Merge pull request #350 from stineje/main

Minor tweak to fix vectors not working for fadd.
This commit is contained in:
Ross Thompson 2023-06-26 16:41:01 -04:00 committed by GitHub
commit b1203b5460

View File

@ -2,7 +2,7 @@
//
// Written: me@KatherineParry.com, james.stine@okstate.edu
//
// Purpose: Testbench for Testfloat
// Purpose: Testbench for UCB Testfloat on Wally
//
// A component of the Wally configurable RISC-V project.
//
@ -21,18 +21,21 @@
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
//`include "wally-config.vh"
`include "config.vh"
`include "tests-fp.vh"
import cvw::*;
module testbenchfp;
// Two parameters TEST, TEST_SIZE used with testfloat.do in sim dir
// to run specific precisions (e.g., quad or all)
parameter TEST="none";
parameter TEST_SIZE="none";
`include "parameter-defs.vh"
// FIXME: needs cleaning of unused variables (jes)
string Tests[]; // list of tests to be run
logic [2:0] OpCtrl[]; // list of op controls
logic [2:0] Unit[]; // list of units being tested
@ -61,7 +64,8 @@ module testbenchfp;
logic [P.FMTBITS-1:0] ModFmt; // format - 10 = half, 00 = single, 01 = double, 11 = quad
logic [P.FLEN-1:0] FpRes, FpCmpRes; // Results from each unit
logic [P.XLEN-1:0] IntRes, CmpRes; // Results from each unit
logic [4:0] FmaFlg, CvtFlg, DivFlg, CmpFlg; // Outputed flags
logic [4:0] FmaFlg, CvtFlg, DivFlg; // Outputed flags
logic [4:0] CmpFlg; // Outputed flags
logic AnsNaN, ResNaN, NaNGood;
logic Xs, Ys, Zs; // sign of the inputs
logic [P.NE-1:0] Xe, Ye, Ze; // exponent of the inputs
@ -72,7 +76,7 @@ module testbenchfp;
logic XInf, YInf, ZInf; // is the input infinity
logic XZero, YZero, ZZero; // is the input zero
logic XExpMax, YExpMax, ZExpMax; // is the input's exponent all ones
logic [P.CVTLEN-1:0] CvtLzcInE; // input to the Leading Zero Counter (priority encoder)
logic [P.CVTLEN-1:0] CvtLzcInE; // input to the Leading Zero Counter (priority encoder)
logic IntZero;
logic CvtResSgnE;
logic [P.NE:0] CvtCalcExpE; // the calculated exponent
@ -114,8 +118,8 @@ module testbenchfp;
logic [P.NE+1:0] QeM;
logic [P.DIVb:0] QmM;
logic [P.XLEN-1:0] FIntDivResultM;
logic ResMatch; // Check if result matches
logic FlagMatch; // Check if flag matches
logic ResMatch; // Check if result match
logic FlagMatch; // Check if IEEE flags match
logic CheckNow; // Final check
///////////////////////////////////////////////////////////////////////////////////////////////
@ -139,6 +143,7 @@ module testbenchfp;
// all - test all of the above
initial begin
// Information displayed for user on what is simulating
$display("\nThe start of simulation...");
$display("This simulation for TEST is %s", TEST);
$display("This simulation for TEST is of the operand size of %s", TEST_SIZE);
@ -168,7 +173,7 @@ module testbenchfp;
end
// if the floating-point conversions are being tested
if (TEST === "cvtfp" | TEST === "all") begin
if(P.D_SUPPORTED) begin // if double precision is supported
if (P.D_SUPPORTED) begin // if double precision is supported
// add the 128 <-> 64 bit conversions to the to-be-tested list
Tests = {Tests, f128f64cvt};
// add the op-ctrls (i.e. the format of the result)
@ -184,7 +189,7 @@ module testbenchfp;
Fmt = {Fmt, 2'b01};
end
end
if(P.F_SUPPORTED) begin // if single precision is supported
if (P.F_SUPPORTED) begin // if single precision is supported
// add the 128 <-> 32 bit conversions to the to-be-tested list
