This commit is contained in:
Ross Thompson 2023-08-28 09:13:16 -05:00
commit b22350fcd7
50 changed files with 775 additions and 431 deletions

View File

@ -42,11 +42,12 @@ localparam ZICNTR_SUPPORTED = 1;
localparam ZIHPM_SUPPORTED = 1;
localparam COUNTERS = 12'd32;
localparam ZFH_SUPPORTED = 0;
localparam SSTC_SUPPORTED = 0;
localparam ZICBOM_SUPPORTED = 0;
localparam ZICBOZ_SUPPORTED = 0;
localparam ZICBOP_SUPPORTED = 0;
localparam SVPBMT_SUPPORTED = 0;
localparam SSTC_SUPPORTED = 1;
localparam ZICBOM_SUPPORTED = 1;
localparam ZICBOZ_SUPPORTED = 1;
localparam ZICBOP_SUPPORTED = 1;
localparam SVPBMT_SUPPORTED = 1;
localparam SVNAPOT_SUPPORTED = 1;
localparam SVINVAL_SUPPORTED = 1;
// LSU microarchitectural Features

View File

@ -44,11 +44,12 @@ localparam COUNTERS = 12'd32;
localparam ZICNTR_SUPPORTED = 1;
localparam ZIHPM_SUPPORTED = 1;
localparam ZFH_SUPPORTED = 0;
localparam SSTC_SUPPORTED = 0;
localparam ZICBOM_SUPPORTED = 0;
localparam ZICBOZ_SUPPORTED = 0;
localparam ZICBOP_SUPPORTED = 0;
localparam SVPBMT_SUPPORTED = 0;
localparam SSTC_SUPPORTED = 1;
localparam ZICBOM_SUPPORTED = 1;
localparam ZICBOZ_SUPPORTED = 1;
localparam ZICBOP_SUPPORTED = 1;
localparam SVPBMT_SUPPORTED = 1;
localparam SVNAPOT_SUPPORTED = 1;
localparam SVINVAL_SUPPORTED = 1;
// LSU microarchitectural Features

View File

@ -48,6 +48,7 @@ localparam ZICBOM_SUPPORTED = 0;
localparam ZICBOZ_SUPPORTED = 0;
localparam ZICBOP_SUPPORTED = 0;
localparam SVPBMT_SUPPORTED = 0;
localparam SVNAPOT_SUPPORTED = 0;
localparam SVINVAL_SUPPORTED = 0;
// LSU microarchitectural Features

View File

@ -49,6 +49,7 @@ localparam ZICBOM_SUPPORTED = 1;
localparam ZICBOZ_SUPPORTED = 1;
localparam ZICBOP_SUPPORTED = 0;
localparam SVPBMT_SUPPORTED = 0;
localparam SVNAPOT_SUPPORTED = 0;
localparam SVINVAL_SUPPORTED = 1;
// LSU microarchitectural Features

View File

@ -48,6 +48,7 @@ localparam ZICBOM_SUPPORTED = 0;
localparam ZICBOZ_SUPPORTED = 0;
localparam ZICBOP_SUPPORTED = 0;
localparam SVPBMT_SUPPORTED = 0;
localparam SVNAPOT_SUPPORTED = 0;
localparam SVINVAL_SUPPORTED = 0;
// LSU microarchitectural Features

View File

@ -47,6 +47,7 @@ localparam ZICBOM_SUPPORTED = 0;
localparam ZICBOZ_SUPPORTED = 0;
localparam ZICBOP_SUPPORTED = 0;
localparam SVPBMT_SUPPORTED = 0;
localparam SVNAPOT_SUPPORTED = 0;
localparam SVINVAL_SUPPORTED = 0;
// LSU microarchitectural Features

View File

@ -48,6 +48,7 @@ localparam ZICBOM_SUPPORTED = 0;
localparam ZICBOZ_SUPPORTED = 0;
localparam ZICBOP_SUPPORTED = 0;
localparam SVPBMT_SUPPORTED = 0;
localparam SVNAPOT_SUPPORTED = 0;
localparam SVINVAL_SUPPORTED = 1;
// LSU microarchitectural Features

View File

@ -49,8 +49,9 @@ localparam ZFH_SUPPORTED = 0;
localparam SSTC_SUPPORTED = 1;
localparam ZICBOM_SUPPORTED = 1;
localparam ZICBOZ_SUPPORTED = 1;
localparam ZICBOP_SUPPORTED = 0;
localparam SVPBMT_SUPPORTED = 0;
localparam ZICBOP_SUPPORTED = 1;
localparam SVPBMT_SUPPORTED = 1;
localparam SVNAPOT_SUPPORTED = 1;
localparam SVINVAL_SUPPORTED = 1;
// LSU microarchitectural Features

View File

@ -48,6 +48,7 @@ localparam ZICBOM_SUPPORTED = 0;
localparam ZICBOZ_SUPPORTED = 0;
localparam ZICBOP_SUPPORTED = 0;
localparam SVPBMT_SUPPORTED = 0;
localparam SVNAPOT_SUPPORTED = 0;
localparam SVINVAL_SUPPORTED = 0;
// LSU microarchitectural Features

View File

@ -101,10 +101,10 @@ localparam FPDUR = ((DIVN+1+(LOGR*DIVCOPIES))/(LOGR*DIVCOPIES)+(RADIX/4));
localparam DURLEN = ($clog2(FPDUR+1));
localparam DIVb = (FPDUR*LOGR*DIVCOPIES-1); // canonical fdiv size (b)
localparam DIVBLEN = ($clog2(DIVb+1)-1);
localparam DIVa = (DIVb+1-XLEN); // used for idiv on fpu
localparam DIVa = (DIVb+1-XLEN); // used for idiv on fpu: Shift residual right by b - (XLEN-1) to put remainder in lsbs of integer result
// largest length in IEU/FPU
localparam CVTLEN = ((NF<XLEN) ? (XLEN) : (NF));
localparam CVTLEN = ((NF<XLEN) ? (XLEN) : (NF)); // max(XLEN, NF)
localparam LLEN = (($unsigned(FLEN)<$unsigned(XLEN)) ? ($unsigned(XLEN)) : ($unsigned(FLEN)));
localparam LOGCVTLEN = $unsigned($clog2(CVTLEN+1));
localparam NORMSHIFTSZ = (((CVTLEN+NF+1)>(DIVb + 1 +NF+1) & (CVTLEN+NF+1)>(3*NF+6)) ? (CVTLEN+NF+1) : ((DIVb + 1 +NF+1) > (3*NF+6) ? (DIVb + 1 +NF+1) : (3*NF+6)));

View File

@ -3,7 +3,7 @@
`include "BranchPredictorType.vh"
parameter cvw_t P = '{
localparam cvw_t P = '{
FPGA : FPGA,
XLEN : XLEN,
IEEE754 : IEEE754,
@ -25,6 +25,7 @@ parameter cvw_t P = '{
ZICBOZ_SUPPORTED : ZICBOZ_SUPPORTED,
ZICBOP_SUPPORTED : ZICBOP_SUPPORTED,
SVPBMT_SUPPORTED : SVPBMT_SUPPORTED,
SVNAPOT_SUPPORTED : SVNAPOT_SUPPORTED,
SVINVAL_SUPPORTED : SVINVAL_SUPPORTED,
BUS_SUPPORTED : BUS_SUPPORTED,
DCACHE_SUPPORTED : DCACHE_SUPPORTED,

View File

@ -60,6 +60,7 @@ typedef struct packed {
logic ZICBOZ_SUPPORTED;
logic ZICBOP_SUPPORTED;
logic SVPBMT_SUPPORTED;
logic SVNAPOT_SUPPORTED;
logic SVINVAL_SUPPORTED;
// Microarchitectural Features

View File

@ -375,12 +375,14 @@ module controller import cvw::*; #(parameter cvw_t P) (
LSUPrefetchD = 1'b0;
ImmSrcD = PreImmSrcD;
if (P.ZICBOP_SUPPORTED & (InstrD[14:0] == 15'b110_00000_0010011)) begin // ori with destiation x0 is hint for Prefetch
case (Rs2D) // which type of prefectch? Note: prefetch.r and .w are handled the same in Wally
/* verilator lint_off CASEINCOMPLETE */
case (Rs2D) // which type of prefectch? Note: prefetch.r and .w are handled the same in Wally
5'b00000: IFUPrefetchD = 1'b1; // prefetch.i
5'b00001: LSUPrefetchD = 1'b1; // prefetch.r
5'b00011: LSUPrefetchD = 1'b1; // prefetch.w
// default: not a prefetch hint
endcase
/* verilator lint_on CASEINCOMPLETE */
if (IFUPrefetchD | LSUPrefetchD) ImmSrcD = 3'b001; // use S-type immediate format for prefetches
end
end

View File

@ -85,6 +85,7 @@ module ifu import cvw::*; #(parameter cvw_t P) (
input logic STATUS_SUM, // Status CSR: Supervisor access to user memory
input logic STATUS_MPRV, // Status CSR: modify machine privilege
input logic [1:0] STATUS_MPP, // Status CSR: previous machine privilege level
input logic ENVCFG_PBMTE, // Page-based memory types enabled
input logic sfencevmaM, // Virtual memory address fence, invalidate TLB entries
output logic ITLBMissF, // ITLB miss causes HPTW (hardware pagetable walker) walk
output logic InstrUpdateDAF, // ITLB hit needs to update dirty or access bits
@ -170,7 +171,7 @@ module ifu import cvw::*; #(parameter cvw_t P) (
assign TLBFlush = sfencevmaM & ~StallMQ;
mmu #(.P(P), .TLB_ENTRIES(P.ITLB_ENTRIES), .IMMU(1))
immu(.clk, .reset, .SATP_REGW, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
immu(.clk, .reset, .SATP_REGW, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP, .ENVCFG_PBMTE,
.PrivilegeModeW, .DisableTranslation(1'b0),
.VAdr(PCFExt),
.Size(2'b10),

View File

@ -80,6 +80,7 @@ module lsu import cvw::*; #(parameter cvw_t P) (
input logic [P.XLEN-1:0] SATP_REGW, // SATP (supervisor address translation and protection) CSR
input logic STATUS_MXR, STATUS_SUM, STATUS_MPRV, // STATUS CSR bits: make executable readable, supervisor user memory, machine privilege
input logic [1:0] STATUS_MPP, // Machine previous privilege mode
input logic ENVCFG_PBMTE, // Page-based memory types enabled
input logic [P.XLEN-1:0] PCSpillF, // Fetch PC
input logic ITLBMissF, // ITLB miss causes HPTW (hardware pagetable walker) walk
input logic InstrUpdateDAF, // ITLB hit needs to update dirty or access bits
@ -189,7 +190,7 @@ module lsu import cvw::*; #(parameter cvw_t P) (
assign DisableTranslation = SelHPTW | FlushDCacheM;
assign WriteAccessM = PreLSURWM[0] | (|CMOpM);
mmu #(.P(P), .TLB_ENTRIES(P.DTLB_ENTRIES), .IMMU(0))
dmmu(.clk, .reset, .SATP_REGW, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
dmmu(.clk, .reset, .SATP_REGW, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP, .ENVCFG_PBMTE,
.PrivilegeModeW, .DisableTranslation, .VAdr(IHAdrM), .Size(LSUFunct3M[1:0]),
.PTE, .PageTypeWriteVal(PageType), .TLBWrite(DTLBWriteM), .TLBFlush(sfencevmaM),
.PhysicalAddress(PAdrM), .TLBMiss(DTLBMissM), .Cacheable(CacheableM), .Idempotent(), .SelTIM(SelDTIM),

View File

@ -155,7 +155,7 @@ module hptw import cvw::*; #(parameter cvw_t P) (
assign AccessedPTE = {PTE[P.XLEN-1:8], (SetDirty | PTE[7]), 1'b1, PTE[5:0]}; // set accessed bit, conditionally set dirty bit
mux2 #(P.XLEN) NextPTEMux(ReadDataM, AccessedPTE, UpdatePTE, NextPTE);
flopenr #(P.PA_BITS) HPTWAdrWriteReg(clk, reset, SaveHPTWAdr, HPTWReadAdr, HPTWWriteAdr);
assign SaveHPTWAdr = WalkerState == L0_ADR;
assign SelHPTWWriteAdr = UpdatePTE | HPTWRW[0];
mux2 #(P.PA_BITS) HPTWWriteAdrMux(HPTWReadAdr, HPTWWriteAdr, SelHPTWWriteAdr, HPTWAdr);

View File

@ -34,6 +34,7 @@ module mmu import cvw::*; #(parameter cvw_t P,
input logic STATUS_SUM, // Status CSR: Supervisor access to user memory
input logic STATUS_MPRV, // Status CSR: modify machine privilege
input logic [1:0] STATUS_MPP, // Status CSR: previous machine privilege level
input logic ENVCFG_PBMTE, // Page-based memory types enabled
input logic [1:0] PrivilegeModeW, // Current privilege level of the processeor
input logic DisableTranslation, // virtual address translation disabled during D$ flush and HPTW walk that use physical addresses
input logic [P.XLEN+1:0] VAdr, // virtual/physical address from IEU or physical address from HPTW
@ -70,6 +71,7 @@ module mmu import cvw::*; #(parameter cvw_t P,
logic TLBHit; // Hit in TLB
logic TLBPageFault; // Page fault from TLB
logic ReadNoAmoAccessM; // Read that is not part of atomic operation causes Load faults. Otherwise StoreAmo faults
logic [1:0] PBMemoryType; // PBMT field of PTE during TLB hit, or 00 otherwise
// only instantiate TLB if Virtual Memory is supported
if (P.VIRTMEM_SUPPORTED) begin:tlb
@ -80,16 +82,17 @@ module mmu import cvw::*; #(parameter cvw_t P,
.clk, .reset,
.SATP_MODE(SATP_REGW[P.XLEN-1:P.XLEN-P.SVMODE_BITS]),
.SATP_ASID(SATP_REGW[P.ASID_BASE+P.ASID_BITS-1:P.ASID_BASE]),
.VAdr(VAdr[P.XLEN-1:0]), .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
.VAdr(VAdr[P.XLEN-1:0]), .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP, .ENVCFG_PBMTE,
.PrivilegeModeW, .ReadAccess, .WriteAccess,
.DisableTranslation, .PTE, .PageTypeWriteVal,
.TLBWrite, .TLBFlush, .TLBPAdr, .TLBMiss, .TLBHit,
.Translate, .TLBPageFault, .UpdateDA);
.Translate, .TLBPageFault, .UpdateDA, .PBMemoryType);
end else begin:tlb // just pass address through as physical
assign Translate = 0;
assign TLBMiss = 0;
assign TLBHit = 1; // *** is this necessary
assign TLBPageFault = 0;
assign PBMemoryType = 2'b00;
end
// If translation is occuring, select translated physical address from TLB
@ -103,8 +106,8 @@ module mmu import cvw::*; #(parameter cvw_t P,
///////////////////////////////////////////
pmachecker #(P) pmachecker(.PhysicalAddress, .Size,
.AtomicAccessM, .ExecuteAccessF, .WriteAccessM, .ReadAccessM,
.Cacheable, .Idempotent, .SelTIM,
.AtomicAccessM, .ExecuteAccessF, .WriteAccessM, .ReadAccessM, .PBMemoryType,
.Cacheable, .Idempotent, .SelTIM,
.PMAInstrAccessFaultF, .PMALoadAccessFaultM, .PMAStoreAmoAccessFaultM);
if (P.PMP_ENTRIES > 0) begin : pmp

View File

@ -35,6 +35,7 @@ module pmachecker import cvw::*; #(parameter cvw_t P) (
input logic ExecuteAccessF, // Execute access
input logic WriteAccessM, // Write access
input logic ReadAccessM, // Read access
input logic [1:0] PBMemoryType, // PBMT field of PTE during TLB hit, or 00 otherwise
output logic Cacheable, Idempotent, SelTIM,
output logic PMAInstrAccessFaultF,
output logic PMALoadAccessFaultM,
@ -45,6 +46,7 @@ module pmachecker import cvw::*; #(parameter cvw_t P) (
logic AccessRW, AccessRWX, AccessRX;
logic [10:0] SelRegions;
logic AtomicAllowed;
logic CacheableRegion, IdempotentRegion;
// Determine what type of access is being made
assign AccessRW = ReadAccessM | WriteAccessM;
@ -54,11 +56,15 @@ module pmachecker import cvw::*; #(parameter cvw_t P) (
// Determine which region of physical memory (if any) is being accessed
adrdecs #(P) adrdecs(PhysicalAddress, AccessRW, AccessRX, AccessRWX, Size, SelRegions);
// Only non-core RAM/ROM memory regions are cacheable
assign Cacheable = SelRegions[8] | SelRegions[7] | SelRegions[6]; // exclusion-tag: unused-cachable
// Only non-core RAM/ROM memory regions are cacheable. PBMT can override cachable; NC and IO are uncachable
assign CacheableRegion = SelRegions[8] | SelRegions[7] | SelRegions[6];
assign Cacheable = (PBMemoryType == 2'b00) ? CacheableRegion : 0; // exclusion-tag: unused-cachable
// Nonidemdempotent means access could have side effect and must not be done speculatively or redundantly
// I/O is nonidempotent.
assign Idempotent = SelRegions[10] | SelRegions[9] | SelRegions[8] | SelRegions[7] | SelRegions[6]; // exclusion-tag: unused-idempotent
// I/O is nonidempotent. PBMT can override PMA; NC is idempotent and IO is non-idempotent
assign IdempotentRegion = SelRegions[10] | SelRegions[9] | SelRegions[8] | SelRegions[7] | SelRegions[6];
assign Idempotent = (PBMemoryType == 2'b00) ? IdempotentRegion : (PBMemoryType == 2'b01); // exclusion-tag: unused-idempotent
// Atomic operations are only allowed on RAM
assign AtomicAllowed = SelRegions[10] | SelRegions[8] | SelRegions[6]; // exclusion-tag: unused-atomic
// Check if tightly integrated memories are selected

