Merge branch 'main' of github.com:davidharrishmc/riscv-wally into boot

This commit is contained in:
Jacob Pease 2023-01-17 15:42:23 -06:00
commit a0c6399969
10 changed files with 305 additions and 294 deletions

View File

@ -487,11 +487,11 @@ add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RdM
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RdW add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RdW
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD1D add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD1D
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD2D add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD2D
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ExtImmD add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ImmExtD
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RdD add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RdD
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD1E add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD1E
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD2E add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD2E
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ExtImmE add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ImmExtE
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ForwardedSrcAE add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ForwardedSrcAE
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/SrcAE add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/SrcAE
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/SrcBE add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/SrcBE
@ -513,7 +513,7 @@ add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/regf/rd2
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/regf/i add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/regf/i
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ext/InstrD add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ext/InstrD
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ext/ImmSrcD add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ext/ImmSrcD
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ext/ExtImmD add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ext/ImmExtD
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD1EReg/clk add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD1EReg/clk
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD1EReg/reset add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD1EReg/reset
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD1EReg/clear add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD1EReg/clear
@ -524,11 +524,11 @@ add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD2EReg/reset
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD2EReg/clear add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD2EReg/clear
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD2EReg/d add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD2EReg/d
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD2EReg/q add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/RD2EReg/q
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ExtImmEReg/clk add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ImmExtEReg/clk
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ExtImmEReg/reset add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ImmExtEReg/reset
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ExtImmEReg/clear add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ImmExtEReg/clear
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ExtImmEReg/d add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ImmExtEReg/d
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ExtImmEReg/q add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/ImmExtEReg/q
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/Rs1EReg/clk add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/Rs1EReg/clk
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/Rs1EReg/reset add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/Rs1EReg/reset
add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/Rs1EReg/clear add wave -noupdate -radix hexadecimal /testbench/dut/core/ieu/dp/Rs1EReg/clear

View File

@ -30,38 +30,40 @@
`include "wally-config.vh" `include "wally-config.vh"
module alu #(parameter WIDTH=32) ( module alu #(parameter WIDTH=32) (
input logic [WIDTH-1:0] A, B, input logic [WIDTH-1:0] A, B, // Operands
input logic [2:0] ALUControl, input logic [2:0] ALUControl, // With Funct3, indicates operation to perform
input logic [2:0] Funct3, input logic [2:0] Funct3, // With ALUControl, indicates operation to perform
output logic [WIDTH-1:0] Result, output logic [WIDTH-1:0] Result, // ALU result
output logic [WIDTH-1:0] Sum); output logic [WIDTH-1:0] Sum); // Sum of operands
logic [WIDTH-1:0] CondInvB, Shift, SLT, SLTU, FullResult; // CondInvB = ~B when subtracting, B otherwise. Shift = shift result. SLT/U = result of a slt/u instruction.
logic Carry, Neg; // FullResult = ALU result before adjusting for a RV64 w-suffix instruction.
logic LT, LTU; logic [WIDTH-1:0] CondInvB, Shift, SLT, SLTU, FullResult; // Intermediate results
logic W64, SubArith, ALUOp; logic Carry, Neg; // Flags: carry out, negative
logic Asign, Bsign; logic LT, LTU; // Less than, Less than unsigned
logic W64; // RV64 W-type instruction
logic SubArith; // Performing subtraction or arithmetic right shift
logic ALUOp; // 0 for address generation addition or 1 for regular ALU ops
logic Asign, Bsign; // Sign bits of A, B
// Extract control signals // Extract control signals from ALUControl.
// W64 indicates RV64 W-suffix instructions acting on lower 32-bit word
// SubArith indicates subtraction or arithmetic right shift
// ALUOp = 0 for address generation addition or 1 for regular ALU
assign {W64, SubArith, ALUOp} = ALUControl; assign {W64, SubArith, ALUOp} = ALUControl;
// addition // Addition
assign CondInvB = SubArith ? ~B : B; assign CondInvB = SubArith ? ~B : B;
assign {Carry, Sum} = A + CondInvB + {{(WIDTH-1){1'b0}}, SubArith}; assign {Carry, Sum} = A + CondInvB + {{(WIDTH-1){1'b0}}, SubArith};
// Shifts // Shifts
shifter sh(.A, .Amt(B[`LOG_XLEN-1:0]), .Right(Funct3[2]), .Arith(SubArith), .W64, .Y(Shift)); shifter sh(.A, .Amt(B[`LOG_XLEN-1:0]), .Right(Funct3[2]), .Arith(SubArith), .W64, .Y(Shift));
// condition code flags based on subtract output Sum = A-B // Condition code flags are based on subtraction output Sum = A-B.
// Overflow occurs when the numbers being subtracted have the opposite sign // Overflow occurs when the numbers being subtracted have the opposite sign
// and the result has the opposite sign of A // and the result has the opposite sign of A.
// LT is simplified from Overflow = Asign & Bsign & Asign & Neg; LT = Neg ^ Overflow
assign Neg = Sum[WIDTH-1]; assign Neg = Sum[WIDTH-1];
assign Asign = A[WIDTH-1]; assign Asign = A[WIDTH-1];
assign Bsign = B[WIDTH-1]; assign Bsign = B[WIDTH-1];
assign LT = Asign & ~Bsign | Asign & Neg | ~Bsign & Neg; // simplified from Overflow = Asign & Bsign & Asign & Neg; LT = Neg ^ Overflow assign LT = Asign & ~Bsign | Asign & Neg | ~Bsign & Neg;
assign LTU = ~Carry; assign LTU = ~Carry;
// SLT // SLT
@ -70,7 +72,7 @@ module alu #(parameter WIDTH=32) (
// Select appropriate ALU Result // Select appropriate ALU Result
always_comb always_comb
if (~ALUOp) FullResult = Sum; // Always add for ALUOp = 0 if (~ALUOp) FullResult = Sum; // Always add for ALUOp = 0 (address generation)
else casez (Funct3) // Otherwise check Funct3 else casez (Funct3) // Otherwise check Funct3
3'b000: FullResult = Sum; // add or sub 3'b000: FullResult = Sum; // add or sub
3'b?01: FullResult = Shift; // sll, sra, or srl 3'b?01: FullResult = Shift; // sll, sra, or srl
@ -81,8 +83,8 @@ module alu #(parameter WIDTH=32) (
3'b111: FullResult = A & B; // and 3'b111: FullResult = A & B; // and
endcase endcase
// support W-type RV64I ADDW/SUBW/ADDIW/Shifts that sign-extend 32-bit result to 64 bits // Support RV64I W-type addw/subw/addiw/shifts that discard upper 32 bits and sign-extend 32-bit result to 64 bits
if (WIDTH==64) assign Result = W64 ? {{32{FullResult[31]}}, FullResult[31:0]} : FullResult; if (WIDTH == 64) assign Result = W64 ? {{32{FullResult[31]}}, FullResult[31:0]} : FullResult;
else assign Result = FullResult; else assign Result = FullResult;
endmodule endmodule