Tests = {Tests, f128f32cvt};
// add the op-ctrls (i.e. the format of the result)
@ -200,7 +205,7 @@ module testbenchfp;
Fmt = {Fmt, 2'b00};
end
end
if(P.ZFH_SUPPORTED) begin // if half precision is supported
if (P.ZFH_SUPPORTED) begin // if half precision is supported
// add the 128 <-> 16 bit conversions to the to-be-tested list
Tests = {Tests, f128f16cvt};
// add the op-ctrls (i.e. the format of the result)
@ -311,7 +316,7 @@ module testbenchfp;
end
end
if (TEST === "cvtfp" | TEST === "all") begin // if floating point conversions are being tested
if(P.F_SUPPORTED) begin // if single precision is supported
if (P.F_SUPPORTED) begin // if single precision is supported
// add the 64 <-> 32 bit conversions to the to-be-tested list
Tests = {Tests, f64f32cvt};
// add the op-ctrls (i.e. the format of the result)
@ -327,7 +332,7 @@ module testbenchfp;
Fmt = {Fmt, 2'b00};
end
end
if(P.ZFH_SUPPORTED) begin // if half precision is supported
if (P.ZFH_SUPPORTED) begin // if half precision is supported
// add the 64 <-> 16 bit conversions to the to-be-tested list
Tests = {Tests, f64f16cvt};
// add the op-ctrls (i.e. the format of the result)
@ -438,7 +443,7 @@ module testbenchfp;
end
end
if (TEST === "cvtfp" | TEST === "all") begin // if floating point conversion is being tested
if(P.ZFH_SUPPORTED) begin
if (P.ZFH_SUPPORTED) begin
// add the 32 <-> 16 bit conversions to the to-be-tested list
Tests = {Tests, f32f16cvt};
// add the op-ctrls (i.e. the format of the result)
@ -618,7 +623,6 @@ module testbenchfp;
end
end
end
// check if nothing is being tested
if (Tests.size() == 0) begin
$display("TEST %s not supported in this configuration", TEST);
@ -644,7 +648,7 @@ module testbenchfp;
string tt0;
tt0 = $psprintf("%s", Tests[TestNum]);
testname = {p, tt0};
//$display("Here you are %s", testname);
$display("Here you are %s", testname);
$display("\n\nRunning %s vectors ", Tests[TestNum]);
$readmemh(testname, TestVectors);
// set the test index to 0
@ -662,7 +666,7 @@ module testbenchfp;
// - 1 for the larger precision
// - 0 for the smaller precision
always_comb begin
if(P.FMTBITS == 1) ModFmt = FmtVal == P.FMT;
if (P.FMTBITS == 1) ModFmt = FmtVal == P.FMT;
else ModFmt = FmtVal;
end
@ -722,6 +726,7 @@ module testbenchfp;
.Xm, .Ym, .XZero, .YZero, .CmpIntRes(CmpRes),
.XNaN, .YNaN, .XSNaN, .YSNaN, .X, .Y, .CmpNV(CmpFlg[4]), .CmpFpRes(FpCmpRes));
end
if (TEST === "div" | TEST === "sqrt" | TEST === "all") begin: fdivsqrt
fdivsqrt #(P) fdivsqrt(.clk, .reset, .XsE(Xs), .FmtE(ModFmt), .XmE(Xm), .YmE(Ym),
.XeE(Xe), .YeE(Ye), .SqrtE(OpCtrlVal[0]), .SqrtM(OpCtrlVal[0]),
@ -765,7 +770,7 @@ module testbenchfp;
// Check if the correct answer and result is a NaN
always_comb begin
if(UnitVal === `CVTINTUNIT | UnitVal === `CMPUNIT) begin
if (UnitVal === `CVTINTUNIT | UnitVal === `CMPUNIT) begin
// an integer output can't be a NaN
AnsNaN = 1'b0;
ResNaN = 1'b0;
@ -818,7 +823,7 @@ module testbenchfp;
`FMAUNIT: Res = FpRes;
`DIVUNIT: Res = FpRes;
`CMPUNIT: Res = CmpRes;
`CVTINTUNIT: if(WriteIntVal) Res = IntRes; else Res = FpRes;
`CVTINTUNIT: if (WriteIntVal) Res = IntRes; else Res = FpRes;
`CVTFPUNIT: Res = FpRes;
endcase
@ -836,13 +841,35 @@ module testbenchfp;
OldFDivBusyE = FDivDoneE;
// For FP division this adds extra clock cycles to make sure the
// computation completes. 18 clocks cycles are utilize to handle
// Quad, but this can be changed for each precision to go faster.