View File

@ -57,12 +57,13 @@ module tlb import cvw::*; #(parameter cvw_t P,
input logic [P.ASID_BITS-1:0] SATP_ASID,
input logic STATUS_MXR, STATUS_SUM, STATUS_MPRV,
input logic [1:0] STATUS_MPP,
input logic ENVCFG_PBMTE, // Page-based memory types enabled
input logic [1:0] PrivilegeModeW, // Current privilege level of the processeor
input logic ReadAccess,
input logic WriteAccess,
input logic DisableTranslation,
input logic [P.XLEN-1:0] VAdr, // address input before translation (could be physical or virtual)
input logic [P.XLEN-1:0] PTE,
input logic [P.XLEN-1:0] PTE, // page table entry to write
input logic [1:0] PageTypeWriteVal,
input logic TLBWrite,
input logic TLBFlush,
@ -71,20 +72,22 @@ module tlb import cvw::*; #(parameter cvw_t P,
output logic TLBHit,
output logic Translate,
output logic TLBPageFault,
output logic UpdateDA
output logic UpdateDA,
output logic [1:0] PBMemoryType // PBMT field of PTE during TLB hit, or 00 otherwise
);
logic [TLB_ENTRIES-1:0] Matches, WriteEnables, PTE_Gs; // used as the one-hot encoding of WriteIndex
logic [TLB_ENTRIES-1:0] Matches, WriteEnables, PTE_Gs, PTE_NAPOTs; // used as the one-hot encoding of WriteIndex
// Sections of the virtual and physical addresses
logic [P.VPN_BITS-1:0] VPN;
logic [P.PPN_BITS-1:0] PPN;
// Sections of the page table entry
logic [7:0] PTEAccessBits;
logic [11:0] PTEAccessBits;
logic [1:0] HitPageType;
logic CAMHit;
logic SV39Mode;
logic Misaligned;
logic MegapageMisaligned;
logic PTE_N; // NAPOT page table entry
if(P.XLEN == 32) begin
assign MegapageMisaligned = |(PPN[9:0]); // must have zero PPN0
@ -101,20 +104,21 @@ module tlb import cvw::*; #(parameter cvw_t P,
assign VPN = VAdr[P.VPN_BITS+11:12];
tlbcontrol #(P, ITLB) tlbcontrol(.SATP_MODE, .VAdr, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
tlbcontrol #(P, ITLB) tlbcontrol(.SATP_MODE, .VAdr, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP, .ENVCFG_PBMTE,
.PrivilegeModeW, .ReadAccess, .WriteAccess, .DisableTranslation, .TLBFlush,
.PTEAccessBits, .CAMHit, .Misaligned, .TLBMiss, .TLBHit, .TLBPageFault,
.UpdateDA, .SV39Mode, .Translate);
.PTEAccessBits, .CAMHit, .Misaligned,
.TLBMiss, .TLBHit, .TLBPageFault,
.UpdateDA, .SV39Mode, .Translate, .PTE_N, .PBMemoryType);
tlblru #(TLB_ENTRIES) lru(.clk, .reset, .TLBWrite, .TLBFlush, .Matches, .CAMHit, .WriteEnables);
tlbcam #(P, TLB_ENTRIES, P.VPN_BITS + P.ASID_BITS, P.VPN_SEGMENT_BITS)
tlbcam(.clk, .reset, .VPN, .PageTypeWriteVal, .SV39Mode, .TLBFlush, .WriteEnables, .PTE_Gs,
tlbcam(.clk, .reset, .VPN, .PageTypeWriteVal, .SV39Mode, .TLBFlush, .WriteEnables, .PTE_Gs, .PTE_NAPOTs,
.SATP_ASID, .Matches, .HitPageType, .CAMHit);
tlbram #(P, TLB_ENTRIES) tlbram(.clk, .reset, .PTE, .Matches, .WriteEnables, .PPN, .PTEAccessBits, .PTE_Gs);
tlbram #(P, TLB_ENTRIES) tlbram(.clk, .reset, .PTE, .Matches, .WriteEnables, .PPN, .PTEAccessBits, .PTE_Gs, .PTE_NAPOTs);
// Replace segments of the virtual page number with segments of the physical
// page number. For 4 KB pages, the entire virtual page number is replaced.
// For superpages, some segments are considered offsets into a larger page.
tlbmixer #(P) Mixer(.VPN, .PPN, .HitPageType, .Offset(VAdr[11:0]), .TLBHit, .TLBPAdr);
tlbmixer #(P) Mixer(.VPN, .PPN, .HitPageType, .Offset(VAdr[11:0]), .TLBHit, .PTE_N, .TLBPAdr);
endmodule

View File

@ -38,7 +38,8 @@ module tlbcam import cvw::*; #(parameter cvw_t P,
input logic TLBFlush,
input logic [TLB_ENTRIES-1:0] WriteEnables,
input logic [TLB_ENTRIES-1:0] PTE_Gs,
input logic [P.ASID_BITS-1:0] SATP_ASID,
input logic [TLB_ENTRIES-1:0] PTE_NAPOTs, // entry is in NAPOT mode (N bit set and PPN[3:0] = 1000)
input logic [P.ASID_BITS-1:0] SATP_ASID,
output logic [TLB_ENTRIES-1:0] Matches,
output logic [1:0] HitPageType,
output logic CAMHit
@ -53,7 +54,7 @@ module tlbcam import cvw::*; #(parameter cvw_t P,
// page number segments.
tlbcamline #(P, KEY_BITS, SEGMENT_BITS) camlines[TLB_ENTRIES-1:0](
.clk, .reset, .VPN, .SATP_ASID, .SV39Mode, .PTE_G(PTE_Gs), .PageTypeWriteVal, .TLBFlush,
.clk, .reset, .VPN, .SATP_ASID, .SV39Mode, .PTE_G(PTE_Gs), .PTE_NAPOT(PTE_NAPOTs), .PageTypeWriteVal, .TLBFlush,
.WriteEnable(WriteEnables), .PageTypeRead, .Match(Matches));
assign CAMHit = |Matches & ~TLBFlush;
or_rows #(TLB_ENTRIES,2) PageTypeOr(PageTypeRead, HitPageType);

View File

@ -37,6 +37,7 @@ module tlbcamline import cvw::*; #(parameter cvw_t P,
input logic SV39Mode,
input logic WriteEnable, // Write a new entry to this line
input logic PTE_G,
input logic PTE_NAPOT, // entry is in NAPOT mode (N bit set and PPN[3:0] = 1000)
input logic [1:0] PageTypeWriteVal,
input logic TLBFlush, // Flush this line (set valid to 0)
output logic [1:0] PageTypeRead, // *** should this be the stored version or the always updated one?
@ -76,7 +77,7 @@ module tlbcamline import cvw::*; #(parameter cvw_t P,
end else begin: match
logic [SEGMENT_BITS-1:0] Key2, Key3, Query2, Query3;
logic Match2, Match3;
logic Match2, Match3, MatchNAPOT;
assign {Query3, Query2, Query1, Query0} = VPN;
assign {Key_ASID, Key3, Key2, Key1, Key0} = Key;
@ -84,7 +85,9 @@ module tlbcamline import cvw::*; #(parameter cvw_t P,
// Calculate the actual match value based on the input vpn and the page type.
// For example, a gigapage in SV39 only cares about VPN[2], so VPN[0] and VPN[1]
// should automatically match.
assign Match0 = (Query0 == Key0) | (PageType > 2'd0); // least signifcant section
// In Svnapot, if N bit is set and bottom 4 bits of PPN = 1000, then these bits don't need to match
assign MatchNAPOT = P.SVNAPOT_SUPPORTED & PTE_NAPOT & (Query0[SEGMENT_BITS-1:4] == Key0[SEGMENT_BITS-1:4]);
assign Match0 = (Query0 == Key0) | (PageType > 2'd0) | MatchNAPOT; // least significant section
assign Match1 = (Query1 == Key1) | (PageType > 2'd1);
assign Match2 = (Query2 == Key2) | (PageType > 2'd2);
assign Match3 = (Query3 == Key3) | SV39Mode; // this should always match in sv39 because they aren't used

View File

@ -29,30 +29,37 @@
module tlbcontrol import cvw::*; #(parameter cvw_t P, ITLB = 0) (
input logic [P.SVMODE_BITS-1:0] SATP_MODE,
input logic [P.XLEN-1:0] VAdr,
input logic STATUS_MXR, STATUS_SUM, STATUS_MPRV,
input logic [1:0] STATUS_MPP,
input logic [1:0] PrivilegeModeW, // Current privilege level of the processeor
input logic ReadAccess, WriteAccess,
input logic DisableTranslation,
input logic TLBFlush, // Invalidate all TLB entries
input logic [7:0] PTEAccessBits,
input logic CAMHit,
input logic Misaligned,
output logic TLBMiss,
output logic TLBHit,
output logic TLBPageFault,
output logic UpdateDA,
output logic SV39Mode,
output logic Translate
input logic STATUS_MXR, STATUS_SUM, STATUS_MPRV,
input logic [1:0] STATUS_MPP,
input logic ENVCFG_PBMTE, // Page-based memory types enabled
input logic [1:0] PrivilegeModeW, // Current privilege level of the processeor
input logic ReadAccess, WriteAccess,
input logic DisableTranslation,
input logic TLBFlush, // Invalidate all TLB entries
input logic [11:0] PTEAccessBits,
input logic CAMHit,
input logic Misaligned,
output logic TLBMiss,
output logic TLBHit,
output logic TLBPageFault,
output logic UpdateDA,
output logic SV39Mode,
output logic Translate,
output logic PTE_N, // NAPOT page table entry
output logic [1:0] PBMemoryType // PBMT field of PTE during TLB hit, or 00 otherwise
);
// Sections of the page table entry
logic [1:0] EffectivePrivilegeMode;
logic PTE_D, PTE_A, PTE_U, PTE_X, PTE_W, PTE_R, PTE_V; // Useful PTE Control Bits
logic [1:0] PTE_PBMT;
logic PTE_RESERVED, PTE_D, PTE_A, PTE_U, PTE_X, PTE_W, PTE_R, PTE_V; // Useful PTE Control Bits
logic UpperBitsUnequal;
logic TLBAccess;
logic ImproperPrivilege;
logic BadPBMT, BadNAPOT, BadReserved;
logic InvalidAccess;
logic PreUpdateDA, PrePageFault;
// Grab the sv mode from SATP and determine whether translation should occur
assign EffectivePrivilegeMode = (ITLB == 1) ? PrivilegeModeW : (STATUS_MPRV ? STATUS_MPP : PrivilegeModeW); // DTLB uses MPP mode when MPRV is 1
@ -65,8 +72,20 @@ module tlbcontrol import cvw::*; #(parameter cvw_t P, ITLB = 0) (
vm64check #(P) vm64check(.SATP_MODE, .VAdr, .SV39Mode, .UpperBitsUnequal);
// unswizzle useful PTE bits
assign PTE_N = PTEAccessBits[11];
assign PTE_PBMT = PTEAccessBits[10:9];
assign PTE_RESERVED = PTEAccessBits[8];
assign {PTE_D, PTE_A} = PTEAccessBits[7:6];
assign {PTE_U, PTE_X, PTE_W, PTE_R, PTE_V} = PTEAccessBits[4:0];
// Send PMA a 2-bit MemoryType that is PBMT during leaf page table accesses and 0 otherwise
assign PBMemoryType = PTE_PBMT & {2{Translate & TLBHit & P.SVPBMT_SUPPORTED}};
// check if reserved, N, or PBMT bits are malformed w in RV64
assign BadPBMT = PTE_PBMT != 0 & (~(P.SVPBMT_SUPPORTED & ENVCFG_PBMTE) |
{PTE_X, PTE_W, PTE_R} == 3'b000) | PTE_PBMT == 3; // PBMT must be zero if not supported or for non-leaf PTEs;
assign BadNAPOT = PTE_N & ~P.SVNAPOT_SUPPORTED; // N must be be 0 if CVNAPOT is not supported
assign BadReserved = PTE_RESERVED; // Reserved bits must be zero
// Check whether the access is allowed, page faulting if not.
if (ITLB == 1) begin:itlb // Instruction TLB fault checking
@ -74,14 +93,46 @@ module tlbcontrol import cvw::*; #(parameter cvw_t P, ITLB = 0) (
// only execute non-user mode pages.
assign ImproperPrivilege = ((EffectivePrivilegeMode == P.U_MODE) & ~PTE_U) |
((EffectivePrivilegeMode == P.S_MODE) & PTE_U);
if(P.SVADU_SUPPORTED) begin : hptwwrites
assign UpdateDA = Translate & TLBHit & ~PTE_A & ~TLBPageFault;
assign TLBPageFault = Translate & TLBHit & (ImproperPrivilege | ~PTE_X | UpperBitsUnequal | Misaligned | ~PTE_V);
end else begin
// fault for software handling if access bit is off
assign UpdateDA = ~PTE_A;
assign TLBPageFault = Translate & TLBHit & (ImproperPrivilege | ~PTE_X | UpdateDA | UpperBitsUnequal | Misaligned | ~PTE_V);
end
assign PreUpdateDA = ~PTE_A;
assign InvalidAccess = ~PTE_X;
end else begin:dtlb // Data TLB fault checking
logic InvalidRead, InvalidWrite;
// User mode may only load/store from user mode pages, and supervisor mode
// may only access user mode pages when STATUS_SUM is low.
assign ImproperPrivilege = ((EffectivePrivilegeMode == P.U_MODE) & ~PTE_U) |
((EffectivePrivilegeMode == P.S_MODE) & PTE_U & ~STATUS_SUM);
// Check for read error. Reads are invalid when the page is not readable
// (and executable pages are not readable) or when the page is neither
// readable nor executable (and executable pages are readable).
assign InvalidRead = ReadAccess & ~PTE_R & (~STATUS_MXR | ~PTE_X);
// Check for write error. Writes are invalid when the page's write bit is
// low.
assign InvalidWrite = WriteAccess & ~PTE_W;
assign InvalidAccess = InvalidRead | InvalidWrite;
assign PreUpdateDA = ~PTE_A | WriteAccess & ~PTE_D;
end
// Determine wheter to update DA bits. With SVADU, it is done in hardware
if (P.SVADU_SUPPORTED) assign UpdateDA = PreUpdateDA & Translate & TLBHit & ~TLBPageFault;
else assign UpdateDA = PreUpdateDA;
// Determine whether page fault occurs
assign PrePageFault = UpperBitsUnequal | Misaligned | ~PTE_V | ImproperPrivilege | (P.XLEN == 64 & (BadPBMT | BadNAPOT | BadReserved)) | (PreUpdateDA & ~P.SVADU_SUPPORTED);
assign TLBPageFault = Translate & TLBHit & (PrePageFault | InvalidAccess);
/*
// Check whether the access is allowed, page faulting if not.
if (ITLB == 1) begin:itlb // Instruction TLB fault checking
// User mode may only execute user mode pages, and supervisor mode may
// only execute non-user mode pages.
assign ImproperPrivilege = ((EffectivePrivilegeMode == P.U_MODE) & ~PTE_U) |
((EffectivePrivilegeMode == P.S_MODE) & PTE_U);
assign CausePageFault = ImproperPrivilege | ~PTE_X | UpperBitsUnequal | BadPTE | BadPBMT | Misaligned | ~PTE_V | (~PTE_A & P.SVADU_SUPPORTED);
assign TLBPageFault = Translate & TLBHit & CausePageFault;
// Determine wheter to update DA bits
if(P.SVADU_SUPPORTED) assign UpdateDA = Translate & TLBHit & ~PTE_A & ~TLBPageFault;
else assign UpdateDA = ~PTE_A;
end else begin:dtlb // Data TLB fault checking
logic InvalidRead, InvalidWrite;
@ -98,13 +149,14 @@ module tlbcontrol import cvw::*; #(parameter cvw_t P, ITLB = 0) (
assign InvalidWrite = WriteAccess & ~PTE_W;
if(P.SVADU_SUPPORTED) begin : hptwwrites
assign UpdateDA = Translate & TLBHit & (~PTE_A | WriteAccess & ~PTE_D) & ~TLBPageFault;
assign TLBPageFault = (Translate & TLBHit & (ImproperPrivilege | InvalidRead | InvalidWrite | UpperBitsUnequal | Misaligned | ~PTE_V));
assign TLBPageFault = (Translate & TLBHit & (ImproperPrivilege | InvalidRead | InvalidWrite | UpperBitsUnequal | Misaligned | ~PTE_V)); // *** update to match
end else begin
// Fault for software handling if access bit is off or writing a page with dirty bit off
assign UpdateDA = ~PTE_A | WriteAccess & ~PTE_D;
assign TLBPageFault = (Translate & TLBHit & (ImproperPrivilege | InvalidRead | InvalidWrite | UpdateDA | UpperBitsUnequal | Misaligned | ~PTE_V));
end
end
*/
assign TLBHit = CAMHit & TLBAccess;
assign TLBMiss = ~CAMHit & TLBAccess & Translate ;

View File

@ -30,18 +30,19 @@
////////////////////////////////////////////////////////////////////////////////////////////////
module tlbmixer import cvw::*; #(parameter cvw_t P) (
input logic [P.VPN_BITS-1:0] VPN,
input logic [P.PPN_BITS-1:0] PPN,
input logic [1:0] HitPageType,
input logic [11:0] Offset,
input logic TLBHit,
output logic [P.PA_BITS-1:0] TLBPAdr
input logic [P.VPN_BITS-1:0] VPN,
input logic [P.PPN_BITS-1:0] PPN,
input logic [1:0] HitPageType,
input logic [11:0] Offset,
input logic TLBHit,
input logic PTE_N, // NAPOT page table entry
output logic [P.PA_BITS-1:0] TLBPAdr
);
localparam EXTRA_BITS = P.PPN_BITS - P.VPN_BITS;
logic [P.PPN_BITS-1:0] ZeroExtendedVPN;
logic [P.PPN_BITS-1:0] PageNumberMask;
logic [P.PPN_BITS-1:0] PPNMixed;
logic [P.PPN_BITS-1:0] PPNMixed, PPNMixed2;
// produce PageNumberMask with 1s where virtual page number bits should be untranslaetd for superpages
if (P.XLEN == 32)
@ -57,11 +58,45 @@ module tlbmixer import cvw::*; #(parameter cvw_t P) (
// merge low segments of VPN with high segments of PPN decided by the pagetype.
assign ZeroExtendedVPN = {{EXTRA_BITS{1'b0}}, VPN}; // forces the VPN to be the same width as PPN.
assign PPNMixed = PPN | ZeroExtendedVPN & PageNumberMask; //
//mux2 #(1) mixmux[P.PPN_BITS-1:0](ZeroExtendedVPN, PPN, PageNumberMask, PPNMixed);
//assign PPNMixed = (ZeroExtendedVPN & ~PageNumberMask) | (PPN & PageNumberMask);
assign PPNMixed = PPN | ZeroExtendedVPN & PageNumberMask; // low bits of PPN are already zero
// In Svnapot, when N=1, use bottom bits of VPN for contiugous translations
if (P.SVNAPOT_SUPPORTED) begin
// 64 KiB contiguous NAPOT translations suported
logic [3:0] PPNMixedBot;
mux2 #(4) napotmux(PPNMixed[3:0], VPN[3:0], PTE_N, PPNMixedBot);
assign PPNMixed2 = {PPNMixed[P.PPN_BITS-1:4], PPNMixedBot};
/* // Generalized NAPOT implementation supporting various sized contiguous regions
// This would also require a priority encoder in the tlbcam
// Not yet tested
logic [8:0] NAPOTMask, NAPOTPN, PPNMixedBot;
always_comb begin
casez(PPN[8:0])
9'b100000000: NAPOTMask = 9'b111111111;
9'b?10000000: NAPOTMask = 9'b011111111;
9'b??1000000: NAPOTMask = 9'b001111111;
9'b???100000: NAPOTMask = 9'b000111111;
9'b????10000: NAPOTMask = 9'b000011111;
9'b?????1000: NAPOTMask = 9'b000001111;
9'b??????100: NAPOTMask = 9'b000000111;
9'b???????10: NAPOTMask = 9'b000000011;
9'b????????1: NAPOTMask = 9'b000000001;
default: NAPOTMask = 9'b000000000;
endcase
end
// check malformed NAPOT PPN, which should cause page fault
// Replace PPN with VPN in lower bits of page number based on mask
assign NAPOTPN = VPN & NAPOTMask | PPN & ~NAPOTMask;
mux2 #(9) napotmux(PPNMixed[8:0], NAPOTPN, PTE_N, PPNMixedBot);
assign PPNMixed2 = {PPNMixed[PPN_BITS-1:9], PPNMixedBot}; */
end else begin // no Svnapot
assign PPNMixed2 = PPNMixed;
end
// Output the hit physical address if translation is currently on.
// Provide physical address of zero if not TLBHits, to cause segmentation error if miss somehow percolated through signal
mux2 #(P.PA_BITS) hitmux('0, {PPNMixed, Offset}, TLBHit, TLBPAdr); // set PA to 0 if TLB misses, to cause segementation error if this miss somehow passes through system
mux2 #(P.PA_BITS) hitmux('0, {PPNMixed2, Offset}, TLBHit, TLBPAdr); // set PA to 0 if TLB misses, to cause segementation error if this miss somehow passes through system
endmodule

