Stuff
@ -55,36 +67,32 @@ module spi_controller (
// SCLKenable stuff // SCLKenable stuff
logic [11:0] DivCounter; logic [11:0] DivCounter;
logic SCLKenable; // logic SCLKenable;
logic SCLKenableEarly; // logic SCLKenableEarly;
logic SCLKenableLate;
logic EdgeTiming;
logic ZeroDiv; logic ZeroDiv;
logic Clock0;
logic Clock1;
logic SCK; // SUPER IMPORTANT, THIS CAN'T BE THE SAME AS SPICLK! logic SCK; // SUPER IMPORTANT, THIS CAN'T BE THE SAME AS SPICLK!
// Shift and Sample Edges // Shift and Sample Edges
logic PreShiftEdge; logic PreShiftEdge;
logic PreSampleEdge; logic PreSampleEdge;
logic ShiftEdge; // logic ShiftEdge;
logic SampleEdge; // logic SampleEdge;
// Frame stuff // Frame stuff
logic [2:0] BitNum; logic [2:0] BitNum;
logic LastBit; logic LastBit;
logic EndOfFrame; //logic EndOfFrame;
logic EndOfFrameDelay; //logic EndOfFrameDelay;
logic PhaseOneOffset; logic PhaseOneOffset;
// Transmit Stuff // Transmit Stuff
logic ContinueTransmit; logic ContinueTransmit;
// SPIOUT Stuff // SPIOUT Stuff
logic TransmitLoad; // logic TransmitLoad;
logic [7:0] TransmitReg; logic [7:0] TransmitReg;
logic Transmitting; //logic Transmitting;
logic EndTransmission; logic EndTransmission;
logic HoldMode; logic HoldMode;
@ -135,13 +143,9 @@ module spi_controller (
// SampleEdge. This makes sure that SPICLK is an output of a register // SampleEdge. This makes sure that SPICLK is an output of a register
// and it properly synchronizes signals. // and it properly synchronizes signals.
assign SCLKenableLate = DivCounter > SckDiv;
assign SCLKenable = DivCounter == SckDiv; assign SCLKenable = DivCounter == SckDiv;
assign SCLKenableEarly = (DivCounter + 1'b1) == SckDiv; // assign SCLKenableEarly = (DivCounter + 1'b1) == SckDiv;
assign LastBit = BitNum == 3'd7; assign LastBit = BitNum == 3'd7;
assign EdgeTiming = SckDiv > 12'b0 ? SCLKenableEarly : SCLKenable;
//assign SPICLK = Clock0;
assign ContinueTransmit = ~txFIFOReadEmpty & EndOfFrame; assign ContinueTransmit = ~txFIFOReadEmpty & EndOfFrame;
assign EndTransmission = txFIFOReadEmpty & EndOfFrameDelay; assign EndTransmission = txFIFOReadEmpty & EndOfFrameDelay;
@ -196,7 +200,7 @@ module spi_controller (
end end
// Reset divider // Reset divider
if (SCLKenable | TransmitStart) begin if (SCLKenable | TransmitStart | ResetSCLKenable) begin
DivCounter <= 12'b0; DivCounter <= 12'b0;
end else begin end else begin
DivCounter = DivCounter + 12'd1; DivCounter = DivCounter + 12'd1;
@ -242,8 +246,8 @@ module spi_controller (
// typedef enum logic [2:0] {INACTIVE, CSSCK, TRANSMIT, SCKCS, HOLD, INTERCS, INTERXFR} statetype; // typedef enum logic [2:0] {INACTIVE, CSSCK, TRANSMIT, SCKCS, HOLD, INTERCS, INTERXFR} statetype;
// statetype CurrState, NextState; // statetype CurrState, NextState;
assign HoldMode = CSMode == 2'b10; assign HoldMode = CSMode == HOLDMODE;
assign TransmitLoad = TransmitStart | (EndOfFrameDelay & ~txFIFOReadEmpty); // assign TransmitLoad = TransmitStart | (EndOfFrameDelay & ~txFIFOReadEmpty);
always_ff @(posedge PCLK) begin always_ff @(posedge PCLK) begin
if (~PRESETn) begin if (~PRESETn) begin
@ -255,61 +259,43 @@ module spi_controller (
always_comb begin always_comb begin
case (CurrState) case (CurrState)