// computation completes.
always @(posedge clk) begin
// Add extra clock cycles in beginning for fdivsqrt to adequate reset state
if(~(FDivBusyE|DivStart)|(UnitVal != `DIVUNIT)) begin
repeat (18)
@(posedge clk);
if (~(FDivBusyE|DivStart)|(UnitVal != `DIVUNIT)) begin
// This allows specific number of clocks to allow each vector
// to complete for division or square root. It is an
// arbitrary value and can be changed, if needed.
case (FmtVal)
// QP
4'b11: begin
repeat (20)
@(posedge clk);
end
// HP
4'b10: begin
repeat (14)
@(posedge clk);
end
// DP
4'b01: begin
repeat (18)
@(posedge clk);
end
// SP
4'b00: begin
repeat (16)
@(posedge clk);
end
endcase // case (FmtVal)
if (reset != 1'b1)
VectorNum += 1; // increment the vector
end
@ -850,7 +877,6 @@ module testbenchfp;
// check results on falling edge of clk
always @(negedge clk) begin
// check if the NaN value is good. IEEE754-2019 sections 6.3 and 6.2.3 specify:
// - the sign of the NaN does not matter for the opperations being tested
// - when 2 or more NaNs are inputed the NaN that is propigated doesn't matter
@ -935,10 +961,11 @@ module testbenchfp;
// Testfloat outputs 800... for both the largest integer values for both positive and negitive numbers but
// the riscv spec specifies 2^31-1 for positive values out of range and NaNs ie 7fff...
else if ((UnitVal === `CVTINTUNIT) & ~(((WriteIntVal&~OpCtrlVal[0]&AnsFlg[4]&Xs&(Res[P.XLEN-1:0] === (P.XLEN)'(0))) |
(WriteIntVal&OpCtrlVal[0]&AnsFlg[4]&(~Xs|XNaN)&OpCtrlVal[1]&(Res[P.XLEN-1:0] === {1'b0, {P.XLEN-1{1'b1}}})) |
(WriteIntVal&OpCtrlVal[0]&AnsFlg[4]&(~Xs|XNaN)&~OpCtrlVal[1]&(Res[P.XLEN-1:0] === {{P.XLEN-32{1'b0}}, 1'b0, {31{1'b1}}})) |
(~(WriteIntVal&~OpCtrlVal[0]&AnsFlg[4]&Xs&~XNaN)&(Res === Ans | NaNGood | NaNGood === 1'bx))) & (ResFlg === AnsFlg | AnsFlg === 5'bx))) begin
else if ((UnitVal === `CVTINTUNIT) &
~(((WriteIntVal&~OpCtrlVal[0]&AnsFlg[4]&Xs&(Res[P.XLEN-1:0] === (P.XLEN)'(0))) |
(WriteIntVal&OpCtrlVal[0]&AnsFlg[4]&(~Xs|XNaN)&OpCtrlVal[1]&(Res[P.XLEN-1:0] === {1'b0, {P.XLEN-1{1'b1}}})) |
(WriteIntVal&OpCtrlVal[0]&AnsFlg[4]&(~Xs|XNaN)&~OpCtrlVal[1]&(Res[P.XLEN-1:0] === {{P.XLEN-32{1'b0}}, 1'b0, {31{1'b1}}})) |
(~(WriteIntVal&~OpCtrlVal[0]&AnsFlg[4]&Xs&~XNaN)&(Res === Ans | NaNGood | NaNGood === 1'bx))) & (ResFlg === AnsFlg | AnsFlg === 5'bx))) begin
errors += 1;
$display("There is an error in %s", Tests[TestNum]);
$display("inputs: %h %h %h\nSrcA: %h\n Res: %h %h\n Ans: %h %h", X, Y, Z, SrcA, Res, ResFlg, Ans, AnsFlg);
@ -955,17 +982,15 @@ module testbenchfp;
// set the vector index back to 0
VectorNum = 0;
// incemet the operation if all the rounding modes have been tested
if(FrmNum === 4) OpCtrlNum += 1;
if (FrmNum === 4) OpCtrlNum += 1;
// increment the rounding mode or loop back to rne
if(FrmNum < 4) FrmNum += 1;
if (FrmNum < 4) FrmNum += 1;
else FrmNum = 0;
// if no more Tests - finish
if(Tests[TestNum] === "") begin
if (Tests[TestNum] === "") begin
$display("\nAll Tests completed with %d errors\n", errors);
$stop;
end
$display("Running %s vectors", Tests[TestNum]);
end
end
@ -1000,105 +1025,108 @@ module readvectors (
localparam Q_LEN = 32'd128;
`include "parameter-defs.vh"
logic XEn, YEn, ZEn;
logic XEn;
logic YEn;
logic ZEn;
logic FPUActive;
// apply test vectors on rising edge of clk