View File

@ -32,23 +32,24 @@
module tlbram import cvw::*; #(parameter cvw_t P,
parameter TLB_ENTRIES = 8) (
input logic clk, reset,
input logic [P.XLEN-1:0] PTE,
input logic [P.XLEN-1:0] PTE,
input logic [TLB_ENTRIES-1:0] Matches, WriteEnables,
output logic [P.PPN_BITS-1:0] PPN,
output logic [7:0] PTEAccessBits,
output logic [TLB_ENTRIES-1:0] PTE_Gs
output logic [P.PPN_BITS-1:0] PPN,
output logic [11:0] PTEAccessBits,
output logic [TLB_ENTRIES-1:0] PTE_Gs,
output logic [TLB_ENTRIES-1:0] PTE_NAPOTs // entry is in NAPOT mode (N bit set and PPN[3:0] = 1000)
);
logic [P.PPN_BITS+9:0] RamRead[TLB_ENTRIES-1:0];
logic [P.PPN_BITS+9:0] PageTableEntry;
logic [P.XLEN-1:0] RamRead[TLB_ENTRIES-1:0]; // stores the page table entries
logic [P.XLEN-1:0] PageTableEntry;
// RAM implemented with array of flops and AND/OR read logic
tlbramline #(P.PPN_BITS+10) tlbramline[TLB_ENTRIES-1:0]
tlbramline #(P) tlbramline[TLB_ENTRIES-1:0]
(.clk, .reset, .re(Matches), .we(WriteEnables),
.d(PTE[P.PPN_BITS+9:0]), .q(RamRead), .PTE_G(PTE_Gs));
or_rows #(TLB_ENTRIES, P.PPN_BITS+10) PTEOr(RamRead, PageTableEntry);
.d(PTE), .q(RamRead), .PTE_G(PTE_Gs), .PTE_NAPOT(PTE_NAPOTs));
or_rows #(TLB_ENTRIES, P.XLEN) PTEOr(RamRead, PageTableEntry);
// Rename the bits read from the TLB RAM
assign PTEAccessBits = PageTableEntry[7:0];
assign PTEAccessBits = {PageTableEntry[P.XLEN-1:P.XLEN-4] & {4{P.XLEN == 64}}, PageTableEntry[7:0]}; // for RV64 include N and PBMT bits and OR of reserved bitss
assign PPN = PageTableEntry[P.PPN_BITS+9:10];
endmodule

View File

@ -26,16 +26,28 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
module tlbramline #(parameter WIDTH = 22)
(input logic clk, reset,
input logic re, we,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q,
output logic PTE_G);
module tlbramline import cvw::*; #(parameter cvw_t P)
(input logic clk, reset,
input logic re, we,
input logic [P.XLEN-1:0] d,
output logic [P.XLEN-1:0] q,
output logic PTE_G,
output logic PTE_NAPOT // entry is in NAPOT mode (N bit set and PPN[3:0] = 1000)
);
logic [WIDTH-1:0] line;
logic [P.XLEN-1:0] line;
if (P.XLEN == 64) begin // save 7 reserved bits
// could optimize out N and PBMT from d[63:61] if they aren't supported
logic [57:0] ptereg;
logic reserved;
assign reserved = |d[60:54]; // are any of the reserved bits nonzero?
flopenr #(58) pteflop(clk, reset, we, {d[63:61], reserved, d[53:0]}, ptereg);
assign line = {ptereg[57:54], 6'b0, ptereg[53:0]};
end else // rv32
flopenr #(P.XLEN) pteflop(clk, reset, we, d, line);
flopenr #(WIDTH) pteflop(clk, reset, we, d, line);
assign q = re ? line : 0;
assign PTE_G = line[5]; // send global bit to CAM as part of ASID matching
assign PTE_NAPOT = P.SVNAPOT_SUPPORTED & line[P.XLEN-1] & (line[13:10] == 4'b1000); // send NAPOT bit to CAM as part of matching lsbs of VPN
endmodule

View File

@ -85,6 +85,7 @@ module csr import cvw::*; #(parameter cvw_t P) (
output var logic [P.PA_BITS-3:0] PMPADDR_ARRAY_REGW[P.PMP_ENTRIES-1:0],
output logic [2:0] FRM_REGW,
output logic [3:0] ENVCFG_CBE,
output logic ENVCFG_PBMTE, // Page-based memory type enable
//
output logic [P.XLEN-1:0] CSRReadValW, // value read from CSR
output logic [P.XLEN-1:0] UnalignedPCNextF, // Next PC, accounting for traps and returns
@ -127,7 +128,6 @@ module csr import cvw::*; #(parameter cvw_t P) (
logic [63:0] MENVCFG_REGW;
logic [P.XLEN-1:0] SENVCFG_REGW;
logic ENVCFG_STCE; // supervisor timer counter enable
logic ENVCFG_PBMTE; // page-based memory types enable
logic ENVCFG_FIOM; // fence implies io (presently not used)
// only valid unflushed instructions can access CSRs

View File

@ -60,7 +60,7 @@ module csri import cvw::*; #(parameter cvw_t P) (
// SSIP is writable in SIP if S mode exists
if (P.S_SUPPORTED) begin:mask
if (P.SSTC_SUPPORTED) begin
assign MIP_WRITE_MASK = 12'h202; // SEIP and SSIP are writable, but STIP is not writable when STIMECMP is implemented (see SSTC spec)
assign MIP_WRITE_MASK = ENVCFG_STCE ? 12'h202 : 12'h222; // SEIP and SSIP are writable, but STIP is not writable when STIMECMP is implemented (see SSTC spec)
assign STIP = ENVCFG_STCE ? STimerInt : MIP_REGW_writeable[5];
end else begin
assign MIP_WRITE_MASK = 12'h222; // SEIP, STIP, SSIP are writeable in MIP (20210108-draft 3.1.9)

View File

@ -88,8 +88,12 @@ module csrs import cvw::*; #(parameter cvw_t P) (
assign WriteSEPCM = STrapM | (CSRSWriteM & (CSRAdrM == SEPC));
assign WriteSCAUSEM = STrapM | (CSRSWriteM & (CSRAdrM == SCAUSE));
assign WriteSTVALM = STrapM | (CSRSWriteM & (CSRAdrM == STVAL));
if(P.XLEN == 64) assign WriteSATPM = CSRSWriteM & (CSRAdrM == SATP) & (PrivilegeModeW == P.M_MODE | ~STATUS_TVM) & (CSRWriteValM[63:60] != 4'hA);
else assign WriteSATPM = CSRSWriteM & (CSRAdrM == SATP) & (PrivilegeModeW == P.M_MODE | ~STATUS_TVM);
if(P.XLEN == 64) begin
logic LegalSatpModeM;
assign LegalSatpModeM = P.VIRTMEM_SUPPORTED & (CSRWriteValM[63:60] == 0 | CSRWriteValM[63:60] == P.SV39 | CSRWriteValM[63:60] == P.SV48); // supports SV39 and 48
assign WriteSATPM = CSRSWriteM & (CSRAdrM == SATP) & (PrivilegeModeW == P.M_MODE | ~STATUS_TVM) & LegalSatpModeM;
end else // RV32
assign WriteSATPM = CSRSWriteM & (CSRAdrM == SATP) & (PrivilegeModeW == P.M_MODE | ~STATUS_TVM) & P.VIRTMEM_SUPPORTED;
assign WriteSCOUNTERENM = CSRSWriteM & (CSRAdrM == SCOUNTEREN);
assign WriteSENVCFGM = CSRSWriteM & (CSRAdrM == SENVCFG);
assign WriteSTIMECMPM = CSRSWriteM & (CSRAdrM == STIMECMP) & STCE;

View File

@ -83,6 +83,7 @@ module privileged import cvw::*; #(parameter cvw_t P) (
output var logic [P.PA_BITS-3:0] PMPADDR_ARRAY_REGW [P.PMP_ENTRIES-1:0], // PMP address entries to MMU
output logic [2:0] FRM_REGW, // FPU rounding mode
output logic [3:0] ENVCFG_CBE, // Cache block operation enables
output logic ENVCFG_PBMTE, // Page-based memory type enable
// PC logic output in privileged unit
output logic [P.XLEN-1:0] UnalignedPCNextF, // Next PC from trap/return PC logic
// control outputs
@ -137,7 +138,7 @@ module privileged import cvw::*; #(parameter cvw_t P) (
.STATUS_MIE, .STATUS_SIE, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_TW, .STATUS_FS,
.MEDELEG_REGW, .MIP_REGW, .MIE_REGW, .MIDELEG_REGW,
.SATP_REGW, .PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW,
.SetFflagsM, .FRM_REGW, .ENVCFG_CBE,
.SetFflagsM, .FRM_REGW, .ENVCFG_CBE, .ENVCFG_PBMTE,
.CSRReadValW,.UnalignedPCNextF, .IllegalCSRAccessM, .BigEndianM);
// pipeline early-arriving trap sources

View File

@ -78,6 +78,7 @@ module wallypipelinedcore import cvw::*; #(parameter cvw_t P) (
logic LoadStallD, StoreStallD, MDUStallD, CSRRdStallD;
logic SquashSCW;
logic MDUActiveE; // Mul/Div instruction being executed
logic ENVCFG_PBMTE; // Page-based memory type enable
logic [3:0] ENVCFG_CBE; // Cache Block operation enables
logic [3:0] CMOpM; // 1: cbo.inval; 2: cbo.flush; 4: cbo.clean; 8: cbo.zero
logic IFUPrefetchE, LSUPrefetchM; // instruction / data prefetch hints
@ -184,7 +185,7 @@ module wallypipelinedcore import cvw::*; #(parameter cvw_t P) (
.IllegalBaseInstrD, .IllegalFPUInstrD, .InstrPageFaultF, .IllegalIEUFPUInstrD, .InstrMisalignedFaultM,
// mmu management
.PrivilegeModeW, .PTE, .PageType, .SATP_REGW, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV,
.STATUS_MPP, .ITLBWriteF, .sfencevmaM, .ITLBMissF,
.STATUS_MPP, .ENVCFG_PBMTE, .ITLBWriteF, .sfencevmaM, .ITLBMissF,
// pmp/pma (inside mmu) signals.
.PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW, .InstrAccessFaultF, .InstrUpdateDAF);
@ -231,7 +232,8 @@ module wallypipelinedcore import cvw::*; #(parameter cvw_t P) (
.STATUS_MXR, // from csr
.STATUS_SUM, // from csr
.STATUS_MPRV, // from csr
.STATUS_MPP, // from csr
.STATUS_MPP, // from csr
.ENVCFG_PBMTE, // from csr
.sfencevmaM, // connects to privilege
.DCacheStallM, // connects to privilege
.LoadPageFaultM, // connects to privilege
@ -294,7 +296,7 @@ module wallypipelinedcore import cvw::*; #(parameter cvw_t P) (
.PrivilegeModeW, .SATP_REGW,
.STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP, .STATUS_FS,
.PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW,
.FRM_REGW, .ENVCFG_CBE, .BreakpointFaultM, .EcallFaultM, .wfiM, .IntPendingM, .BigEndianM);
.FRM_REGW, .ENVCFG_CBE, .ENVCFG_PBMTE, .BreakpointFaultM, .EcallFaultM, .wfiM, .IntPendingM, .BigEndianM);
end else begin
assign CSRReadValW = 0;
assign UnalignedPCNextF = PC2NextF;

View File

@ -0,0 +1,56 @@
///////////////////////////////////////////
// wallypipelinedcorewrapper.sv
//
// Written: Kevin Kim kekim@hmc.edu 21 August 2023
// Modified:
//
// Purpose: A wrapper to set parameters. Vivado cannot set the top level parameters because it only supports verilog,
// not system verilog.
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
//`include "BranchPredictorType.vh"
`include "config.vh"
import cvw::*;
`include "parameter-defs.vh"
module wallypipelinedcorewrapper (
input logic clk, reset,
// Privileged
input logic MTimerInt, MExtInt, SExtInt, MSwInt,
input logic [63:0] MTIME_CLINT,
// Bus Interface
input logic [P.XLEN-1:0] HRDATA,
input logic HREADY, HRESP,
output logic HCLK, HRESETn,
output logic [P.PA_BITS-1:0] HADDR,
output logic [32-1:0] HWDATA,
output logic [32/8-1:0] HWSTRB,
output logic HWRITE,
output logic [2:0] HSIZE,
output logic [2:0] HBURST,
output logic [3:0] HPROT,
output logic [1:0] HTRANS,
output logic HMASTLOCK
);
wallypipelinedcore #(P) core(.*);
endmodule

View File

@ -94,10 +94,10 @@ endif
ifneq ($(MOD), orig)
# PMP 0
sed -i 's/PMP_ENTRIES \(64\|16\|0\)/PMP_ENTRIES 0/' $(CONFIGDIR)/config.vh
sed -i 's/PMP_ENTRIES \(64\|16\|0\)/PMP_ENTRIES = 0;/' $(CONFIGDIR)/config.vh
ifneq ($(MOD), PMP0)
# no priv
sed -i 's/ZICSR_SUPPORTED *1/ZICSR_SUPPORTED 0/' $(CONFIGDIR)/config.vh
sed -i 's/ZICSR_SUPPORTED *1/ZICSR_SUPPORTED = 0;/' $(CONFIGDIR)/config.vh
ifneq ($(MOD), noPriv)
# turn off FPU
sed -i 's/1 *<< *3/0 << 3/' $(CONFIGDIR)/config.vh
@ -128,7 +128,7 @@ mkdirecs:
@mkdir -p $(OUTPUTDIR)/mapped
@mkdir -p $(OUTPUTDIR)/unmapped
synth: mkdirecs configs rundc clean
synth: mkdirecs configs rundc # clean
rundc:
ifeq ($(TECH), tsmc28psyn)

View File

@ -25,7 +25,8 @@ set maxopt $::env(MAXOPT)
set drive $::env(DRIVE)
eval file copy -force [glob ${cfg}/*.vh] {$outputDir/hdl/}
eval file copy -force [glob ${hdl_src}/*.sv] {$outputDir/hdl/}
eval file copy -force [glob ${hdl_src}/cvw.sv] {$outputDir/hdl/}
#eval file copy -force [glob ${hdl_src}/../fpga/src/wallypipelinedsocwrapper.sv] {$outputDir/hdl/}
eval file copy -force [glob ${hdl_src}/*/*.sv] {$outputDir/hdl/}
eval file copy -force [glob ${hdl_src}/*/*/*.sv] {$outputDir/hdl/}

View File

@ -0,0 +1,74 @@
"""
wrapperGen.py
kekim@hmc.edu
script that generates top-level wrappers for verilog modules to synthesize
"""
import argparse
import os
#create argument parser
parser = argparse.ArgumentParser()
parser.add_argument("fin")
args=parser.parse_args()
fin = open(args.fin, "r")
lines = fin.readlines()
# keeps track of what line number the module header begins
lineModuleStart = 0
# keeps track of what line number the module header ends
lineModuleEnd = 0
# keeps track of module name
moduleName = ""
# string that will keep track of the running module header
buf = "import cvw::*;\n`include \"config.vh\"\n`include \"parameter-defs.vh\"\n"
# are we writing into the buffer
writeBuf=False
index=0
# string copy logic
for l in lines:
if l.find("module") == 0:
lineModuleStart = index
moduleName = l.split()[1]
writeBuf = True
buf += f"module {moduleName}wrapper (\n"
continue
if (writeBuf):
buf += l
if l.find (");") == 0:
lineModuleEnd = index
break
index+=1
# post-processing buffer: add DUT and endmodule lines
buf += f"\t{moduleName} #(P) dut(.*);\nendmodule"
# path to wrapper
wrapperPath = f"{os.getenv('WALLY')}/src/wrappers/{moduleName}wrapper.sv"
# clear wrappers directory
os.system(f"rm {os.getenv('WALLY')}/src/wrappers/*")
fout = open(wrapperPath, "w")
fout.write(buf)
fin.close()
fout.close()
print(buf)

View File

@ -58,9 +58,11 @@ module riscvassertions import cvw::*; #(parameter cvw_t P);
assert ((P.ZMMUL_SUPPORTED == 0) || (P.M_SUPPORTED ==0)) else $error("At most one of ZMMUL_SUPPORTED and M_SUPPORTED can be enabled");
assert ((P.ZICNTR_SUPPORTED == 0) || (P.ZICSR_SUPPORTED == 1)) else $error("ZICNTR_SUPPORTED requires ZICSR_SUPPORTED");
assert ((P.ZIHPM_SUPPORTED == 0) || (P.ZICNTR_SUPPORTED == 1)) else $error("ZIPHM_SUPPORTED requires ZICNTR_SUPPORTED");
assert ((P.ZICBOM_SUPPORTED == 0) || (P.DCACHE_SUPPORTED == 1)) else $error("ZICBOM required DCACHE_SUPPORTED");
assert ((P.ZICBOZ_SUPPORTED == 0) || (P.DCACHE_SUPPORTED == 1)) else $error("ZICBOZ required DCACHE_SUPPORTED");
assert ((P.ZICBOP_SUPPORTED == 0) || (P.DCACHE_SUPPORTED == 1)) else $error("ZICBOP required DCACHE_SUPPORTED");
assert ((P.ZICBOM_SUPPORTED == 0) || (P.DCACHE_SUPPORTED == 1)) else $error("ZICBOM requires DCACHE_SUPPORTED");
assert ((P.ZICBOZ_SUPPORTED == 0) || (P.DCACHE_SUPPORTED == 1)) else $error("ZICBOZ requires DCACHE_SUPPORTED");
assert ((P.ZICBOP_SUPPORTED == 0) || (P.DCACHE_SUPPORTED == 1)) else $error("ZICBOP requires DCACHE_SUPPORTED");
assert ((P.SVPBMT_SUPPORTED == 0) || (P.VIRTMEM_SUPPORTED == 1 && P.XLEN==64)) else $error("SVPBMT requires VIRTMEM_SUPPORTED and RV64");
assert ((P.SVNAPOT_SUPPORTED == 0) || (P.VIRTMEM_SUPPORTED == 1 && P.XLEN==64)) else $error("SVNAPOT requires VIRTMEM_SUPPORTED and RV64");
end
endmodule

View File

@ -1944,7 +1944,7 @@ string arch64zbs[] = '{
"rv64i_m/privilege/src/WALLY-misa-01.S",
// "rv64i_m/privilege/src/WALLY-mmu-sv39-01.S", // run this if SVADU_SUPPORTED = 0
// "rv64i_m/privilege/src/WALLY-mmu-sv48-01.S", // run this if SVADU_SUPPORTED = 0
"rv64i_m/privilege/src/WALLY-mmu-sv39-svadu-01.S", // run this if SVADU_SUPPORTED = 1
"rv64i_m/privilege/src/WALLY-mmu-sv39-svadu-svnapot-svpbmt-01.S", // run this if SVADU_SUPPORTED = 1
"rv64i_m/privilege/src/WALLY-mmu-sv48-svadu-01.S", // run this if SVADU_SUPPORTED = 1
"rv64i_m/privilege/src/WALLY-mtvec-01.S",
"rv64i_m/privilege/src/WALLY-pma-01.S",

View File

@ -72,7 +72,7 @@ sretdone:
li a0, 3
ecall # in M-mode
li t0, 32
csrs sip, t0
csrs mip, t0
li a0, 1
ecall # in S-mode and expects stimer interrupt to occur
li a0, 3

View File

@ -41,11 +41,11 @@ beef0110
00000bad
0000000f
beef0bb0
beef0077 # Test 12.3.1.4.1: successful read back of saved value with new memory mapping
00000009 # Test 12.3.1.5.1: ecall from going to m mode from s mode
beef0077 # Test 11.3.1.4.1: successful read back of saved value with new memory mapping
00000009 # Test 11.3.1.5.1: ecall from going to m mode from s mode
00000000 # previous value of mprv before being set
beef0099 # Read success from translated address when mprv=1, mpp=S and priv mode = m
0000000b # Test 12.3.1.5.2: ecall from going to S mode from m mode
0000000b # Test 11.3.1.5.2: ecall from going to S mode from m mode
00000009 # ecall from going straight back to m mode to access mstatus
00000000 # previous zeroed out value of mprv
0000000b # ecall from terminating tests in m mode