INACTIVE: begin // INACTIVE case -------------------------------- INACTIVE: if (TransmitStart)
if (TransmitStart) begin if (~HasCSSCK) NextState = TRANSMIT;
if (~HasCSSCK) begin else NextState = CSSCK;
NextState = TRANSMIT; else NextState = INACTIVE;
end else begin CSSCK: if (EndOfCSSCK) NextState = TRANSMIT;
NextState = CSSCK; else NextState = CSSCK;
end
end else begin
NextState = INACTIVE;
end
end
CSSCK: begin // DELAY0 case -------------------------------------
if (EndOfCSSCK) begin
NextState = TRANSMIT;
end
end
TRANSMIT: begin // TRANSMIT case -------------------------------- TRANSMIT: begin // TRANSMIT case --------------------------------
case(CSMode) case(CSMode)
AUTOMODE: begin AUTOMODE: begin
if (EndTransmission) begin if (EndTransmission) NextState = INACTIVE;
NextState = INACTIVE; else if (ContinueTransmit) NextState = SCKCS;
end else if (ContinueTransmit) begin
NextState = SCKCS;
end
end end
HOLDMODE: begin HOLDMODE: begin
if (EndTransmission) begin if (EndTransmission) NextState = HOLD;
NextState = HOLD; else if (ContinueTransmit & HasINTERXFR) NextState = INTERXFR;
end else if (ContinueTransmit) begin else NextState = TRANSMIT;
if (HasINTERXFR) NextState = INTERXFR;
end
end end
OFFMODE: begin OFFMODE: begin
end end
endcase endcase
end end
SCKCS: begin // SCKCS case -------------------------------------- SCKCS: begin // SCKCS case --------------------------------------
if (EndOfSCKCS) begin if (EndOfSCKCS)
if (EndTransmission) begin if (EndTransmission)
if (CSMode == AUTOMODE) NextState = INACTIVE; if (CSMode == AUTOMODE) NextState = INACTIVE;
else if (CSMode == HOLDMODE) NextState = HOLD; else if (CSMode == HOLDMODE) NextState = HOLD;
end else if (ContinueTransmit) begin else if (ContinueTransmit)
if (HasINTERCS) NextState = INTERCS; if (HasINTERCS) NextState = INTERCS;
else NextState = TRANSMIT; else NextState = TRANSMIT;
end end
end
end
HOLD: begin // HOLD mode case ----------------------------------- HOLD: begin // HOLD mode case -----------------------------------
if (CSMode == AUTOMODE) begin if (CSMode == AUTOMODE) begin
NextState = INACTIVE; NextState = INACTIVE;
end else if (TransmitStart) begin // If FIFO is written to, start again. end else if (TransmitStart) begin // If FIFO is written to, start again.
NextState = TRANSMIT; NextState = TRANSMIT;
end end else NextState = HOLD;
end end
INTERCS: begin // INTERCS case ---------------------------------- INTERCS: begin // INTERCS case ----------------------------------
if (EndOfINTERCS) begin if (EndOfINTERCS) begin
@ -330,19 +316,6 @@ module spi_controller (
assign Transmitting = CurrState == TRANSMIT; assign Transmitting = CurrState == TRANSMIT;
assign DelayIsNext = (NextState == CSSCK | NextState == SCKCS | NextState == INTERCS | NextState == INTERXFR); assign DelayIsNext = (NextState == CSSCK | NextState == SCKCS | NextState == INTERCS | NextState == INTERXFR);
assign InactiveState = CurrState == INACTIVE | CurrState == INTERCS;
//
always_ff @(posedge PCLK) begin
if (~PRESETn) begin
TransmitReg <= 8'b0;
end else if (TransmitLoad) begin
TransmitReg <= txFIFORead;
end else if (ShiftEdge) begin
TransmitReg <= {TransmitReg[6:0], TransmitReg[0]};
end
end
assign SPIOUT = TransmitReg[7];
assign CS = CurrState == INACTIVE | CurrState == INTERCS;
endmodule endmodule