// Format of vectors Inputs(1/2/3)_AnsFlg
always @(VectorNum) begin
// Initial delay is given to allow vector to work for fdiv
// otherwise it will fail on first vector - fix needed (jes)
DivStart = 1'b0;
#20;
#1;
AnsFlg = TestVector[4:0];
DivStart = 1'b0;
case (Unit)
`FMAUNIT:
case (Fmt)
2'b11: begin // quad
if(OpCtrl === `FMA_OPCTRL) begin
2'b11: begin // quad
if (OpCtrl === `FMA_OPCTRL) begin
X = TestVector[8+4*(P.Q_LEN)-1:8+3*(P.Q_LEN)];
Y = TestVector[8+3*(P.Q_LEN)-1:8+2*(P.Q_LEN)];
Z = TestVector[8+2*(P.Q_LEN)-1:8+P.Q_LEN];
end
else begin
X = TestVector[8+3*(P.Q_LEN)-1:8+2*(P.Q_LEN)];
if(OpCtrl === `MUL_OPCTRL) Y = TestVector[8+2*(P.Q_LEN)-1:8+(P.Q_LEN)]; else Y = {2'b0, {P.Q_NE-1{1'b1}}, (P.Q_NF)'(0)};
if(OpCtrl === `MUL_OPCTRL) Z = 0; else Z = TestVector[8+2*(P.Q_LEN)-1:8+(P.Q_LEN)];
if (OpCtrl === `MUL_OPCTRL) Y = TestVector[8+2*(P.Q_LEN)-1:8+(P.Q_LEN)]; else Y = {2'b0, {P.Q_NE-1{1'b1}}, (P.Q_NF)'(0)};
if (OpCtrl === `MUL_OPCTRL) Z = 0; else Z = TestVector[8+2*(P.Q_LEN)-1:8+(P.Q_LEN)];
end
Ans = TestVector[8+(P.Q_LEN-1):8];
end
2'b01: if (P.D_SUPPORTED)begin // double
if(OpCtrl === `FMA_OPCTRL) begin
2'b01: if (P.D_SUPPORTED) begin // double
if (OpCtrl === `FMA_OPCTRL) begin
X = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+4*(P.D_LEN)-1:8+3*(P.D_LEN)]};
Y = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+3*(P.D_LEN)-1:8+2*(P.D_LEN)]};
Z = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+2*(P.D_LEN)-1:8+P.D_LEN]};
end
else begin
X = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+3*(P.D_LEN)-1:8+2*(P.D_LEN)]};
if(OpCtrl === `MUL_OPCTRL) Y = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+2*(P.D_LEN)-1:8+(P.D_LEN)]};
if (OpCtrl === `MUL_OPCTRL) Y = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+2*(P.D_LEN)-1:8+(P.D_LEN)]};
else Y = {{P.FLEN-P.D_LEN{1'b1}}, 2'b0, {P.D_NE-1{1'b1}}, (P.D_NF)'(0)};
if(OpCtrl === `MUL_OPCTRL) Z = {{P.FLEN-P.D_LEN{1'b1}}, {P.D_LEN{1'b0}}};
if (OpCtrl === `MUL_OPCTRL) Z = {{P.FLEN-P.D_LEN{1'b1}}, {P.D_LEN{1'b0}}};
else Z = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+2*(P.D_LEN)-1:8+(P.D_LEN)]};
end
Ans = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+(P.D_LEN-1):8]};
end
2'b00: if (P.S_SUPPORTED)begin // single
if(OpCtrl === `FMA_OPCTRL) begin
2'b00: if (P.S_SUPPORTED) begin // single
if (OpCtrl === `FMA_OPCTRL) begin
X = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+4*(P.S_LEN)-1:8+3*(P.S_LEN)]};
Y = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+3*(P.S_LEN)-1:8+2*(P.S_LEN)]};
Z = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+2*(P.S_LEN)-1:8+P.S_LEN]};
end
else begin
X = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+3*(P.S_LEN)-1:8+2*(P.S_LEN)]};
if(OpCtrl === `MUL_OPCTRL) Y = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+2*(P.S_LEN)-1:8+(P.S_LEN)]};
if (OpCtrl === `MUL_OPCTRL) Y = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+2*(P.S_LEN)-1:8+(P.S_LEN)]};
else Y = {{P.FLEN-P.S_LEN{1'b1}}, 2'b0, {P.S_NE-1{1'b1}}, (P.S_NF)'(0)};
if(OpCtrl === `MUL_OPCTRL) Z = {{P.FLEN-P.S_LEN{1'b1}}, {P.S_LEN{1'b0}}};
if (OpCtrl === `MUL_OPCTRL) Z = {{P.FLEN-P.S_LEN{1'b1}}, {P.S_LEN{1'b0}}};
else Z = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+2*(P.S_LEN)-1:8+(P.S_LEN)]};
end