View File

@ -35,13 +35,13 @@ beef0110
0000000f
0000000c
00000bad
beef0770 # Test 8.3.1.3.5: check successful read/write when A=0 and SVADU=1
beef0aa0 # Test 8.3.1.3.6: check successful read/write when D=0 and SVADU=1
beef0077 # Test 12.3.1.4.1: successful read back of saved value with new memory mapping
00000009 # Test 12.3.1.5.1: ecall from going to m mode from s mode
beef0770 # Test 11.3.1.3.5: check successful read/write when A=0 and SVADU=1
beef0aa0 # Test 11.3.1.3.6: check successful read/write when D=0 and SVADU=1
beef0077 # Test 11.3.1.4.1: successful read back of saved value with new memory mapping
00000009 # Test 11.3.1.5.1: ecall from going to m mode from s mode
00000000 # previous value of mprv before being set
beef0099 # Read success from translated address when mprv=1, mpp=S and priv mode = m
0000000b # Test 12.3.1.5.2: ecall from going to S mode from m mode
0000000b # Test 11.3.1.5.2: ecall from going to S mode from m mode
00000009 # ecall from going straight back to m mode to access mstatus
00000000 # previous zeroed out value of mprv
0000000b # ecall from terminating tests in m mode

View File

@ -1,6 +1,6 @@
///////////////////////////////////////////
//
// WALLY-MMU
// WALLY-MMU-SV32
//
// Author: David_Harris@hmc.edu and Kip Macsai-Goren <kmacsaigoren@g.hmc.edu>
//
@ -52,9 +52,9 @@ test_cases:
#
# ---------------------------------------------------------------------------------------------
# =========== test 8.3.1.1 Page Table Translation ===========
# =========== test 11.3.1.1 Page Table Translation ===========
# test 8.3.1.1.1 write page tables / entries to phyiscal memory
# test 11.3.1.1.1 write page tables / entries to phyiscal memory
# sv32 Page table (See Figure 12.12***):
# Level 1 page table, situated at 0x8000D000
.4byte 0x8000D000, 0x20004C01, write32_test # points to level 0 page table A
@ -78,19 +78,19 @@ test_cases:
.4byte 0x8000F000, 0x200000CF, write32_test # Vaddr 0x0 Paddr 0x80000000: aligned megapage
.4byte 0x8000F800, 0x200000CF, write32_test # Vaddr 0x80000000 Paddr 0x80000000: aligned megapage (program and data memory)
# test 8.3.1.1.2 write values to Paddrs in each page
# each of these values is used for 8.3.1.1.3 and some other tests, specified in the comments.
# test 11.3.1.1.2 write values to Paddrs in each page
# each of these values is used for 11.3.1.1.3 and some other tests, specified in the comments.
# when a test is supposed to fault, nothing is written into where it'll be reading/executing since it should fault before getting there.
.4byte 0x800AAAA8, 0xBEEF0055, write32_test # 8.3.1.1.4 megapage
.4byte 0x800FFAC0, 0xBEEF0033, write32_test # 8.3.1.3.2
.4byte 0x800E3130, 0xBEEF0077, write32_test # 8.3.1.3.2
.4byte 0x808017E0, 0xBEEF0099, write32_test # 8.3.1.1.4 kilopage
.4byte 0x80805EA0, 0xBEEF0440, write32_test # 8.3.1.3.3
.4byte 0x80803AA0, 0xBEEF0BB0, write32_test # 8.3.1.3.7
.4byte 0x800AAAA8, 0xBEEF0055, write32_test # 11.3.1.1.4 megapage
.4byte 0x800FFAC0, 0xBEEF0033, write32_test # 11.3.1.3.2
.4byte 0x800E3130, 0xBEEF0077, write32_test # 11.3.1.3.2
.4byte 0x808017E0, 0xBEEF0099, write32_test # 11.3.1.1.4 kilopage
.4byte 0x80805EA0, 0xBEEF0440, write32_test # 11.3.1.3.3
.4byte 0x80803AA0, 0xBEEF0BB0, write32_test # 11.3.1.3.7
.4byte 0x8000FFA0, 0x11100393, write32_test # write executable code for "li x7, 0x111; ret" to executable region.
.4byte 0x8000FFA4, 0x00008067, write32_test # Used for 8.3.1.3.1, 8.3.1.3.2
.4byte 0x8000FFA4, 0x00008067, write32_test # Used for 11.3.1.3.1, 11.3.1.3.2
# test 8.3.1.1.3 read values back from Paddrs without translation (this also verifies the previous test)
# test 11.3.1.1.3 read values back from Paddrs without translation (this also verifies the previous test)
.4byte 0x0, 0x0, goto_baremetal # satp.MODE = baremetal / no translation.
.4byte 0x0, 0x0, goto_s_mode # change to S mode, 0xb written to output
.4byte 0x800AAAA8, 0xBEEF0055, read32_test
@ -102,38 +102,38 @@ test_cases:
.4byte 0x8000FFA0, 0x11100393, read32_test
.4byte 0x8000FFA4, 0x00008067, read32_test
# test 8.3.1.1.4 check translation works in sv48, read the same values from previous tests, this time with Vaddrs
# test 11.3.1.1.4 check translation works in sv48, read the same values from previous tests, this time with Vaddrs
.4byte 0x8000D, 0x0, goto_sv32 # satp.MODE = sv32, Nothing written to output
.4byte 0x4AAAA8, 0xBEEF0055, read32_test # megapage at Vaddr 0x400000, Paddr 0x80000000
.4byte 0xBFF7E0, 0xBEEF0099, read32_test # kilopage at Vaddr 0xBFF000, Paddr 0x80201000
# =========== test 8.3.1.2 page fault tests ===========
# =========== test 11.3.1.2 page fault tests ===========
# test 8.3.1.2.1 load page fault if upper bits of Vaddr are not the same
# test 11.3.1.2.1 load page fault if upper bits of Vaddr are not the same
# Not tested in rv32/sv32
# test 8.3.1.2.2 load page fault when reading an address where the valid flag is zero
# test 11.3.1.2.2 load page fault when reading an address where the valid flag is zero
.4byte 0x6000, 0x0, read32_test
# test 8.3.1.2.3 store page fault if PTE has W and ~R flags set
# test 11.3.1.2.3 store page fault if PTE has W and ~R flags set
.4byte 0x2000, 0x0, write32_test
# test 8.3.1.2.4 Fault if last level PTE is a pointer
# test 11.3.1.2.4 Fault if last level PTE is a pointer
.4byte 0x0200, 0x0, read32_test
# test 8.3.1.2.5 load page fault on misaligned pages
# test 11.3.1.2.5 load page fault on misaligned pages
.4byte 0xC00000, 0x0, read32_test # misaligned megapage
# =========== test 8.3.1.3 PTE Protection flags ===========
# =========== test 11.3.1.3 PTE Protection flags ===========
# test 8.3.1.3.1 User flag == 0
# *** reads on pages with U=0 already tested in 8.3.1.1.4
# test 11.3.1.3.1 User flag == 0
# *** reads on pages with U=0 already tested in 11.3.1.1.4
.4byte 0x40FFA0, 0x111, executable_test # fetch success when U=0, priv=S
.4byte 0x80400000, 0x1, goto_u_mode # go to U mode, return to VPN 0x80400000 where PTE.U = 1. 0x9 written to output
.4byte 0xBFFC80, 0xBEEF0550, read32_test # load page fault when U=0, priv=U
.4byte 0x40FFA0, 0xbad, executable_test # instr page fault when U=0, priv=U
# test 8.3.1.3.2 User flag == 1
# test 11.3.1.3.2 User flag == 1
.4byte 0x804FFAC0, 0xBEEF0033, read32_test # read success when U=1, priv=U
.4byte 0x80000000, 0x1, goto_s_mode # go back to S mode, return to VPN 0x80000000 where PTE.U = 0. 0x8 written to output
.4byte 0x0, 0x3, write_mxr_sum # set sstatus.[MXR, SUM] = 11
@ -142,61 +142,61 @@ test_cases:
.4byte 0x0, 0x2, write_mxr_sum # set sstatus.[MXR, SUM] = 10.
.4byte 0x804FFAC0, 0xBEEF0033, read32_test # load page fault when U-1, priv=S, sstatus.SUM=0
# test 8.3.1.3.3 Read flag
# *** reads on pages with R=1 already tested in 8.3.1.1.4
# test 11.3.1.3.3 Read flag
# *** reads on pages with R=1 already tested in 11.3.1.1.4
.4byte 0x0, 0x1, write_mxr_sum # set sstatus.[MXR, SUM] = 01.
.4byte 0x5EA0, 0xBEEF0440, read32_test # load page fault when R=0, sstatus.MXR=0
.4byte 0x0, 0x3, write_mxr_sum # set sstatus.[MXR, SUM] = 11.
.4byte 0x5EA0, 0xBEEF0440, read32_test # read success when R=0, MXR=1, X=1
# test 8.3.1.3.4 Write flag
# test 11.3.1.3.4 Write flag
.4byte 0xBFF290, 0xBEEF0110, write32_test # write success when W=1
.4byte 0xBFF290, 0xBEEF0110, read32_test # check write success by reading
.4byte 0x5B78, 0xBEEF0CC0, write32_test # store page fault when W=0
# test 8.3.1.3.5 eXecute flag
# *** fetches on pages with X = 1 already tested in 8.3.1.3.1
# test 11.3.1.3.5 eXecute flag
# *** fetches on pages with X = 1 already tested in 11.3.1.3.1
.4byte 0xBFFDE0, 0xbad, executable_test # instr page fault when X=0
# In the following two tests, SVADU is not supported, so the software handles the A/D bits
# Since SVADU is 0, Accesses to A/D=0 causes a fault for the trap handler to fix those bits
# test 8.3.1.3.6 Accessed flag == 0
# test 11.3.1.3.6 Accessed flag == 0
.4byte 0x3020, 0xBEEF0770, write32_test # store page fault when A=0
.4byte 0x3808, 0xBEEF0990, read32_test # load page fault when A=0
# test 8.3.1.3.7 Dirty flag == 0
# test 11.3.1.3.7 Dirty flag == 0
.4byte 0x4658, 0xBEEF0AA0, write32_test # store page fault when D=0
.4byte 0x4AA0, 0xBEEF0BB0, read32_test # read success when D=0
# =========== test 8.3.1.4 SATP Register ===========
# =========== test 11.3.1.4 SATP Register ===========
# test 8.3.1.4.1 SATP ASID and PPN fields (test having two page tables with different ASID)
# test 11.3.1.4.1 SATP ASID and PPN fields (test having two page tables with different ASID)
// *** .4byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, write32_test # write identical value to global PTE to make sure it's still in the TLB
.4byte 0x8000F, 0x11, goto_sv32 # go to SV39 on a second, very minimal page table
.4byte 0xE3130, 0xBEEF0077, read32_test # Read success of old written value from a new page table mapping
# test 8.3.1.4.2 Test Global mapping
# test 11.3.1.4.2 Test Global mapping
// ***.4byte 0x7FFFFFF888, 0x0220DEADBEEF0099, read32_test # read success of global PTE undefined in current mapping.
# =========== test 8.3.1.5 STATUS Registers ===========
# =========== test 11.3.1.5 STATUS Registers ===========
# test 8.3.1.5.1 mstatus.mprv translation
# test 11.3.1.5.1 mstatus.mprv translation
# *** mstatus.mprv = 0 tested on every one of the translated reads and writes before this.
.4byte 0x8000D, 0x0, goto_sv32 // go back to old, extensive page table
.4byte 0x80000000, 0x1, goto_m_mode // go to m mode to be able to write mstatus
.4byte 0x1, 0x1, read_write_mprv // write 1 to mstatus.mprv and set mstatus.mpp to be 01=S
.4byte 0xBFF7E0, 0xBEEF0099, read32_test // read test succeeds with translation even though we're in M mode since MPP=S and MPRV=1
# test 8.3.1.5.2 mstatus.mprv clearing
# test 11.3.1.5.2 mstatus.mprv clearing
# mstatus.mprv is already 1 from the last test so going to S mode should clear it with the mret
.4byte 0x80000000, 0x1, goto_s_mode // This should zero out the mprv bit but now to read and write mstatus, we have to
.4byte 0x80000000, 0x1, goto_m_mode // go back to m mode to allow us to reread mstatus.
.4byte 0x0, 0x0, read_write_mprv // read what should be a zeroed out mprv value and then force it back to zero.
# test 8.3.1.5.3 sstatus.mxr read
# this bitfield already tested in 8.3.1.3.3
# test 11.3.1.5.3 sstatus.mxr read
# this bitfield already tested in 11.3.1.3.3
# terminate tests
.4byte 0x0, 0x0, terminate_test # brings us back into machine mode with a final ecall, writing 0x9 to the output.

View File

@ -1,6 +1,6 @@
///////////////////////////////////////////
//
// WALLY-MMU
// WALLY-MMU-SV32
//
// Author: David_Harris@hmc.edu and Kip Macsai-Goren <kmacsaigoren@g.hmc.edu>
//
@ -52,9 +52,9 @@ test_cases:
#
# ---------------------------------------------------------------------------------------------
# =========== test 8.3.1.1 Page Table Translation ===========
# =========== test 11.3.1.1 Page Table Translation ===========
# test 8.3.1.1.1 write page tables / entries to phyiscal memory
# test 11.3.1.1.1 write page tables / entries to phyiscal memory
# sv32 Page table (See Figure 12.12***):
# Level 1 page table, situated at 0x8000D000
.4byte 0x8000D000, 0x20004C01, write32_test # points to level 0 page table A
@ -78,18 +78,18 @@ test_cases:
.4byte 0x8000F000, 0x200000CF, write32_test # Vaddr 0x0 Paddr 0x80000000: aligned megapage
.4byte 0x8000F800, 0x200000CF, write32_test # Vaddr 0x80000000 Paddr 0x80000000: aligned megapage (program and data memory)
# test 8.3.1.1.2 write values to Paddrs in each page
# each of these values is used for 8.3.1.1.3 and some other tests, specified in the comments.
# test 11.3.1.1.2 write values to Paddrs in each page
# each of these values is used for 11.3.1.1.3 and some other tests, specified in the comments.
# when a test is supposed to fault, nothing is written into where it'll be reading/executing since it should fault before getting there.
.4byte 0x800AAAA8, 0xBEEF0055, write32_test # 8.3.1.1.4 megapage
.4byte 0x800FFAC0, 0xBEEF0033, write32_test # 8.3.1.3.2
.4byte 0x800E3130, 0xBEEF0077, write32_test # 8.3.1.3.2
.4byte 0x808017E0, 0xBEEF0099, write32_test # 8.3.1.1.4 kilopage
.4byte 0x80805EA0, 0xBEEF0440, write32_test # 8.3.1.3.3
.4byte 0x800AAAA8, 0xBEEF0055, write32_test # 11.3.1.1.4 megapage
.4byte 0x800FFAC0, 0xBEEF0033, write32_test # 11.3.1.3.2
.4byte 0x800E3130, 0xBEEF0077, write32_test # 11.3.1.3.2
.4byte 0x808017E0, 0xBEEF0099, write32_test # 11.3.1.1.4 kilopage
.4byte 0x80805EA0, 0xBEEF0440, write32_test # 11.3.1.3.3
.4byte 0x8000FFA0, 0x11100393, write32_test # write executable code for "li x7, 0x111; ret" to executable region.
.4byte 0x8000FFA4, 0x00008067, write32_test # Used for 8.3.1.3.1, 8.3.1.3.2
.4byte 0x8000FFA4, 0x00008067, write32_test # Used for 11.3.1.3.1, 11.3.1.3.2
# test 8.3.1.1.3 read values back from Paddrs without translation (this also verifies the previous test)
# test 11.3.1.1.3 read values back from Paddrs without translation (this also verifies the previous test)
.4byte 0x0, 0x0, goto_baremetal # satp.MODE = baremetal / no translation.
.4byte 0x0, 0x0, goto_s_mode # change to S mode, 0xb written to output
.4byte 0x800AAAA8, 0xBEEF0055, read32_test
@ -100,38 +100,38 @@ test_cases:
.4byte 0x8000FFA0, 0x11100393, read32_test
.4byte 0x8000FFA4, 0x00008067, read32_test
# test 8.3.1.1.4 check translation works in sv48, read the same values from previous tests, this time with Vaddrs
# test 11.3.1.1.4 check translation works in sv48, read the same values from previous tests, this time with Vaddrs
.4byte 0x8000D, 0x0, goto_sv32 # satp.MODE = sv32, Nothing written to output
.4byte 0x4AAAA8, 0xBEEF0055, read32_test # megapage at Vaddr 0x400000, Paddr 0x80000000
.4byte 0xBFF7E0, 0xBEEF0099, read32_test # kilopage at Vaddr 0xBFF000, Paddr 0x80201000
# =========== test 8.3.1.2 page fault tests ===========
# =========== test 11.3.1.2 page fault tests ===========
# test 8.3.1.2.1 load page fault if upper bits of Vaddr are not the same
# test 11.3.1.2.1 load page fault if upper bits of Vaddr are not the same
# Not tested in rv32/sv32
# test 8.3.1.2.2 load page fault when reading an address where the valid flag is zero
# test 11.3.1.2.2 load page fault when reading an address where the valid flag is zero
.4byte 0x6000, 0x0, read32_test
# test 8.3.1.2.3 store page fault if PTE has W and ~R flags set
# test 11.3.1.2.3 store page fault if PTE has W and ~R flags set
.4byte 0x2000, 0x0, write32_test
# test 8.3.1.2.4 Fault if last level PTE is a pointer
# test 11.3.1.2.4 Fault if last level PTE is a pointer
.4byte 0x0200, 0x0, read32_test
# test 8.3.1.2.5 load page fault on misaligned pages
# test 11.3.1.2.5 load page fault on misaligned pages
.4byte 0xC00000, 0x0, read32_test # misaligned megapage
# =========== test 8.3.1.3 PTE Protection flags ===========
# =========== test 11.3.1.3 PTE Protection flags ===========
# test 8.3.1.3.1 User flag == 0
# *** reads on pages with U=0 already tested in 8.3.1.1.4
# test 11.3.1.3.1 User flag == 0
# *** reads on pages with U=0 already tested in 11.3.1.1.4
.4byte 0x40FFA0, 0x111, executable_test # fetch success when U=0, priv=S
.4byte 0x80400000, 0x1, goto_u_mode # go to U mode, return to VPN 0x80400000 where PTE.U = 1. 0x9 written to output
.4byte 0xBFFC80, 0xBEEF0550, read32_test # load page fault when U=0, priv=U
.4byte 0x40FFA0, 0xbad, executable_test # instr page fault when U=0, priv=U
# test 8.3.1.3.2 User flag == 1
# test 11.3.1.3.2 User flag == 1
.4byte 0x804FFAC0, 0xBEEF0033, read32_test # read success when U=1, priv=U
.4byte 0x80000000, 0x1, goto_s_mode # go back to S mode, return to VPN 0x80000000 where PTE.U = 0. 0x8 written to output
.4byte 0x0, 0x3, write_mxr_sum # set sstatus.[MXR, SUM] = 11
@ -140,61 +140,61 @@ test_cases:
.4byte 0x0, 0x2, write_mxr_sum # set sstatus.[MXR, SUM] = 10.
.4byte 0x804FFAC0, 0xBEEF0033, read32_test # load page fault when U-1, priv=S, sstatus.SUM=0
# test 8.3.1.3.3 Read flag
# *** reads on pages with R=1 already tested in 8.3.1.1.4
# test 11.3.1.3.3 Read flag
# *** reads on pages with R=1 already tested in 11.3.1.1.4
.4byte 0x0, 0x1, write_mxr_sum # set sstatus.[MXR, SUM] = 01.
.4byte 0x5EA0, 0xBEEF0440, read32_test # load page fault when R=0, sstatus.MXR=0
.4byte 0x0, 0x3, write_mxr_sum # set sstatus.[MXR, SUM] = 11.
.4byte 0x5EA0, 0xBEEF0440, read32_test # read success when R=0, MXR=1, X=1
# test 8.3.1.3.4 Write flag
# test 11.3.1.3.4 Write flag
.4byte 0xBFF290, 0xBEEF0110, write32_test # write success when W=1
.4byte 0xBFF290, 0xBEEF0110, read32_test # check write success by reading
.4byte 0x5B78, 0xBEEF0CC0, write32_test # store page fault when W=0
# test 8.3.1.3.5 eXecute flag
# *** fetches on pages with X = 1 already tested in 8.3.1.3.1
# test 11.3.1.3.5 eXecute flag
# *** fetches on pages with X = 1 already tested in 11.3.1.3.1
.4byte 0xBFFDE0, 0xbad, executable_test # instr page fault when X=0
# In the following two tests, SVADU is supported, so the hardware handles the A/D bits
# Since SVADU is 1, there are no faults when A/D=0
# test 8.3.1.3.6 Accessed flag == 0
# test 11.3.1.3.6 Accessed flag == 0
.4byte 0x3020, 0xBEEF0770, write32_test # Write success when A=0 and SVADU is enabled
.4byte 0x3020, 0xBEEF0770, read32_test # Read success when A=0 and SVADU is enabled
# test 8.3.1.3.7 Dirty flag == 0
# test 11.3.1.3.7 Dirty flag == 0
.4byte 0x4658, 0xBEEF0AA0, write32_test # write successs when D=0 and SVADU is enabled
.4byte 0x4658, 0xBEEF0AA0, read32_test # read success when D=0
# =========== test 8.3.1.4 SATP Register ===========
# =========== test 11.3.1.4 SATP Register ===========
# test 8.3.1.4.1 SATP ASID and PPN fields (test having two page tables with different ASID)
# test 11.3.1.4.1 SATP ASID and PPN fields (test having two page tables with different ASID)
// *** .4byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, write32_test # write identical value to global PTE to make sure it's still in the TLB
.4byte 0x8000F, 0x11, goto_sv32 # go to SV39 on a second, very minimal page table
.4byte 0xE3130, 0xBEEF0077, read32_test # Read success of old written value from a new page table mapping
# test 8.3.1.4.2 Test Global mapping
# test 11.3.1.4.2 Test Global mapping
// ***.4byte 0x7FFFFFF888, 0x0220DEADBEEF0099, read32_test # read success of global PTE undefined in current mapping.
# =========== test 8.3.1.5 STATUS Registers ===========
# =========== test 11.3.1.5 STATUS Registers ===========
# test 8.3.1.5.1 mstatus.mprv translation
# test 11.3.1.5.1 mstatus.mprv translation
# *** mstatus.mprv = 0 tested on every one of the translated reads and writes before this.
.4byte 0x8000D, 0x0, goto_sv32 // go back to old, extensive page table
.4byte 0x80000000, 0x1, goto_m_mode // go to m mode to be able to write mstatus
.4byte 0x1, 0x1, read_write_mprv // write 1 to mstatus.mprv and set mstatus.mpp to be 01=S
.4byte 0xBFF7E0, 0xBEEF0099, read32_test // read test succeeds with translation even though we're in M mode since MPP=S and MPRV=1
# test 8.3.1.5.2 mstatus.mprv clearing
# test 11.3.1.5.2 mstatus.mprv clearing
# mstatus.mprv is already 1 from the last test so going to S mode should clear it with the mret
.4byte 0x80000000, 0x1, goto_s_mode // This should zero out the mprv bit but now to read and write mstatus, we have to
.4byte 0x80000000, 0x1, goto_m_mode // go back to m mode to allow us to reread mstatus.
.4byte 0x0, 0x0, read_write_mprv // read what should be a zeroed out mprv value and then force it back to zero.
# test 8.3.1.5.3 sstatus.mxr read
# this bitfield already tested in 8.3.1.3.3
# test 11.3.1.5.3 sstatus.mxr read
# this bitfield already tested in 11.3.1.3.3
# terminate tests
.4byte 0x0, 0x0, terminate_test # brings us back into machine mode with a final ecall, writing 0x9 to the output.