Ans = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+(P.S_LEN-1):8]};
end
2'b10: begin // half
if(OpCtrl === `FMA_OPCTRL) begin
2'b10: begin // half
if (OpCtrl === `FMA_OPCTRL) begin
X = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+4*(P.H_LEN)-1:8+3*(P.H_LEN)]};
Y = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+3*(P.H_LEN)-1:8+2*(P.H_LEN)]};
Z = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+2*(P.H_LEN)-1:8+P.H_LEN]};
end
else begin
X = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+3*(P.H_LEN)-1:8+2*(P.H_LEN)]};
if(OpCtrl === `MUL_OPCTRL) Y = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+2*(P.H_LEN)-1:8+(P.H_LEN)]};
if (OpCtrl === `MUL_OPCTRL) Y = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+2*(P.H_LEN)-1:8+(P.H_LEN)]};
else Y = {{P.FLEN-P.H_LEN{1'b1}}, 2'b0, {P.H_NE-1{1'b1}}, (P.H_NF)'(0)};
if(OpCtrl === `MUL_OPCTRL) Z = {{P.FLEN-P.H_LEN{1'b1}}, {P.H_LEN{1'b0}}};
if (OpCtrl === `MUL_OPCTRL) Z = {{P.FLEN-P.H_LEN{1'b1}}, {P.H_LEN{1'b0}}};
else Z = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+2*(P.H_LEN)-1:8+(P.H_LEN)]};
end
Ans = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+(P.H_LEN-1):8]};
end
endcase
`DIVUNIT:
if(OpCtrl[0])
if (OpCtrl[0])
case (Fmt)
2'b11: begin // quad
2'b11: begin // quad
#20;
X = TestVector[8+2*(P.Q_LEN)-1:8+(P.Q_LEN)];
Ans = TestVector[8+(P.Q_LEN-1):8];
if (~clk) #5;
DivStart = 1'b1; #10 // one clk cycle
DivStart = 1'b0;
end
2'b01: if (P.D_SUPPORTED)begin // double
2'b01: if (P.D_SUPPORTED) begin // double
#20;
X = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+2*(P.D_LEN)-1:8+(P.D_LEN)]};
Ans = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+(P.D_LEN-1):8]};
if (~clk) #5;
DivStart = 1'b1; #10
DivStart = 1'b0;
end
2'b00: if (P.S_SUPPORTED)begin // single
2'b00: if (P.S_SUPPORTED) begin // single
#20;
X = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+2*(P.S_LEN)-1:8+1*(P.S_LEN)]};
Ans = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+(P.S_LEN-1):8]};
if (~clk) #5;
DivStart = 1'b1; #10
DivStart = 1'b0;
end
2'b10: begin // half
2'b10: begin // half
#20;
X = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+2*(P.H_LEN)-1:8+(P.H_LEN)]};
Ans = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+(P.H_LEN-1):8]};
if (~clk) #5;
@ -1108,7 +1136,8 @@ module readvectors (
endcase
else
case (Fmt)
2'b11: begin // quad
2'b11: begin // quad
#20;
X = TestVector[8+3*(P.Q_LEN)-1:8+2*(P.Q_LEN)];
Y = TestVector[8+2*(P.Q_LEN)-1:8+(P.Q_LEN)];
Ans = TestVector[8+(P.Q_LEN-1):8];
@ -1116,7 +1145,8 @@ module readvectors (
DivStart = 1'b1; #10 // one clk cycle
DivStart = 1'b0;
end
2'b01: if (P.D_SUPPORTED)begin // double
2'b01: if (P.D_SUPPORTED) begin // double
#20;
X = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+3*(P.D_LEN)-1:8+2*(P.D_LEN)]};
Y = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+2*(P.D_LEN)-1:8+(P.D_LEN)]};
Ans = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+(P.D_LEN-1):8]};
@ -1124,7 +1154,8 @@ module readvectors (
DivStart = 1'b1; #10
DivStart = 1'b0;
end
2'b00: if (P.S_SUPPORTED)begin // single
2'b00: if (P.S_SUPPORTED) begin // single
#20;
X = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+3*(P.S_LEN)-1:8+2*(P.S_LEN)]};
Y = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+2*(P.S_LEN)-1:8+1*(P.S_LEN)]};