View File

@ -1,4 +1,4 @@
0000000b # Test 12.3.1.1.3: ecall from going to S mode from M mode
0000000b # Test 11.3.1.1.3: ecall from going to S mode from M mode
00000000
beef0000 # Read test success from confirming writes of known values
0000dead
@ -14,13 +14,13 @@ beef0440 # Read test success from confirming writes of known values
0330dead
beef0bb0 # Read test success from confirming writes of known values
0440dead
beef0000 # Test 12.3.1.1.4: Read test success from checking translation works
beef0000 # Test 11.3.1.1.4: Read test success from checking translation works
0000dead
beef0055 # Read test success from checking translation works
0880dead
beef0099 # Read test success from checking translation works
0220dead
0000000d # Test 12.3.1.2.1: Read test with page fault from upper vaddr bits not the same
0000000d # Test 11.3.1.2.1: Read test with page fault from upper vaddr bits not the same
00000000
00000bad
00000000
@ -28,17 +28,17 @@ beef0099 # Read test success from checking translation works
00000000
00000bad
00000000
0000000d # Test 12.3.1.2.2: read test with page fault
0000000d # Test 11.3.1.2.2: read test with page fault
00000000
00000bad
00000000
0000000f # Test 12.3.1.2.3: write test with page fault
0000000f # Test 11.3.1.2.3: write test with page fault
00000000
0000000d # Test 12.3.1.2.4: read test with page fault
0000000d # Test 11.3.1.2.4: read test with page fault
00000000
00000bad
00000000
0000000d # Test 12.3.1.2.5: 2 read tests with page faults
0000000d # Test 11.3.1.2.5: 2 read tests with page faults
00000000
00000bad
00000000
@ -46,7 +46,7 @@ beef0099 # Read test success from checking translation works
00000000
00000bad
00000000
00000111 # Test 12.3.1.3.1: execute test success
00000111 # Test 11.3.1.3.1: execute test success
00000000
00000009 # ecall from going to U mode from S mode
00000000
@ -58,7 +58,7 @@ beef0099 # Read test success from checking translation works
00000000
00000bad
00000000
beef0033 # Test 12.3.1.3.2: read test success
beef0033 # Test 11.3.1.3.2: read test success
0990dead
00000008 # ecall from going to S mode from U mode
00000000
@ -72,39 +72,43 @@ beef0077 # read test success
00000000
00000bad
00000000
0000000d # Test 12.3.1.3.3: read test with page fault
0000000d # Test 11.3.1.3.3: read test with page fault
00000000
00000bad
00000000
beef0440 # read test success
0330dead
beef0110 # Test 12.3.1.3.4: read test success
beef0110 # Test 11.3.1.3.4: read test success
0440dead
0000000f # write test with page fault
00000000
0000000c # Test 12.3.1.3.5: execute test with page fault
0000000c # Test 11.3.1.3.5: execute test with page fault
00000000
00000bad
00000000
0000000f # Test 12.3.1.3.6: write test with page fault
0000000f # Test 11.3.1.3.6: write test with page fault
00000000
0000000d # read test with page fault
00000000
00000bad
00000000
0000000f # Test 12.3.1.3.7: write test with page fault
0000000f # Test 11.3.1.3.7: write test with page fault
00000000
beef0bb0 # read test success
0440dead
beef0000 # Test 12.3.1.4.1: read test success from new page table mapping
0000000c # Test 11.3.1.3.8: read test with page fault for nonzero reserved bit
00000000
00000bad
00000000
beef0000 # Test 11.3.1.4.1: read test success from new page table mapping
0000dead
00000009 # Test 12.3.1.5.1: ecall from going to m mode from s mode
00000009 # Test 11.3.1.5.1: ecall from going to m mode from s mode
00000000
00000000 # previous mprv value before writing 1 to it.
00000000
beef0099 # Read test success when mprv=1 So translation should occur
0220dead # even though we're in M mode with translation off
0000000b # Test 12.3.1.5.2 ecall from going to s mode from m mode (zeroing mprv)
0000000b # Test 11.3.1.5.2 ecall from going to s mode from m mode (zeroing mprv)
00000000
00000009 # ecall from going to m mode from s mode (so we can access mstatus)
00000000

View File

@ -1,4 +1,4 @@
0000000b # Test 12.3.1.1.3: ecall from going to S mode from M mode
0000000b # Test 11.3.1.1.3: ecall from going to S mode from M mode
00000000
beef0000 # Read test success from confirming writes of known values
0000dead
@ -12,13 +12,13 @@ beef0099 # Read test success from confirming writes of known values
0220dead
beef0440 # Read test success from confirming writes of known values
0330dead
beef0000 # Test 12.3.1.1.4: Read test success from checking translation works
beef0000 # Test 11.3.1.1.4: Read test success from checking translation works
0000dead
beef0055 # Read test success from checking translation works
0880dead
beef0099 # Read test success from checking translation works
0220dead
0000000d # Test 12.3.1.2.1: Read test with page fault from upper vaddr bits not the same
0000000d # Test 11.3.1.2.1: Read test with page fault from upper vaddr bits not the same
00000000
00000bad
00000000
@ -26,17 +26,17 @@ beef0099 # Read test success from checking translation works
00000000
00000bad
00000000
0000000d # Test 12.3.1.2.2: read test with page fault
0000000d # Test 11.3.1.2.2: read test with page fault
00000000
00000bad
00000000
0000000f # Test 12.3.1.2.3: write test with page fault
0000000f # Test 11.3.1.2.3: write test with page fault
00000000
0000000d # Test 12.3.1.2.4: read test with page fault
0000000d # Test 11.3.1.2.4: read test with page fault
00000000
00000bad
00000000
0000000d # Test 12.3.1.2.5: 2 read tests with page faults
0000000d # Test 11.3.1.2.5: 2 read tests with page faults
00000000
00000bad
00000000
@ -44,7 +44,7 @@ beef0099 # Read test success from checking translation works
00000000
00000bad
00000000
00000111 # Test 12.3.1.3.1: execute test success
00000111 # Test 11.3.1.3.1: execute test success
00000000
00000009 # ecall from going to U mode from S mode
00000000
@ -56,7 +56,7 @@ beef0099 # Read test success from checking translation works
00000000
00000bad
00000000
beef0033 # Test 12.3.1.3.2: read test success
beef0033 # Test 11.3.1.3.2: read test success
0990dead
00000008 # ecall from going to S mode from U mode
00000000
@ -70,33 +70,51 @@ beef0077 # read test success
00000000
00000bad
00000000
0000000d # Test 12.3.1.3.3: read test with page fault
0000000d # Test 11.3.1.3.3: read test with page fault
00000000
00000bad
00000000
beef0440 # read test success
0330dead
beef0110 # Test 12.3.1.3.4: read test success
beef0110 # Test 11.3.1.3.4: read test success
0440dead
0000000f # write test with page fault
00000000
0000000c # Test 12.3.1.3.5: execute test with page fault
0000000c # Test 11.3.1.3.5: execute test with page fault
00000000
00000bad
00000000
beef0770 # Test 8.3.1.3.5: check successful read/write when A=0 and SVADU=1
beef0770 # Test 11.3.1.3.6: check successful read/write when A=0 and SVADU=1
0990dead
beef0aa0 # Test 8.3.1.3.6: check successful read/write when D=0 and SVADU=1
beef0aa0 # Test 11.3.1.3.7: check successful read/write when D=0 and SVADU=1
0440dead
beef0000 # Test 12.3.1.4.1: read test success from new page table mapping
0000000d # Test 11.3.1.3.8: read test with page fault for nonzero reserved bit
00000000
00000bad
00000000
BEEF0660 # Test 11.3.1.3.9: NAPOT read
0550DEAD
0000000f # Test 11.3.1.3.10: PBMT; write page fault because menvcfg.PBMTE = 0
00000000
00000009 # ecall from going to M mode from S mode
00000000
0000000B # ecall from going to S mode from M mode
00000000
56567878 # write with PBMT = 1
12123434
56567878 # write with PBMT = 2
23123434
0000000f # write page fault because PBMT = 3
00000000
beef0000 # Test 11.3.1.4.1: read test success from new page table mapping
0000dead
00000009 # Test 12.3.1.5.1: ecall from going to m mode from s mode
00000009 # Test 11.3.1.5.1: ecall from going to m mode from s mode
00000000
00000000 # previous mprv value before writing 1 to it.
00000000
beef0099 # Read test success when mprv=1 So translation should occur
0220dead # even though we're in M mode with translation off
0000000b # Test 12.3.1.5.2 ecall from going to s mode from m mode (zeroing mprv)
0000000b # Test 11.3.1.5.2 ecall from going to s mode from m mode (zeroing mprv)
00000000
00000009 # ecall from going to m mode from s mode (so we can access mstatus)
00000000

View File

@ -1,4 +1,4 @@
0000000b # Test 12.3.1.1.3: ecall from going to S mode from M mode
0000000b # Test 11.3.1.1.3: ecall from going to S mode from M mode
00000000
beef0cc0 # 8 read test successes
0ee0dead
@ -16,7 +16,7 @@ beef0440 # read 7
0330dead
beef0bb0 # read 8
0440dead
beef0cc0 # Test 12.3.1.1.4: 4 read test successes
beef0cc0 # Test 11.3.1.1.4: 4 read test successes
0ee0dead
beef0000 # read 2
0000dead
@ -24,7 +24,7 @@ beef0055 # read 3
0880dead
beef0099 # read 4
0220dead
0000000d # Test 12.3.1.2.1: 2 read tests with page fault
0000000d # Test 11.3.1.2.1: 2 read tests with page fault
00000000
00000bad
00000000
@ -32,17 +32,17 @@ beef0099 # read 4
00000000
00000bad
00000000
0000000d # Test 12.3.1.2.2: read test with page fault
0000000d # Test 11.3.1.2.2: read test with page fault
00000000
00000bad
00000000
0000000f # Test 12.3.1.2.3: write test with page fault
0000000f # Test 11.3.1.2.3: write test with page fault
00000000
0000000d # Test 12.3.1.2.4: read test with page fault
0000000d # Test 11.3.1.2.4: read test with page fault
00000000
00000bad
00000000
0000000d # Test 12.3.1.2.5: 3 read tests with page fault
0000000d # Test 11.3.1.2.5: 3 read tests with page fault
00000000
00000bad
00000000
@ -54,7 +54,7 @@ beef0099 # read 4
00000000
00000bad
00000000
00000111 # Test 12.3.1.3.1: Execute test success
00000111 # Test 11.3.1.3.1: Execute test success
00000000
00000009 # ecall from going to U mode from S mode
00000000
@ -66,7 +66,7 @@ beef0099 # read 4
00000000
00000bad
00000000
beef0033 # Test 12.3.1.3.2: read test success
beef0033 # Test 11.3.1.3.2: read test success
0990dead
00000008 # ecall from going to S mode from U mode
00000000
@ -80,39 +80,39 @@ beef0077 # read test success
00000000
00000bad
00000000
0000000d # Test 12.3.1.3.3: read test with page fault
0000000d # Test 11.3.1.3.3: read test with page fault
00000000
00000bad
00000000
beef0440 # read test success
0330dead
beef0110 # Test 12.3.1.3.4: read test success
beef0110 # Test 11.3.1.3.4: read test success
0440dead
0000000f # write test with page fault
00000000
0000000c # Test 12.3.1.3.5: executable test with page fault
0000000c # Test 11.3.1.3.5: executable test with page fault
00000000
00000bad
00000000
0000000f # Test 12.3.1.3.6: write test with page fault
0000000f # Test 11.3.1.3.6: write test with page fault
00000000
0000000d # read test with page fault
00000000
00000bad
00000000
0000000f # Test 12.3.1.3.7: write test with page fault
0000000f # Test 11.3.1.3.7: write test with page fault
00000000
beef0bb0 # read test success
0440dead
beef0000 # Test 12.3.1.4.1: read test success on new page table mapping
beef0000 # Test 11.3.1.4.1: read test success on new page table mapping
0000dead
00000009 # Test 12.3.1.5.1: ecall from going to m mode from s mode
00000009 # Test 11.3.1.5.1: ecall from going to m mode from s mode
00000000
00000000 # previous value of mprv before write
00000000
beef0099 # Read test success when mprv=1 So translation should occur
0220dead # even though we're in M mode with translation off
0000000b # Test 12.3.1.5.2 ecall from going to s mode from m mode (zeroing mprv)
0000000b # Test 11.3.1.5.2 ecall from going to s mode from m mode (zeroing mprv)
00000000
00000009 # ecall from going to m mode from s mode (so we can access mstatus)
00000000

View File

@ -1,4 +1,4 @@
0000000b # Test 12.3.1.1.3: ecall from going to S mode from M mode
0000000b # Test 11.3.1.1.3: ecall from going to S mode from M mode
00000000
beef0cc0 # 8 read test successes
0ee0dead
@ -14,7 +14,7 @@ beef0099 # read 6
0220dead
beef0440 # read 7
0330dead
beef0cc0 # Test 12.3.1.1.4: 4 read test successes
beef0cc0 # Test 11.3.1.1.4: 4 read test successes
0ee0dead
beef0000 # read 2
0000dead
@ -22,7 +22,7 @@ beef0055 # read 3
0880dead
beef0099 # read 4
0220dead
0000000d # Test 12.3.1.2.1: 2 read tests with page fault
0000000d # Test 11.3.1.2.1: 2 read tests with page fault
00000000
00000bad
00000000
@ -30,17 +30,17 @@ beef0099 # read 4
00000000
00000bad
00000000
0000000d # Test 12.3.1.2.2: read test with page fault
0000000d # Test 11.3.1.2.2: read test with page fault
00000000
00000bad
00000000
0000000f # Test 12.3.1.2.3: write test with page fault
0000000f # Test 11.3.1.2.3: write test with page fault
00000000
0000000d # Test 12.3.1.2.4: read test with page fault
0000000d # Test 11.3.1.2.4: read test with page fault
00000000
00000bad
00000000
0000000d # Test 12.3.1.2.5: 3 read tests with page fault
0000000d # Test 11.3.1.2.5: 3 read tests with page fault
00000000
00000bad
00000000
@ -52,7 +52,7 @@ beef0099 # read 4
00000000
00000bad
00000000
00000111 # Test 12.3.1.3.1: Execute test success
00000111 # Test 11.3.1.3.1: Execute test success
00000000
00000009 # ecall from going to U mode from S mode
00000000
@ -64,7 +64,7 @@ beef0099 # read 4
00000000
00000bad
00000000
beef0033 # Test 12.3.1.3.2: read test success
beef0033 # Test 11.3.1.3.2: read test success
0990dead
00000008 # ecall from going to S mode from U mode
00000000
@ -78,33 +78,33 @@ beef0077 # read test success
00000000
00000bad
00000000
0000000d # Test 12.3.1.3.3: read test with page fault
0000000d # Test 11.3.1.3.3: read test with page fault
00000000
00000bad
00000000
beef0440 # read test success
0330dead
beef0110 # Test 12.3.1.3.4: read test success
beef0110 # Test 11.3.1.3.4: read test success
0440dead
0000000f # write test with page fault
00000000
0000000c # Test 12.3.1.3.5: executable test with page fault
0000000c # Test 11.3.1.3.5: executable test with page fault
00000000
00000bad
00000000
beef0770 # Test 8.3.1.3.5: check successful read/write when A=0 and SVADU=1
beef0770 # Test 11.3.1.3.5: check successful read/write when A=0 and SVADU=1
0990dead
beef0aa0 # Test 8.3.1.3.6: check successful read/write when D=0 and SVADU=1
beef0aa0 # Test 11.3.1.3.6: check successful read/write when D=0 and SVADU=1
0440dead
beef0000 # Test 12.3.1.4.1: read test success on new page table mapping
beef0000 # Test 11.3.1.4.1: read test success on new page table mapping
0000dead
00000009 # Test 12.3.1.5.1: ecall from going to m mode from s mode
00000009 # Test 11.3.1.5.1: ecall from going to m mode from s mode
00000000
00000000 # previous value of mprv before write
00000000
beef0099 # Read test success when mprv=1 So translation should occur
0220dead # even though we're in M mode with translation off
0000000b # Test 12.3.1.5.2 ecall from going to s mode from m mode (zeroing mprv)
0000000b # Test 11.3.1.5.2 ecall from going to s mode from m mode (zeroing mprv)
00000000
00000009 # ecall from going to m mode from s mode (so we can access mstatus)
00000000

View File

@ -1362,6 +1362,12 @@ write_mideleg:
csrw mideleg, t4
j test_loop
write_menvcfg:
// writes the value in t4 to the menvcfg register
// Doesn't log anything
csrw menvcfg, t4
j test_loop
executable_test:
// Execute the code at the address in t3, returning the value in t2.
// Assumes the code modifies t2, to become the value stored in t4 for this test.

View File

@ -1,6 +1,6 @@
///////////////////////////////////////////
//
// WALLY-MMU
// WALLY-MMU-SV39
//
// Author: David_Harris@hmc.edu and Kip Macsai-Goren <kmacsaigoren@g.hmc.edu>
//
@ -52,9 +52,9 @@ test_cases:
#
# ---------------------------------------------------------------------------------------------
# =========== test 8.3.1.1 Page Table Translation ===========
# =========== test 11.3.1.1 Page Table Translation ===========
# test 8.3.1.1.1 write page tables / entries to phyiscal memory
# test 11.3.1.1.1 write page tables / entries to phyiscal memory
# sv39 page table (See Figure 12.12***):
# Level 2 page table, situated at 0x8000D000
.8byte 0x000000008000D000, 0x0000000020004C01, write64_test# points to level 1 page table A
@ -82,6 +82,7 @@ test_cases:
.8byte 0x0000000080018020, 0x0000000020080C57, write64_test# Vaddr 0x4000 Paddr 0x80203000: D=0, should cause write fault
.8byte 0x0000000080018028, 0x00000000200814C7, write64_test# Vaddr 0x5000 Paddr 0x80205000: X=0, fetches should fault
.8byte 0x0000000080018030, 0x00000000200814C0, write64_test# Vaddr 0x6000: invalid page
.8byte 0x0000000080018038, 0x01000000200800DF, write64_test# Vaddr 0x7000, Paddr = 0x80200000, bad reserved bit
# Level 0 page table B
.8byte 0x0000000080016FF8, 0x00000000200804CF, write64_test# Vaddr 0xFFFFFFFFFFFFF000, Paddr 0x80201000 aligned kilopage
@ -89,20 +90,20 @@ test_cases:
.8byte 0x8FFFF000, 0x200000CF, write64_test# Vaddr 0x0, Paddr 0x80000000 aligned gigapage
.8byte 0x8FFFF010, 0x200000CF, write64_test# Vaddr 0x8000_0000, Paddr 0x80000000: aligned gigapage (program and data memory so we can execute without jumping around)
# test 8.3.1.1.2 write values to Paddrs in each page
# each of these values is used for 8.3.1.1.3 and some other tests, specified in the comments.
# test 11.3.1.1.2 write values to Paddrs in each page
# each of these values is used for 11.3.1.1.3 and some other tests, specified in the comments.
# when a test is supposed to fault, nothing is written into where it'll be reading/executing since it shuold fault before getting there.
.8byte 0x80200AB0, 0x0000DEADBEEF0000, write64_test# 8.3.1.1.4 and 8.3.1.4.1
.8byte 0x800FFAB8, 0x0880DEADBEEF0055, write64_test# 8.3.1.1.4
.8byte 0x80200AC0, 0x0990DEADBEEF0033, write64_test# 8.3.1.3.2
.8byte 0x80203130, 0x0110DEADBEEF0077, write64_test# 8.3.1.3.2
.8byte 0x80099000, 0x0000806711100393, write64_test# 8.3.1.3.1 and 8.3.1.3.2 write executable code for "li x7, 0x111; ret"
.8byte 0x80205AA0, 0x0000806711100393, write64_test# 8.3.1.3.5 write same executable code
.8byte 0x80201888, 0x0220DEADBEEF0099, write64_test# 8.3.1.1.4
.8byte 0x84212348, 0x0330DEADBEEF0440, write64_test# 8.3.1.3.3
.8byte 0x80203AA0, 0x0440DEADBEEF0BB0, write64_test# 8.3.1.3.7
.8byte 0x80200AB0, 0x0000DEADBEEF0000, write64_test# 11.3.1.1.4 and 11.3.1.4.1
.8byte 0x800FFAB8, 0x0880DEADBEEF0055, write64_test# 11.3.1.1.4
.8byte 0x80200AC0, 0x0990DEADBEEF0033, write64_test# 11.3.1.3.2
.8byte 0x80203130, 0x0110DEADBEEF0077, write64_test# 11.3.1.3.2
.8byte 0x80099000, 0x0000806711100393, write64_test# 11.3.1.3.1 and 11.3.1.3.2 write executable code for "li x7, 0x111; ret"
.8byte 0x80205AA0, 0x0000806711100393, write64_test# 11.3.1.3.5 write same executable code
.8byte 0x80201888, 0x0220DEADBEEF0099, write64_test# 11.3.1.1.4
.8byte 0x84212348, 0x0330DEADBEEF0440, write64_test# 11.3.1.3.3
.8byte 0x80203AA0, 0x0440DEADBEEF0BB0, write64_test# 11.3.1.3.7
# test 8.3.1.1.3 read values back from Paddrs without translation (this also verifies the previous test)
# test 11.3.1.1.3 read values back from Paddrs without translation (this also verifies the previous test)
.8byte 0x0, 0x0, goto_baremetal# satp.MODE = baremetal / no translation.
.8byte 0x0, 0x0, goto_s_mode # change to S mode, 0xb written to output
.8byte 0x80200AB0, 0x0000DEADBEEF0000, read64_test
@ -113,42 +114,42 @@ test_cases:
.8byte 0x84212348, 0x0330DEADBEEF0440, read64_test
.8byte 0x80203AA0, 0x0440DEADBEEF0BB0, read64_test
# test 8.3.1.1.4 check translation works in sv39, read the same values from previous tests, this time with Vaddrs
# test 11.3.1.1.4 check translation works in sv39, read the same values from previous tests, this time with Vaddrs
.8byte 0x8000D, 0x0, goto_sv39 # satp.MODE = sv39, with base page table PPN = 0x8000D and ASID = 0. current VPN: gigapage at 0x80000000.
.8byte 0x80200AB0, 0x0000DEADBEEF0000, read64_test # gigapage at Vaddr 0x80000000, Paddr 0x80000000
.8byte 0x400FFAB8, 0x0880DEADBEEF0055, read64_test # megapage at Vaddr 0x40400000, Paddr 0x80000000
.8byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, read64_test # kilopage at Vaddr 0xFFFFFFFFFFFFF000, Paddr 0x80201000
# =========== test 8.3.1.2 page fault tests ===========
# =========== test 11.3.1.2 page fault tests ===========
# test 8.3.1.2.1 load page fault if upper bits of Vaddr are not the same
# test 11.3.1.2.1 load page fault if upper bits of Vaddr are not the same
.8byte 0x0010000080000AB0, 0x0, read64_test# gigapage at Vaddr 0x80000000, Paddr 0x80000000, bad 1 in upper bits
.8byte 0xFF0FFFFFFFFFF888, 0x0, read64_test# kilopage at Vaddr 0xFFFFFFFFFFFFF000, Paddr 0x80201000, bad 0000 in upper bits
# test 8.3.1.2.2 load page fault when reading an address where the valid flag is zero
# test 11.3.1.2.2 load page fault when reading an address where the valid flag is zero
.8byte 0x6000, 0x0, read64_test
# test 8.3.1.2.3 store page fault if PTE has W and ~R flags set
# test 11.3.1.2.3 store page fault if PTE has W and ~R flags set
.8byte 0x2000, 0x0, write64_test
# test 8.3.1.2.4 Fault if last level PTE is a pointer
# test 11.3.1.2.4 Fault if last level PTE is a pointer
.8byte 0x0020, 0x0, read64_test
# test 8.3.1.2.5 load page fault on misaligned pages
# test 11.3.1.2.5 load page fault on misaligned pages
.8byte 0xC0000000, 0x0, read64_test# misaligned gigapage
.8byte 0x40200000, 0x0, read64_test# misaligned megapage
# =========== test 8.3.1.3 PTE Protection flags ===========
# =========== test 11.3.1.3 PTE Protection flags ===========
# test 8.3.1.3.1 User flag == 0
# *** reads on pages with U=0 already tested in 8.3.1.1.4
# test 11.3.1.3.1 User flag == 0
# *** reads on pages with U=0 already tested in 11.3.1.1.4
.8byte 0x40099000, 0x111, executable_test # execute success when U=0, priv=S
.8byte 0x40400000, 0x2, goto_u_mode # go to U mode, return to megapage at 0x40400000 where U = 1. 0x9 written to output
.8byte 0xFFFFFFFFFFFFFC80, 0x0880DEADBEEF0550, read64_test # load page fault when U=0, priv=U
.8byte 0x40099000, 0xbad, executable_test # execute fault when U=0, priv=U
# test 8.3.1.3.2 User flag == 1
# test 11.3.1.3.2 User flag == 1
.8byte 0x1AC0, 0x0990DEADBEEF0033, read64_test # read success when U=1, priv=U
.8byte 0x80000000, 0x1, goto_s_mode # go back to S mode, return to gigapage at 0x80000000 where U = 0. 0x8 written to output
.8byte 0x0, 0x3, write_mxr_sum # set sstatus.[MXR, SUM] = 11
@ -157,61 +158,64 @@ test_cases:
.8byte 0x0, 0x2, write_mxr_sum # set sstatus.[MXR, SUM] = 10.
.8byte 0x1AC0, 0x0990DEADBEEF0033, read64_test # load page fault when U-1, priv=S, sstatus.SUM=0
# test 8.3.1.3.3 Read flag
# *** reads on pages with R=1 already tested in 8.3.1.1.4
# test 11.3.1.3.3 Read flag
# *** reads on pages with R=1 already tested in 11.3.1.1.4
.8byte 0x0, 0x1, write_mxr_sum # set sstatus.[MXR, SUM] = 01.
.8byte 0x40612348, 0x0330DEADBEEF0440, read64_test # load page fault when R=0, sstatus.MXR=0
.8byte 0x0, 0x3, write_mxr_sum # set sstatus.[MXR, SUM] = 11.
.8byte 0x40612348, 0x0330DEADBEEF0440, read64_test # read success when MXR=1, X=1
# test 8.3.1.3.4 Write flag
# test 11.3.1.3.4 Write flag
.8byte 0x80AAAAA0, 0x0440DEADBEEF0110, write64_test# write success when W=1
.8byte 0x80AAAAA0, 0x0440DEADBEEF0110, read64_test# check write success by reading the same address
.8byte 0x40000000, 0x0220DEADBEEF0BB0, write64_test# store page fault when W=0
# test 8.3.1.3.5 eXecute flag
# *** fetches on pages with X = 1 already tested in 8.3.1.3.1
# test 11.3.1.3.5 eXecute flag
# *** fetches on pages with X = 1 already tested in 11.3.1.3.1
.8byte 0x5AA0, 0x1, executable_test # instr page fault when X=0
# In the following two tests, SVADU is not supported, so the software handles the A/D bits
# Since SVADU is 0, Accesses to A/D=0 causes a fault for the trap handler to fix those bits
# test 8.3.1.3.6 Accessed flag == 0
# test 11.3.1.3.6 Accessed flag == 0
.8byte 0x36D0, 0x0990DEADBEEF0770, write64_test# store page fault when A=0
.8byte 0x3AB8, 0x0990DEADBEEF0990, read64_test# load page fault when A=0
# test 8.3.1.3.7 Dirty flag == 0
# test 11.3.1.3.7 Dirty flag == 0
.8byte 0x4658, 0x0440DEADBEEF0AA0, write64_test# store page fault when D=0
.8byte 0x4AA0, 0x0440DEADBEEF0BB0, read64_test# read success when D=0
# =========== test 8.3.1.4 SATP Register ===========
# test 11.3.1.3.8 Reserved bits nonzero
.8byte 0x7AA0, 0x123456789ABCDEF, read64_test # load page fault because reserved is nonzero
# test 8.3.1.4.1 SATP ASID and PPN fields (test having two page tables with different ASID)
# =========== test 11.3.1.4 SATP Register ===========
# test 11.3.1.4.1 SATP ASID and PPN fields (test having two page tables with different ASID)
// *** .8byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, write64_test # write identical value to global PTE to make sure it's still in the TLB
.8byte 0x8FFFF, 0x11, goto_sv39 # go to SV39 on a second, very minimal page table
.8byte 0x200AB0, 0x0000DEADBEEF0000, read64_test # Read success of old written value from a new page table mapping
# test 8.3.1.4.2 Test Global mapping
# test 11.3.1.4.2 Test Global mapping
// ***.8byte 0x7FFFFFF888, 0x0220DEADBEEF0099, read64_test # read success of global PTE undefined in current mapping.
# =========== test 8.3.1.5 STATUS Registers ===========
# =========== test 11.3.1.5 STATUS Registers ===========
# test 8.3.1.5.1 mstatus.mprv translation
# test 11.3.1.5.1 mstatus.mprv translation
# *** mstatus.mprv = 0 tested on every one of the translated reads and writes before this.
.8byte 0x8000D, 0x0, goto_sv39 // go back to old, extensive page table
.8byte 0x80000000, 0x1, goto_m_mode // go to m mode to be able to write mstatus
.8byte 0x1, 0x1, read_write_mprv // write 1 to mstatus.mprv and set mstatus.mpp to be 01=S
.8byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, read64_test // read test succeeds with translation even though we're in M mode since MPP=S and MPRV=1
# test 8.3.1.5.2 mstatus.mprv clearing
# test 11.3.1.5.2 mstatus.mprv clearing
# mstatus.mprv is already 1 from the last test so going to S mode should clear it with the mret
.8byte 0x80000000, 0x1, goto_s_mode // This should zero out the mprv bit but now to read and write mstatus, we have to
.8byte 0x80000000, 0x1, goto_m_mode // go back to m mode to allow us to reread mstatus.
.8byte 0x0, 0x0, read_write_mprv // read what should be a zeroed out mprv value and then force it back to zero.
# test 8.3.1.5.3 sstatus.mxr read
# this bitfield already tested in 8.3.1.3.3
# test 11.3.1.5.3 sstatus.mxr read
# this bitfield already tested in 11.3.1.3.3
# terminate tests
.8byte 0x0, 0x0, terminate_test # brings us back into machine mode with a final ecall, writing 0x9 to the output.