Ans = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+(P.S_LEN-1):8]};
@ -1132,7 +1163,8 @@ module readvectors (
DivStart = 1'b1; #10
DivStart = 1'b0;
end
2'b10: begin // half
2'b10: begin // half
#20;
X = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+3*(P.H_LEN)-1:8+2*(P.H_LEN)]};
Y = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+2*(P.H_LEN)-1:8+(P.H_LEN)]};
Ans = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+(P.H_LEN-1):8]};
@ -1143,22 +1175,22 @@ module readvectors (
endcase
`CMPUNIT:
case (Fmt)
2'b11: begin // quad
2'b11: begin // quad
X = TestVector[12+2*(P.Q_LEN)-1:12+(P.Q_LEN)];
Y = TestVector[12+(P.Q_LEN)-1:12];
Ans = TestVector[8];
end
2'b01: if (P.D_SUPPORTED)begin // double
2'b01: if (P.D_SUPPORTED) begin // double
X = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[12+2*(P.D_LEN)-1:12+(P.D_LEN)]};
Y = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[12+(P.D_LEN)-1:12]};
Ans = TestVector[8];
end
2'b00: if (P.S_SUPPORTED)begin // single
2'b00: if (P.S_SUPPORTED) begin // single
X = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[12+2*(P.S_LEN)-1:12+(P.S_LEN)]};
Y = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[12+(P.S_LEN)-1:12]};
Ans = TestVector[8];
end
2'b10: begin // half
2'b10: begin // half
X = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[12+2*(P.H_LEN)-1:12+(P.H_LEN)]};
Y = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[12+(P.H_LEN)-1:12]};
Ans = TestVector[8];
@ -1166,188 +1198,187 @@ module readvectors (
endcase
`CVTFPUNIT:
case (Fmt)
2'b11: begin // quad
2'b11: begin // quad
case (OpCtrl[1:0])
2'b11: begin // quad
2'b11: begin // quad
X = {TestVector[8+P.Q_LEN+P.Q_LEN-1:8+(P.Q_LEN)]};
Ans = TestVector[8+(P.Q_LEN-1):8];
end
2'b01: if (P.D_SUPPORTED)begin // double
2'b01: if (P.D_SUPPORTED) begin // double
X = {TestVector[8+P.Q_LEN+P.D_LEN-1:8+(P.D_LEN)]};
Ans = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+(P.D_LEN-1):8]};
end
2'b00: begin // single
2'b00: begin // single
X = {TestVector[8+P.Q_LEN+P.S_LEN-1:8+(P.S_LEN)]};
Ans = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+(P.S_LEN-1):8]};
end
2'b10: begin // half
2'b10: begin // half
X = {TestVector[8+P.Q_LEN+P.H_LEN-1:8+(P.H_LEN)]};
Ans = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+(P.H_LEN-1):8]};
end
endcase
end
2'b01: if (P.D_SUPPORTED)begin // double
2'b01: if (P.D_SUPPORTED) begin // double
case (OpCtrl[1:0])
2'b11: begin // quad
2'b11: begin // quad
X = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+P.D_LEN+P.Q_LEN-1:8+(P.Q_LEN)]};
Ans = TestVector[8+(P.Q_LEN-1):8];
end
2'b01: begin // double
2'b01: begin // double
X = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+P.D_LEN+P.D_LEN-1:8+(P.D_LEN)]};
Ans = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+(P.D_LEN-1):8]};
end
2'b00: begin // single
2'b00: begin // single
X = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+P.D_LEN+P.S_LEN-1:8+(P.S_LEN)]};
Ans = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+(P.S_LEN-1):8]};
end
2'b10: begin // half
2'b10: begin // half
X = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+P.D_LEN+P.H_LEN-1:8+(P.H_LEN)]};
Ans = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+(P.H_LEN-1):8]};
end
endcase
end
2'b00: if (P.S_SUPPORTED)begin // single
2'b00: if (P.S_SUPPORTED) begin // single
case (OpCtrl[1:0])
2'b11: begin // quad
2'b11: begin // quad
X = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+P.S_LEN+P.Q_LEN-1:8+(P.Q_LEN)]};
Ans = TestVector[8+(P.Q_LEN-1):8];
end
2'b01: if (P.D_SUPPORTED)begin // double
2'b01: if (P.D_SUPPORTED) begin // double
X = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+P.S_LEN+P.D_LEN-1:8+(P.D_LEN)]};
Ans = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+(P.D_LEN-1):8]};
end
2'b00: begin // single
2'b00: begin // single
X = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+P.S_LEN+P.S_LEN-1:8+(P.S_LEN)]};
Ans = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+(P.S_LEN-1):8]};
end
2'b10: begin // half
2'b10: begin // half
X = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+P.S_LEN+P.H_LEN-1:8+(P.H_LEN)]};
Ans = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+(P.H_LEN-1):8]};
end
endcase
end
2'b10: begin // half
2'b10: begin // half
case (OpCtrl[1:0])
2'b11: begin // quad
2'b11: begin // quad
X = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+P.H_LEN+P.Q_LEN-1:8+(P.Q_LEN)]};
Ans = TestVector[8+(P.Q_LEN-1):8];
end
2'b01: if (P.D_SUPPORTED)begin // double
2'b01: if (P.D_SUPPORTED) begin // double
X = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+P.H_LEN+P.D_LEN-1:8+(P.D_LEN)]};
Ans = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+(P.D_LEN-1):8]};
end
2'b00: if (P.S_SUPPORTED)begin // single
2'b00: if (P.S_SUPPORTED) begin // single
X = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+P.H_LEN+P.S_LEN-1:8+(P.S_LEN)]};
Ans = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+(P.S_LEN-1):8]};
end
2'b10: begin // half
2'b10: begin // half
X = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+P.H_LEN+P.H_LEN-1:8+(P.H_LEN)]};
Ans = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+(P.H_LEN-1):8]};
end
endcase
end
endcase
endcase
`CVTINTUNIT:
case (Fmt)
2'b11: begin // quad
// {is the integer a long, is the opperation to an integer}
2'b11: begin // quad
// {is the integer a long, is the opperation to an integer}
casex ({OpCtrl[2:1]})
2'b11: begin // long -> quad
2'b11: begin // long -> quad
X = {P.FLEN{1'bx}};
SrcA = TestVector[8+P.Q_LEN+P.XLEN-1:8+(P.Q_LEN)];
Ans = TestVector[8+(P.Q_LEN-1):8];
end
2'b10: begin // int -> quad
2'b10: begin // int -> quad
// correctly sign extend the integer depending on if it's a signed/unsigned test
X = {P.FLEN{1'bx}};
SrcA = {{P.XLEN-32{TestVector[8+P.Q_LEN+32-1]}}, TestVector[8+P.Q_LEN+32-1:8+(P.Q_LEN)]};
Ans = TestVector[8+(P.Q_LEN-1):8];
end
2'b01: begin // quad -> long
2'b01: begin // quad -> long
X = {TestVector[8+P.XLEN+P.Q_LEN-1:8+(P.XLEN)]};
SrcA = {P.XLEN{1'bx}};
Ans = {TestVector[8+(P.XLEN-1):8]};
end
2'b00: begin // quad -> int
2'b00: begin // quad -> int
X = {TestVector[8+32+P.Q_LEN-1:8+(32)]};
SrcA = {P.XLEN{1'bx}};
Ans = {{P.XLEN-32{TestVector[8+32-1]}},TestVector[8+(32-1):8]};
end
endcase
end
2'b01: if (P.D_SUPPORTED) begin // double
// {Int->Fp?, is the integer a long}
2'b01: if (P.D_SUPPORTED) begin // double
// {Int->Fp?, is the integer a long}
casex ({OpCtrl[2:1]})
2'b11: begin // long -> double
2'b11: begin // long -> double
X = {P.FLEN{1'bx}};