View File

@ -1,6 +1,6 @@
///////////////////////////////////////////
//
// WALLY-MMU
// WALLY-MMU-SV39-SVADU
//
// Author: David_Harris@hmc.edu and Kip Macsai-Goren <kmacsaigoren@g.hmc.edu>
//
@ -52,9 +52,9 @@ test_cases:
#
# ---------------------------------------------------------------------------------------------
# =========== test 8.3.1.1 Page Table Translation ===========
# =========== test 11.3.1.1 Page Table Translation ===========
# test 8.3.1.1.1 write page tables / entries to phyiscal memory
# test 11.3.1.1.1 write page tables / entries to phyiscal memory
# sv39 page table (See Figure 12.12***):
# Level 2 page table, situated at 0x8000D000
.8byte 0x000000008000D000, 0x0000000020004C01, write64_test# points to level 1 page table A
@ -82,6 +82,27 @@ test_cases:
.8byte 0x0000000080018020, 0x0000000020080C57, write64_test# Vaddr 0x4000 Paddr 0x80203000: D=0, should cause write fault
.8byte 0x0000000080018028, 0x00000000200814C7, write64_test# Vaddr 0x5000 Paddr 0x80205000: X=0, fetches should fault
.8byte 0x0000000080018030, 0x00000000200814C0, write64_test# Vaddr 0x6000: invalid page
.8byte 0x0000000080018038, 0x01000000200800DF, write64_test# Vaddr 0x7000, Paddr = 0x80200000, bad reserved bit
.8byte 0x0000000080018040, 0x20000000200800DF, write64_test# Vaddr 0x8000, Paddr = 0x80200000, PBMT = 1
.8byte 0x0000000080018048, 0x40000000200800DF, write64_test# Vaddr 0x9000, Paddr = 0x80200000, PMBT = 2
.8byte 0x0000000080018050, 0x60000000200800DF, write64_test# Vaddr 0xA000, Paddr = 0x80200000, PMBT = 3
.8byte 0x0000000080018080, 0x80000000200800DF, write64_test# Vaddr 0x10000, Paddr = 0x80200000, NAPOT
.8byte 0x0000000080018088, 0x80000000200800DF, write64_test# Vaddr 0x10000, Paddr = 0x80200000, NAPOT
.8byte 0x0000000080018090, 0x80000000200800DF, write64_test# Vaddr 0x10000, Paddr = 0x80200000, NAPOT
.8byte 0x0000000080018098, 0x80000000200800DF, write64_test# Vaddr 0x10000, Paddr = 0x80200000, NAPOT
.8byte 0x00000000800180A0, 0x80000000200800DF, write64_test# Vaddr 0x10000, Paddr = 0x80200000, NAPOT
.8byte 0x00000000800180A8, 0x80000000200800DF, write64_test# Vaddr 0x10000, Paddr = 0x80200000, NAPOT
.8byte 0x00000000800180B0, 0x80000000200800DF, write64_test# Vaddr 0x10000, Paddr = 0x80200000, NAPOT
.8byte 0x00000000800180B8, 0x80000000200800DF, write64_test# Vaddr 0x10000, Paddr = 0x80200000, NAPOT
.8byte 0x00000000800180C0, 0x80000000200800DF, write64_test# Vaddr 0x10000, Paddr = 0x80200000, NAPOT
.8byte 0x00000000800180C8, 0x80000000200800DF, write64_test# Vaddr 0x10000, Paddr = 0x80200000, NAPOT
.8byte 0x00000000800180D0, 0x80000000200800DF, write64_test# Vaddr 0x10000, Paddr = 0x80200000, NAPOT
.8byte 0x00000000800180D8, 0x80000000200800DF, write64_test# Vaddr 0x10000, Paddr = 0x80200000, NAPOT
.8byte 0x00000000800180E0, 0x80000000200800DF, write64_test# Vaddr 0x10000, Paddr = 0x80200000, NAPOT
.8byte 0x00000000800180E8, 0x80000000200800DF, write64_test# Vaddr 0x10000, Paddr = 0x80200000, NAPOT
.8byte 0x00000000800180F0, 0x80000000200800DF, write64_test# Vaddr 0x10000, Paddr = 0x80200000, NAPOT
.8byte 0x00000000800180F8, 0x80000000200800DF, write64_test# Vaddr 0x10000, Paddr = 0x80200000, NAPOT
# Level 0 page table B
.8byte 0x0000000080016FF8, 0x00000000200804CF, write64_test# Vaddr 0xFFFFFFFFFFFFF000, Paddr 0x80201000 aligned kilopage
@ -89,19 +110,21 @@ test_cases:
.8byte 0x8FFFF000, 0x200000CF, write64_test# Vaddr 0x0, Paddr 0x80000000 aligned gigapage
.8byte 0x8FFFF010, 0x200000CF, write64_test# Vaddr 0x8000_0000, Paddr 0x80000000: aligned gigapage (program and data memory so we can execute without jumping around)
# test 8.3.1.1.2 write values to Paddrs in each page
# each of these values is used for 8.3.1.1.3 and some other tests, specified in the comments.
# test 11.3.1.1.2 write values to Paddrs in each page
# each of these values is used for 11.3.1.1.3 and some other tests, specified in the comments.
# when a test is supposed to fault, nothing is written into where it'll be reading/executing since it shuold fault before getting there.
.8byte 0x80200AB0, 0x0000DEADBEEF0000, write64_test# 8.3.1.1.4 and 8.3.1.4.1
.8byte 0x800FFAB8, 0x0880DEADBEEF0055, write64_test# 8.3.1.1.4
.8byte 0x80200AC0, 0x0990DEADBEEF0033, write64_test# 8.3.1.3.2
.8byte 0x80203130, 0x0110DEADBEEF0077, write64_test# 8.3.1.3.2
.8byte 0x80099000, 0x0000806711100393, write64_test# 8.3.1.3.1 and 8.3.1.3.2 write executable code for "li x7, 0x111; ret"
.8byte 0x80205AA0, 0x0000806711100393, write64_test# 8.3.1.3.5 write same executable code
.8byte 0x80201888, 0x0220DEADBEEF0099, write64_test# 8.3.1.1.4
.8byte 0x84212348, 0x0330DEADBEEF0440, write64_test# 8.3.1.3.3
.8byte 0x80200AB0, 0x0000DEADBEEF0000, write64_test # 11.3.1.1.4 and 11.3.1.4.1
.8byte 0x800FFAB8, 0x0880DEADBEEF0055, write64_test # 11.3.1.1.4
.8byte 0x80200AC0, 0x0990DEADBEEF0033, write64_test # 11.3.1.3.2
.8byte 0x80203130, 0x0110DEADBEEF0077, write64_test # 11.3.1.3.2
.8byte 0x80099000, 0x0000806711100393, write64_test # 11.3.1.3.1 and 11.3.1.3.2 write executable code for "li x7, 0x111; ret"
.8byte 0x80205AA0, 0x0000806711100393, write64_test # 11.3.1.3.5 write same executable code
.8byte 0x80201888, 0x0220DEADBEEF0099, write64_test # 11.3.1.1.4
.8byte 0x84212348, 0x0330DEADBEEF0440, write64_test # 11.3.1.3.3
.8byte 0x8020A400, 0x0550DEADBEEF0660, write64_test # 11.3.1.3.9
.8byte 0x80205000, 0x0770DEADBEEF0880, write64_test # 11.3.1.2.2 junk in memory location corresponding to invalid page
# test 8.3.1.1.3 read values back from Paddrs without translation (this also verifies the previous test)
# test 11.3.1.1.3 read values back from Paddrs without translation (this also verifies the previous test)
.8byte 0x0, 0x0, goto_baremetal# satp.MODE = baremetal / no translation.
.8byte 0x0, 0x0, goto_s_mode # change to S mode, 0xb written to output
.8byte 0x80200AB0, 0x0000DEADBEEF0000, read64_test
@ -111,42 +134,42 @@ test_cases:
.8byte 0x80201888, 0x0220DEADBEEF0099, read64_test
.8byte 0x84212348, 0x0330DEADBEEF0440, read64_test
# test 8.3.1.1.4 check translation works in sv39, read the same values from previous tests, this time with Vaddrs
# test 11.3.1.1.4 check translation works in sv39, read the same values from previous tests, this time with Vaddrs
.8byte 0x8000D, 0x0, goto_sv39 # satp.MODE = sv39, with base page table PPN = 0x8000D and ASID = 0. current VPN: gigapage at 0x80000000.
.8byte 0x80200AB0, 0x0000DEADBEEF0000, read64_test # gigapage at Vaddr 0x80000000, Paddr 0x80000000
.8byte 0x400FFAB8, 0x0880DEADBEEF0055, read64_test # megapage at Vaddr 0x40400000, Paddr 0x80000000
.8byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, read64_test # kilopage at Vaddr 0xFFFFFFFFFFFFF000, Paddr 0x80201000
# =========== test 8.3.1.2 page fault tests ===========
# =========== test 11.3.1.2 page fault tests ===========
# test 8.3.1.2.1 load page fault if upper bits of Vaddr are not the same
# test 11.3.1.2.1 load page fault if upper bits of Vaddr are not the same
.8byte 0x0010000080000AB0, 0x0, read64_test# gigapage at Vaddr 0x80000000, Paddr 0x80000000, bad 1 in upper bits
.8byte 0xFF0FFFFFFFFFF888, 0x0, read64_test# kilopage at Vaddr 0xFFFFFFFFFFFFF000, Paddr 0x80201000, bad 0000 in upper bits
# test 8.3.1.2.2 load page fault when reading an address where the valid flag is zero
# test 11.3.1.2.2 load page fault when reading an address where the valid flag is zero
.8byte 0x6000, 0x0, read64_test
# test 8.3.1.2.3 store page fault if PTE has W and ~R flags set
# test 11.3.1.2.3 store page fault if PTE has W and ~R flags set
.8byte 0x2000, 0x0, write64_test
# test 8.3.1.2.4 Fault if last level PTE is a pointer
# test 11.3.1.2.4 Fault if last level PTE is a pointer
.8byte 0x0020, 0x0, read64_test
# test 8.3.1.2.5 load page fault on misaligned pages
# test 11.3.1.2.5 load page fault on misaligned pages
.8byte 0xC0000000, 0x0, read64_test# misaligned gigapage
.8byte 0x40200000, 0x0, read64_test# misaligned megapage
# =========== test 8.3.1.3 PTE Protection flags ===========
# =========== test 11.3.1.3 PTE Protection flags ===========
# test 8.3.1.3.1 User flag == 0
# *** reads on pages with U=0 already tested in 8.3.1.1.4
# test 11.3.1.3.1 User flag == 0
# *** reads on pages with U=0 already tested in 11.3.1.1.4
.8byte 0x40099000, 0x111, executable_test # execute success when U=0, priv=S
.8byte 0x40400000, 0x2, goto_u_mode # go to U mode, return to megapage at 0x40400000 where U = 1. 0x9 written to output
.8byte 0xFFFFFFFFFFFFFC80, 0x0880DEADBEEF0550, read64_test # load page fault when U=0, priv=U
.8byte 0x40099000, 0xbad, executable_test # execute fault when U=0, priv=U
# test 8.3.1.3.2 User flag == 1
# test 11.3.1.3.2 User flag == 1
.8byte 0x1AC0, 0x0990DEADBEEF0033, read64_test # read success when U=1, priv=U
.8byte 0x80000000, 0x1, goto_s_mode # go back to S mode, return to gigapage at 0x80000000 where U = 0. 0x8 written to output
.8byte 0x0, 0x3, write_mxr_sum # set sstatus.[MXR, SUM] = 11
@ -155,60 +178,77 @@ test_cases:
.8byte 0x0, 0x2, write_mxr_sum # set sstatus.[MXR, SUM] = 10.
.8byte 0x1AC0, 0x0990DEADBEEF0033, read64_test # load page fault when U-1, priv=S, sstatus.SUM=0
# test 8.3.1.3.3 Read flag
# *** reads on pages with R=1 already tested in 8.3.1.1.4
# test 11.3.1.3.3 Read flag
# *** reads on pages with R=1 already tested in 11.3.1.1.4
.8byte 0x0, 0x1, write_mxr_sum # set sstatus.[MXR, SUM] = 01.
.8byte 0x40612348, 0x0330DEADBEEF0440, read64_test # load page fault when R=0, sstatus.MXR=0
.8byte 0x0, 0x3, write_mxr_sum # set sstatus.[MXR, SUM] = 11.
.8byte 0x40612348, 0x0330DEADBEEF0440, read64_test # read success when MXR=1, X=1
# test 8.3.1.3.4 Write flag
# test 11.3.1.3.4 Write flag
.8byte 0x80AAAAA0, 0x0440DEADBEEF0110, write64_test# write success when W=1
.8byte 0x80AAAAA0, 0x0440DEADBEEF0110, read64_test# check write success by reading the same address
.8byte 0x40000000, 0x0220DEADBEEF0BB0, write64_test# store page fault when W=0
# test 8.3.1.3.5 eXecute flag
# *** fetches on pages with X = 1 already tested in 8.3.1.3.1
# test 11.3.1.3.5 eXecute flag
# *** fetches on pages with X = 1 already tested in 11.3.1.3.1
.8byte 0x5AA0, 0x1, executable_test # instr page fault when X=0
# In the following two tests, SVADU is supported, so the hardware handles the A/D bits
# Since SVADU is 1, there are no faults when A/D=0
# test 8.3.1.3.6 Accessed flag == 0
# test 11.3.1.3.6 Accessed flag == 0
.8byte 0x36D0, 0x0990DEADBEEF0770, write64_test # Write success when A=0 and SVADU is enabled
.8byte 0x36D0, 0x0990DEADBEEF0770, read64_test # Read success when A=0 and SVADU is enabled
# test 8.3.1.3.7 Dirty flag == 0
# test 11.3.1.3.7 Dirty flag == 0
.8byte 0x4658, 0x0440DEADBEEF0AA0, write64_test # Write success when D=0 and SVADU is enabled
.8byte 0x4658, 0x0440DEADBEEF0AA0, read64_test # read success when D=0
# =========== test 8.3.1.4 SATP Register ===========
# test 11.3.1.3.8 Reserved bits nonzero
.8byte 0x7AA0, 0x123456789ABCDEF, read64_test # load page fault because reserved is nonzero
# test 8.3.1.4.1 SATP ASID and PPN fields (test having two page tables with different ASID)
# test 11.3.1.3.9 NAPOT read
.8byte 0x1A400, 0x0550DEADBEEF0660, read64_test # read from NAPOT 64 KiB page
# test 11.3.1.3.10 PBMT checks
.8byte 0x8040, 0x1212343456567878, write64_test # Write fault with PBMT when menvcfg.PBMTE = 0
.8byte 0x0, 0x0, goto_m_mode # change to M mode, 0x9 written to output
.8byte 0x0, 0x4000000000000000, write_menvcfg # set menvcfg.PBMTE = 1
.8byte 0x0, 0x0, goto_s_mode # change to S mode, 0xb written to output
.8byte 0x8040, 0x1212343456567878, write64_test # Write success with PBMT = 1
.8byte 0x8040, 0x1212343456567878, read64_test # Read back success with PBMT = 1
.8byte 0x9050, 0x2312343456567878, write64_test # Write success with PBMT = 2
.8byte 0x9050, 0x2312343456567878, read64_test # Read back success with PBMT = 2
.8byte 0xA060, 0x3412343456567878, write64_test # Write faults with PBMT = 3
# =========== test 11.3.1.4 SATP Register ===========
# test 11.3.1.4.1 SATP ASID and PPN fields (test having two page tables with different ASID)
// *** .8byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, write64_test # write identical value to global PTE to make sure it's still in the TLB
.8byte 0x8FFFF, 0x11, goto_sv39 # go to SV39 on a second, very minimal page table
.8byte 0x200AB0, 0x0000DEADBEEF0000, read64_test # Read success of old written value from a new page table mapping
# test 8.3.1.4.2 Test Global mapping
# test 11.3.1.4.2 Test Global mapping
// ***.8byte 0x7FFFFFF888, 0x0220DEADBEEF0099, read64_test # read success of global PTE undefined in current mapping.
# =========== test 8.3.1.5 STATUS Registers ===========
# =========== test 11.3.1.5 STATUS Registers ===========
# test 8.3.1.5.1 mstatus.mprv translation
# test 11.3.1.5.1 mstatus.mprv translation
# *** mstatus.mprv = 0 tested on every one of the translated reads and writes before this.
.8byte 0x8000D, 0x0, goto_sv39 // go back to old, extensive page table
.8byte 0x80000000, 0x1, goto_m_mode // go to m mode to be able to write mstatus
.8byte 0x1, 0x1, read_write_mprv // write 1 to mstatus.mprv and set mstatus.mpp to be 01=S
.8byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, read64_test // read test succeeds with translation even though we're in M mode since MPP=S and MPRV=1
# test 8.3.1.5.2 mstatus.mprv clearing
# test 11.3.1.5.2 mstatus.mprv clearing
# mstatus.mprv is already 1 from the last test so going to S mode should clear it with the mret
.8byte 0x80000000, 0x1, goto_s_mode // This should zero out the mprv bit but now to read and write mstatus, we have to
.8byte 0x80000000, 0x1, goto_m_mode // go back to m mode to allow us to reread mstatus.
.8byte 0x0, 0x0, read_write_mprv // read what should be a zeroed out mprv value and then force it back to zero.
# test 8.3.1.5.3 sstatus.mxr read
# this bitfield already tested in 8.3.1.3.3
# test 11.3.1.5.3 sstatus.mxr read
# this bitfield already tested in 11.3.1.3.3
# terminate tests
.8byte 0x0, 0x0, terminate_test # brings us back into machine mode with a final ecall, writing 0x9 to the output.