SrcA = TestVector[8+P.D_LEN+P.XLEN-1:8+(P.D_LEN)];
Ans = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+(P.D_LEN-1):8]};
end
2'b10: begin // int -> double
2'b10: begin // int -> double
// correctly sign extend the integer depending on if it's a signed/unsigned test
X = {P.FLEN{1'bx}};
SrcA = {{P.XLEN-32{TestVector[8+P.D_LEN+32-1]}}, TestVector[8+P.D_LEN+32-1:8+(P.D_LEN)]};
Ans = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+(P.D_LEN-1):8]};
end
2'b01: begin // double -> long
2'b01: begin // double -> long
X = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+P.XLEN+P.D_LEN-1:8+(P.XLEN)]};
SrcA = {P.XLEN{1'bx}};
Ans = {TestVector[8+(P.XLEN-1):8]};
end
2'b00: begin // double -> int
2'b00: begin // double -> int
X = {{P.FLEN-P.D_LEN{1'b1}}, TestVector[8+32+P.D_LEN-1:8+(32)]};
SrcA = {P.XLEN{1'bx}};
Ans = {{P.XLEN-32{TestVector[8+32-1]}},TestVector[8+(32-1):8]};
end
endcase
end
2'b00: if (P.S_SUPPORTED)begin // single
// {is the integer a long, is the opperation to an integer}
2'b00: if (P.S_SUPPORTED) begin // single
// {is the integer a long, is the opperation to an integer}
casex ({OpCtrl[2:1]})
2'b11: begin // long -> single
2'b11: begin // long -> single
X = {P.FLEN{1'bx}};
SrcA = TestVector[8+P.S_LEN+P.XLEN-1:8+(P.S_LEN)];
Ans = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+(P.S_LEN-1):8]};
end
2'b10: begin // int -> single
2'b10: begin // int -> single
// correctly sign extend the integer depending on if it's a signed/unsigned test
X = {P.FLEN{1'bx}};
SrcA = {{P.XLEN-32{TestVector[8+P.S_LEN+32-1]}}, TestVector[8+P.S_LEN+32-1:8+(P.S_LEN)]};
Ans = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+(P.S_LEN-1):8]};
end
2'b01: begin // single -> long
2'b01: begin // single -> long
X = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+P.XLEN+P.S_LEN-1:8+(P.XLEN)]};
SrcA = {P.XLEN{1'bx}};
Ans = {TestVector[8+(P.XLEN-1):8]};
end
2'b00: begin // single -> int
2'b00: begin // single -> int
X = {{P.FLEN-P.S_LEN{1'b1}}, TestVector[8+32+P.S_LEN-1:8+(32)]};
SrcA = {P.XLEN{1'bx}};
Ans = {{P.XLEN-32{TestVector[8+32-1]}},TestVector[8+(32-1):8]};
end
endcase
end
2'b10: begin // half
// {is the integer a long, is the opperation to an integer}
2'b10: begin // half
// {is the integer a long, is the opperation to an integer}
casex ({OpCtrl[2:1]})
2'b11: begin // long -> half
2'b11: begin // long -> half
X = {P.FLEN{1'bx}};
SrcA = TestVector[8+P.H_LEN+P.XLEN-1:8+(P.H_LEN)];
Ans = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+(P.H_LEN-1):8]};
end
2'b10: begin // int -> half
2'b10: begin // int -> half
// correctly sign extend the integer depending on if it's a signed/unsigned test
X = {P.FLEN{1'bx}};
SrcA = {{P.XLEN-32{TestVector[8+P.H_LEN+32-1]}}, TestVector[8+P.H_LEN+32-1:8+(P.H_LEN)]};
Ans = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+(P.H_LEN-1):8]};
end
2'b01: begin // half -> long
2'b01: begin // half -> long
X = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+P.XLEN+P.H_LEN-1:8+(P.XLEN)]};
SrcA = {P.XLEN{1'bx}};
Ans = {TestVector[8+(P.XLEN-1):8]};
end
2'b00: begin // half -> int
2'b00: begin // half -> int
X = {{P.FLEN-P.H_LEN{1'b1}}, TestVector[8+32+P.H_LEN-1:8+(32)]};
SrcA = {P.XLEN{1'bx}};
Ans = {{P.XLEN-32{TestVector[8+32-1]}}, TestVector[8+(32-1):8]};