View File

@ -1,6 +1,6 @@
///////////////////////////////////////////
//
// WALLY-MMU
// WALLY-MMU-SV48
//
// Author: David_Harris@hmc.edu and Kip Macsai-Goren <kmacsaigoren@g.hmc.edu>
//
@ -54,9 +54,9 @@ test_cases:
# ---------------------------------------------------------------------------------------------
# =========== test 8.3.1.1 Page Table Translation ===========
# =========== test 11.3.1.1 Page Table Translation ===========
# test 8.3.1.1.1 write page tables / entries to phyiscal memory
# test 11.3.1.1.1 write page tables / entries to phyiscal memory
# sv48 page table (See Figure 12.12***):
# Level 3 page table, situated at 0x8000D000
.8byte 0x000000008000D000, 0x0000000020004C01, write64_test # points to level 2 page table A
@ -101,22 +101,22 @@ test_cases:
.8byte 0x8002F010, 0x200000CF, write64_test # Vaddr 0x80000000, Paddr 0x80000000: aligned gigapage (data and instr memory)
# test 8.3.1.1.2 write values to Paddrs in each page
# each of these values is used for 8.3.1.1.3 and some other tests, specified in the comments.
# test 11.3.1.1.2 write values to Paddrs in each page
# each of these values is used for 11.3.1.1.3 and some other tests, specified in the comments.
# when a test is supposed to fault, nothing is written into where it'll be reading/executing since it should fault before getting there.
.8byte 0x82777778, 0x0EE0DEADBEEF0CC0, write64_test # 8.3.1.1.4 terapage
.8byte 0x85BC0AB0, 0x0000DEADBEEF0000, write64_test # 8.3.1.1.4 gigapage
.8byte 0x800F0AB8, 0x0880DEADBEEF0055, write64_test # 8.3.1.1.4 megapage
.8byte 0x80201888, 0x0220DEADBEEF0099, write64_test # 8.3.1.1.4 kilopage
.8byte 0x80099000, 0x0000806711100393, write64_test # 8.3.1.3.1 write executable code for "li x7, 0x111; ret"
.8byte 0x80200400, 0x0000806711100393, write64_test # 8.3.1.3.2 write same executable code
.8byte 0x80200AC0, 0x0990DEADBEEF0033, write64_test # 8.3.1.3.2
.8byte 0x80200130, 0x0110DEADBEEF0077, write64_test # 8.3.1.3.2
.8byte 0x85212348, 0x0330DEADBEEF0440, write64_test # 8.3.1.3.3
.8byte 0x88888000, 0x0000806711100393, write64_test # 8.3.1.3.5 write same executable code
.8byte 0x80203AA0, 0x0440DEADBEEF0BB0, write64_test # 8.3.1.3.7
.8byte 0x82777778, 0x0EE0DEADBEEF0CC0, write64_test # 11.3.1.1.4 terapage
.8byte 0x85BC0AB0, 0x0000DEADBEEF0000, write64_test # 11.3.1.1.4 gigapage
.8byte 0x800F0AB8, 0x0880DEADBEEF0055, write64_test # 11.3.1.1.4 megapage
.8byte 0x80201888, 0x0220DEADBEEF0099, write64_test # 11.3.1.1.4 kilopage
.8byte 0x80099000, 0x0000806711100393, write64_test # 11.3.1.3.1 write executable code for "li x7, 0x111; ret"
.8byte 0x80200400, 0x0000806711100393, write64_test # 11.3.1.3.2 write same executable code
.8byte 0x80200AC0, 0x0990DEADBEEF0033, write64_test # 11.3.1.3.2
.8byte 0x80200130, 0x0110DEADBEEF0077, write64_test # 11.3.1.3.2
.8byte 0x85212348, 0x0330DEADBEEF0440, write64_test # 11.3.1.3.3
.8byte 0x88888000, 0x0000806711100393, write64_test # 11.3.1.3.5 write same executable code
.8byte 0x80203AA0, 0x0440DEADBEEF0BB0, write64_test # 11.3.1.3.7
# test 8.3.1.1.3 read values back from Paddrs without translation (this also verifies the previous test)
# test 11.3.1.1.3 read values back from Paddrs without translation (this also verifies the previous test)
.8byte 0x0, 0x0, goto_baremetal # satp.MODE = baremetal / no translation.
.8byte 0x0, 0x0, goto_s_mode # change to S mode, 0xb written to output
.8byte 0x82777778, 0x0EE0DEADBEEF0CC0, read64_test
@ -128,43 +128,43 @@ test_cases:
.8byte 0x85212348, 0x0330DEADBEEF0440, read64_test
.8byte 0x80203AA0, 0x0440DEADBEEF0BB0, read64_test
# test 8.3.1.1.4 check translation works in sv48, read the same values from previous tests, this time with Vaddrs
# test 11.3.1.1.4 check translation works in sv48, read the same values from previous tests, this time with Vaddrs
.8byte 0x8000D, 0x0, goto_sv48 # satp.MODE = sv48, with base page table PPN = 0x8000D and ASID = 0. current VPN: megapage at 0x80000000. Nothing written to output
.8byte 0x10082777778, 0x0EE0DEADBEEF0CC0, read64_test # terapage at Vaddr 0x010000000000, Paddr 0x0
.8byte 0x8005BC0AB0, 0x0000DEADBEEF0000, read64_test # gigapage at Vaddr 0x008000000000, Paddr 0x80000000
.8byte 0x800F0AB8, 0x0880DEADBEEF0055, read64_test # megapage at Vaddr 0x80000000, Paddr 0x80000000
.8byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, read64_test # kilopage at Vaddr 0xFFFFFFFFFFFFF000, Paddr 0x80201000
# =========== test 8.3.1.2 page fault tests ===========
# =========== test 11.3.1.2 page fault tests ===========
# test 8.3.1.2.1 page fault if upper bits of Vaddr are not the same
# test 11.3.1.2.1 page fault if upper bits of Vaddr are not the same
.8byte 0x001000800ABC0AB0, 0x0, read64_test# gigapage at Vaddr 0x008000000000, Paddr 0x80000000, bad 1 in upper bits
.8byte 0xFF0FFFFFFFFFF888, 0x0, read64_test# kilopage at Vaddr 0xFFFFFFFFFFFFF000, Paddr 0x80201000, bad 0000 in upper bits
# test 8.3.1.2.2 read fault when reading an address where the valid flag is zero
# test 11.3.1.2.2 read fault when reading an address where the valid flag is zero
.8byte 0x80205000, 0x0, read64_test
# test 8.3.1.2.3 write fault if PTE has W and ~R flags set
# test 11.3.1.2.3 write fault if PTE has W and ~R flags set
.8byte 0x80202000, 0x0, write64_test
# test 8.3.1.2.4 Fault if last level PTE is a pointer
# test 11.3.1.2.4 Fault if last level PTE is a pointer
.8byte 0x80200000, 0x0, read64_test
# test 8.3.1.2.5 read fault on misaligned pages
# test 11.3.1.2.5 read fault on misaligned pages
.8byte 0x18000000000, 0x0, read64_test # misaligned terapage
.8byte 0x8080000000, 0x0, read64_test # misaligned gigapage
.8byte 0x80400000, 0x0, read64_test # misaligned megapage
# =========== test 8.3.1.3 PTE Protection flags ===========
# =========== test 11.3.1.3 PTE Protection flags ===========
# test 8.3.1.3.1 User flag == 0
# reads on pages with U=0 already tested in 8.3.1.1.4
# test 11.3.1.3.1 User flag == 0
# reads on pages with U=0 already tested in 11.3.1.1.4
.8byte 0x008000099000, 0x111, executable_test # execute success when U=0, priv=S
.8byte 0x008040000000, 0x1, goto_u_mode # go to U mode, return to gigapage at 0x008040000000 where PTE.U = 1. 0x9 written to output
.8byte 0xFFFFFFFFFFFFFC80, 0x0880DEADBEEF0550, read64_test # read fault when U=0, priv=U
.8byte 0x008000099000, 0xbad, executable_test # execute fault when U=0, priv=U
# test 8.3.1.3.2 User flag == 1
# test 11.3.1.3.2 User flag == 1
.8byte 0x80201AC0, 0x0990DEADBEEF0033, read64_test # read success when U=1, priv=U
.8byte 0x80000000, 0x2, goto_s_mode
.8byte 0x0, 0x3, write_mxr_sum # set sstatus.[MXR, SUM] = 11
@ -173,61 +173,61 @@ test_cases:
.8byte 0x0, 0x2, write_mxr_sum # set sstatus.[MXR, SUM] = 10.
.8byte 0x80201AC0, 0x0990DEADBEEF0033, read64_test # read fault when U=1, priv=S, sstatus.SUM=0
# test 8.3.1.3.3 Read flag
# reads on pages with R=1 already tested in 8.3.1.1.4
# test 11.3.1.3.3 Read flag
# reads on pages with R=1 already tested in 11.3.1.1.4
.8byte 0x0, 0x1, write_mxr_sum # set sstatus.[MXR, SUM] = 01.
.8byte 0x80612348, 0x0330DEADBEEF0440, read64_test # read fault when R=0, sstatus.MXR=0
.8byte 0x0, 0x3, write_mxr_sum # set sstatus.[MXR, SUM] = 11.
.8byte 0x80612348, 0x0330DEADBEEF0440, read64_test # read success when MXR=1, X=1
# test 8.3.1.3.4 Write flag
# test 11.3.1.3.4 Write flag
.8byte 0x10080BCDED8, 0x0440DEADBEEF0110, write64_test # write success when W=1 (corresponding Paddr = 0x80BCDED8)
.8byte 0x10080BCDED8, 0x0440DEADBEEF0110, read64_test # check write success by reading value back
.8byte 0x8000009E88, 0x0220DEADBEEF0BB0, write64_test # write fault when W=0
# test 8.3.1.3.5 eXecute flag
# executes on pages with X = 1 already tested in 8.3.1.3.1
# test 11.3.1.3.5 eXecute flag
# executes on pages with X = 1 already tested in 11.3.1.3.1
.8byte 0x010088888000, 0x2, executable_test # execute fault when X=0
# In the following two tests, SVADU is not supported, so the software handles the A/D bits
# Since SVADU is 0, Accesses to A/D=0 causes a fault for the trap handler to fix those bits
# test 8.3.1.3.6 Accessed flag == 0
# test 11.3.1.3.6 Accessed flag == 0
.8byte 0x802036D0, 0x0990DEADBEEF0770, write64_test # write fault when A=0
.8byte 0x80203AB8, 0x0990DEADBEEF0990, read64_test# read fault when A=0
# test 8.3.1.3.7 Dirty flag == 0
# test 11.3.1.3.7 Dirty flag == 0
.8byte 0x80204658, 0x0440DEADBEEF0AA0, write64_test # write fault when D=0
.8byte 0x80204AA0, 0x0440DEADBEEF0BB0, read64_test# read success when D=0
# =========== test 8.3.1.4 SATP Register ===========
# =========== test 11.3.1.4 SATP Register ===========
# test 8.3.1.4.1 SATP ASID and PPN fields (test having two page tables with different ASID)
# test 11.3.1.4.1 SATP ASID and PPN fields (test having two page tables with different ASID)
// *** .8byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, write64_test # write identical value to global PTE to make sure it's still in the TLB
.8byte 0x8000F, 0x11, goto_sv48 # go to SV39 on a second, very minimal page table
.8byte 0x5BC0AB0, 0x0000DEADBEEF0000, read64_test # Read success of old written value from a new page table mapping
# test 8.3.1.4.2 Test Global mapping
# test 11.3.1.4.2 Test Global mapping
// ***.8byte 0x7FFFFFF888, 0x0220DEADBEEF0099, read64_test # read success of global PTE undefined in current mapping.
# =========== test 8.3.1.5 STATUS Registers ===========
# =========== test 11.3.1.5 STATUS Registers ===========
# test 8.3.1.5.1 mstatus.mprv translation
# test 11.3.1.5.1 mstatus.mprv translation
# *** mstatus.mprv = 0 tested on every one of the translated reads and writes before this.
.8byte 0x8000D, 0x0, goto_sv48 // go back to old, extensive page table
.8byte 0x80000000, 0x1, goto_m_mode // go to m mode to be able to write mstatus
.8byte 0x1, 0x1, read_write_mprv // write 1 to mstatus.mprv and set mstatus.mpp to be 01=S
.8byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, read64_test // read test succeeds with translation even though we're in M mode since MPP=S and MPRV=1
# test 8.3.1.5.2 mstatus.mprv clearing
# test 11.3.1.5.2 mstatus.mprv clearing
# mstatus.mprv is already 1 from the last test so going to S mode should clear it with the mret
.8byte 0x80000000, 0x1, goto_s_mode // This should zero out the mprv bit but now to read and write mstatus, we have to
.8byte 0x80000000, 0x1, goto_m_mode // go back to m mode to allow us to reread mstatus.
.8byte 0x0, 0x0, read_write_mprv // read what should be a zeroed out mprv value and then force it back to zero.
# test 8.3.1.5.3 sstatus.mxr read
# this bitfield already tested in 8.3.1.3.3
# test 11.3.1.5.3 sstatus.mxr read
# this bitfield already tested in 11.3.1.3.3
# terminate tests
.8byte 0x0, 0x0, terminate_test # brings us back into machine mode with a final ecall, writing 0x9 to the output.

View File

@ -1,6 +1,6 @@
///////////////////////////////////////////
//
// WALLY-MMU
// WALLY-MMU-SV48-SVADU
//
// Author: David_Harris@hmc.edu and Kip Macsai-Goren <kmacsaigoren@g.hmc.edu>
//
@ -54,9 +54,9 @@ test_cases:
# ---------------------------------------------------------------------------------------------
# =========== test 8.3.1.1 Page Table Translation ===========
# =========== test 11.3.1.1 Page Table Translation ===========
# test 8.3.1.1.1 write page tables / entries to phyiscal memory
# test 11.3.1.1.1 write page tables / entries to phyiscal memory
# sv48 page table (See Figure 12.12***):
# Level 3 page table, situated at 0x8000D000
.8byte 0x000000008000D000, 0x0000000020004C01, write64_test # points to level 2 page table A
@ -101,21 +101,21 @@ test_cases:
.8byte 0x8002F010, 0x200000CF, write64_test # Vaddr 0x80000000, Paddr 0x80000000: aligned gigapage (data and instr memory)
# test 8.3.1.1.2 write values to Paddrs in each page
# each of these values is used for 8.3.1.1.3 and some other tests, specified in the comments.
# test 11.3.1.1.2 write values to Paddrs in each page
# each of these values is used for 11.3.1.1.3 and some other tests, specified in the comments.
# when a test is supposed to fault, nothing is written into where it'll be reading/executing since it should fault before getting there.
.8byte 0x82777778, 0x0EE0DEADBEEF0CC0, write64_test # 8.3.1.1.4 terapage
.8byte 0x85BC0AB0, 0x0000DEADBEEF0000, write64_test # 8.3.1.1.4 gigapage
.8byte 0x800F0AB8, 0x0880DEADBEEF0055, write64_test # 8.3.1.1.4 megapage
.8byte 0x80201888, 0x0220DEADBEEF0099, write64_test # 8.3.1.1.4 kilopage
.8byte 0x80099000, 0x0000806711100393, write64_test # 8.3.1.3.1 write executable code for "li x7, 0x111; ret"
.8byte 0x80200400, 0x0000806711100393, write64_test # 8.3.1.3.2 write same executable code
.8byte 0x80200AC0, 0x0990DEADBEEF0033, write64_test # 8.3.1.3.2
.8byte 0x80200130, 0x0110DEADBEEF0077, write64_test # 8.3.1.3.2
.8byte 0x85212348, 0x0330DEADBEEF0440, write64_test # 8.3.1.3.3
.8byte 0x88888000, 0x0000806711100393, write64_test # 8.3.1.3.5 write same executable code
.8byte 0x82777778, 0x0EE0DEADBEEF0CC0, write64_test # 11.3.1.1.4 terapage
.8byte 0x85BC0AB0, 0x0000DEADBEEF0000, write64_test # 11.3.1.1.4 gigapage
.8byte 0x800F0AB8, 0x0880DEADBEEF0055, write64_test # 11.3.1.1.4 megapage
.8byte 0x80201888, 0x0220DEADBEEF0099, write64_test # 11.3.1.1.4 kilopage
.8byte 0x80099000, 0x0000806711100393, write64_test # 11.3.1.3.1 write executable code for "li x7, 0x111; ret"
.8byte 0x80200400, 0x0000806711100393, write64_test # 11.3.1.3.2 write same executable code
.8byte 0x80200AC0, 0x0990DEADBEEF0033, write64_test # 11.3.1.3.2
.8byte 0x80200130, 0x0110DEADBEEF0077, write64_test # 11.3.1.3.2
.8byte 0x85212348, 0x0330DEADBEEF0440, write64_test # 11.3.1.3.3
.8byte 0x88888000, 0x0000806711100393, write64_test # 11.3.1.3.5 write same executable code
# test 8.3.1.1.3 read values back from Paddrs without translation (this also verifies the previous test)
# test 11.3.1.1.3 read values back from Paddrs without translation (this also verifies the previous test)
.8byte 0x0, 0x0, goto_baremetal # satp.MODE = baremetal / no translation.
.8byte 0x0, 0x0, goto_s_mode # change to S mode, 0xb written to output
.8byte 0x82777778, 0x0EE0DEADBEEF0CC0, read64_test
@ -126,43 +126,43 @@ test_cases:
.8byte 0x80201888, 0x0220DEADBEEF0099, read64_test
.8byte 0x85212348, 0x0330DEADBEEF0440, read64_test
# test 8.3.1.1.4 check translation works in sv48, read the same values from previous tests, this time with Vaddrs
# test 11.3.1.1.4 check translation works in sv48, read the same values from previous tests, this time with Vaddrs
.8byte 0x8000D, 0x0, goto_sv48 # satp.MODE = sv48, with base page table PPN = 0x8000D and ASID = 0. current VPN: megapage at 0x80000000. Nothing written to output
.8byte 0x10082777778, 0x0EE0DEADBEEF0CC0, read64_test # terapage at Vaddr 0x010000000000, Paddr 0x0
.8byte 0x8005BC0AB0, 0x0000DEADBEEF0000, read64_test # gigapage at Vaddr 0x008000000000, Paddr 0x80000000
.8byte 0x800F0AB8, 0x0880DEADBEEF0055, read64_test # megapage at Vaddr 0x80000000, Paddr 0x80000000
.8byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, read64_test # kilopage at Vaddr 0xFFFFFFFFFFFFF000, Paddr 0x80201000
# =========== test 8.3.1.2 page fault tests ===========
# =========== test 11.3.1.2 page fault tests ===========
# test 8.3.1.2.1 page fault if upper bits of Vaddr are not the same
# test 11.3.1.2.1 page fault if upper bits of Vaddr are not the same
.8byte 0x001000800ABC0AB0, 0x0, read64_test# gigapage at Vaddr 0x008000000000, Paddr 0x80000000, bad 1 in upper bits
.8byte 0xFF0FFFFFFFFFF888, 0x0, read64_test# kilopage at Vaddr 0xFFFFFFFFFFFFF000, Paddr 0x80201000, bad 0000 in upper bits
# test 8.3.1.2.2 read fault when reading an address where the valid flag is zero
# test 11.3.1.2.2 read fault when reading an address where the valid flag is zero
.8byte 0x80205000, 0x0, read64_test
# test 8.3.1.2.3 write fault if PTE has W and ~R flags set
# test 11.3.1.2.3 write fault if PTE has W and ~R flags set
.8byte 0x80202000, 0x0, write64_test
# test 8.3.1.2.4 Fault if last level PTE is a pointer
# test 11.3.1.2.4 Fault if last level PTE is a pointer
.8byte 0x80200000, 0x0, read64_test
# test 8.3.1.2.5 read fault on misaligned pages
# test 11.3.1.2.5 read fault on misaligned pages
.8byte 0x18000000000, 0x0, read64_test # misaligned terapage
.8byte 0x8080000000, 0x0, read64_test # misaligned gigapage
.8byte 0x80400000, 0x0, read64_test # misaligned megapage
# =========== test 8.3.1.3 PTE Protection flags ===========
# =========== test 11.3.1.3 PTE Protection flags ===========
# test 8.3.1.3.1 User flag == 0
# reads on pages with U=0 already tested in 8.3.1.1.4
# test 11.3.1.3.1 User flag == 0
# reads on pages with U=0 already tested in 11.3.1.1.4
.8byte 0x008000099000, 0x111, executable_test # execute success when U=0, priv=S
.8byte 0x008040000000, 0x1, goto_u_mode # go to U mode, return to gigapage at 0x008040000000 where PTE.U = 1. 0x9 written to output
.8byte 0xFFFFFFFFFFFFFC80, 0x0880DEADBEEF0550, read64_test # read fault when U=0, priv=U
.8byte 0x008000099000, 0xbad, executable_test # execute fault when U=0, priv=U
# test 8.3.1.3.2 User flag == 1
# test 11.3.1.3.2 User flag == 1
.8byte 0x80201AC0, 0x0990DEADBEEF0033, read64_test # read success when U=1, priv=U
.8byte 0x80000000, 0x2, goto_s_mode
.8byte 0x0, 0x3, write_mxr_sum # set sstatus.[MXR, SUM] = 11
@ -171,61 +171,61 @@ test_cases:
.8byte 0x0, 0x2, write_mxr_sum # set sstatus.[MXR, SUM] = 10.
.8byte 0x80201AC0, 0x0990DEADBEEF0033, read64_test # read fault when U=1, priv=S, sstatus.SUM=0
# test 8.3.1.3.3 Read flag
# reads on pages with R=1 already tested in 8.3.1.1.4
# test 11.3.1.3.3 Read flag
# reads on pages with R=1 already tested in 11.3.1.1.4
.8byte 0x0, 0x1, write_mxr_sum # set sstatus.[MXR, SUM] = 01.
.8byte 0x80612348, 0x0330DEADBEEF0440, read64_test # read fault when R=0, sstatus.MXR=0
.8byte 0x0, 0x3, write_mxr_sum # set sstatus.[MXR, SUM] = 11.
.8byte 0x80612348, 0x0330DEADBEEF0440, read64_test # read success when MXR=1, X=1
# test 8.3.1.3.4 Write flag
# test 11.3.1.3.4 Write flag
.8byte 0x10080BCDED8, 0x0440DEADBEEF0110, write64_test # write success when W=1 (corresponding Paddr = 0x80BCDED8)
.8byte 0x10080BCDED8, 0x0440DEADBEEF0110, read64_test # check write success by reading value back
.8byte 0x8000009E88, 0x0220DEADBEEF0BB0, write64_test # write fault when W=0
# test 8.3.1.3.5 eXecute flag
# executes on pages with X = 1 already tested in 8.3.1.3.1
# test 11.3.1.3.5 eXecute flag
# executes on pages with X = 1 already tested in 11.3.1.3.1
.8byte 0x010088888000, 0x2, executable_test # execute fault when X=0
# In the following two tests, SVADU is supported, so the hardware handles the A/D bits
# Since SVADU is 1, there are no faults when A/D=0
# test 8.3.1.3.6 Accessed flag == 0
# test 11.3.1.3.6 Accessed flag == 0
.8byte 0x802036D0, 0x0990DEADBEEF0770, write64_test # Write success when A=0 and SVADU is enabled
.8byte 0x802036D0, 0x0990DEADBEEF0770, read64_test # Read success when A=0 and SVADU is enabled
# test 8.3.1.3.7 Dirty flag == 0
# test 11.3.1.3.7 Dirty flag == 0
.8byte 0x80204658, 0x0440DEADBEEF0AA0, write64_test # Write success when D=0 and SVADU is enabled
.8byte 0x80204658, 0x0440DEADBEEF0AA0, read64_test # read success when D=0
# =========== test 8.3.1.4 SATP Register ===========
# =========== test 11.3.1.4 SATP Register ===========
# test 8.3.1.4.1 SATP ASID and PPN fields (test having two page tables with different ASID)
# test 11.3.1.4.1 SATP ASID and PPN fields (test having two page tables with different ASID)
// *** .8byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, write64_test # write identical value to global PTE to make sure it's still in the TLB
.8byte 0x8000F, 0x11, goto_sv48 # go to SV39 on a second, very minimal page table
.8byte 0x5BC0AB0, 0x0000DEADBEEF0000, read64_test # Read success of old written value from a new page table mapping
# test 8.3.1.4.2 Test Global mapping
# test 11.3.1.4.2 Test Global mapping
// ***.8byte 0x7FFFFFF888, 0x0220DEADBEEF0099, read64_test # read success of global PTE undefined in current mapping.
# =========== test 8.3.1.5 STATUS Registers ===========
# =========== test 11.3.1.5 STATUS Registers ===========
# test 8.3.1.5.1 mstatus.mprv translation
# test 11.3.1.5.1 mstatus.mprv translation
# *** mstatus.mprv = 0 tested on every one of the translated reads and writes before this.
.8byte 0x8000D, 0x0, goto_sv48 // go back to old, extensive page table
.8byte 0x80000000, 0x1, goto_m_mode // go to m mode to be able to write mstatus
.8byte 0x1, 0x1, read_write_mprv // write 1 to mstatus.mprv and set mstatus.mpp to be 01=S
.8byte 0xFFFFFFFFFFFFF888, 0x0220DEADBEEF0099, read64_test // read test succeeds with translation even though we're in M mode since MPP=S and MPRV=1
# test 8.3.1.5.2 mstatus.mprv clearing
# test 11.3.1.5.2 mstatus.mprv clearing
# mstatus.mprv is already 1 from the last test so going to S mode should clear it with the mret
.8byte 0x80000000, 0x1, goto_s_mode // This should zero out the mprv bit but now to read and write mstatus, we have to
.8byte 0x80000000, 0x1, goto_m_mode // go back to m mode to allow us to reread mstatus.
.8byte 0x0, 0x0, read_write_mprv // read what should be a zeroed out mprv value and then force it back to zero.
# test 8.3.1.5.3 sstatus.mxr read
# this bitfield already tested in 8.3.1.3.3
# test 11.3.1.5.3 sstatus.mxr read
# this bitfield already tested in 11.3.1.3.3
# terminate tests
.8byte 0x0, 0x0, terminate_test # brings us back into machine mode with a final ecall, writing 0x9 to the output.