View File

@ -1,7 +1,8 @@
/////////////////////////////////////////// ///////////////////////////////////////////
// comparator.sv // comparator.sv
// //
// Written: David_Harris@hmc.edu 8 December 2021 // Written: David_Harris@hmc.edu, Sarah.Harris@unlv.edu
// Created: 8 December 2021
// Modified: // Modified:
// //
// Purpose: Branch comparison // Purpose: Branch comparison
@ -30,26 +31,26 @@
// This comparator is best // This comparator is best
module comparator_dc_flip #(parameter WIDTH=64) ( module comparator_dc_flip #(parameter WIDTH=64) (
input logic [WIDTH-1:0] a, b, input logic [WIDTH-1:0] a, b, // Operands
input logic sgnd, input logic sgnd, // Signed operands
output logic [1:0] flags); output logic [1:0] flags); // Output flags: {eq, lt}
logic eq, lt, ltu; logic eq, lt; // Flags: equal (eq), less than (lt)
logic [WIDTH-1:0] af, bf; logic [WIDTH-1:0] af, bf; // Operands with msb flipped (inverted) when signed
// For signed numbers, flip most significant bit // For signed numbers, flip most significant bit
assign af = {a[WIDTH-1] ^ sgnd, a[WIDTH-2:0]}; assign af = {a[WIDTH-1] ^ sgnd, a[WIDTH-2:0]};
assign bf = {b[WIDTH-1] ^ sgnd, b[WIDTH-2:0]}; assign bf = {b[WIDTH-1] ^ sgnd, b[WIDTH-2:0]};
// behavioral description gives best results // Behavioral description gives best results
assign eq = (a == b); assign eq = (a == b); // eq = 1 when operands are equal, 0 otherwise
assign lt = (af < bf); assign lt = (af < bf); // lt = 1 when a less than b (taking signed operands into account)
assign flags = {eq, lt}; assign flags = {eq, lt};
endmodule endmodule
/* /*
Other comparators evaluated Other comparators evaluated:
module donedet #(parameter WIDTH=64) ( module donedet #(parameter WIDTH=64) (
input logic [WIDTH-1:0] a, b, input logic [WIDTH-1:0] a, b,
@ -86,7 +87,7 @@ module comparator_sub #(parameter WIDTH=64) (
assign flags = {eq, lt, ltu}; assign flags = {eq, lt, ltu};
endmodule endmodule
// *** eventually substitute comparator_flip, which gives slightly better synthesis // comparator_flip, gives slightly better synthesis
module comparator #(parameter WIDTH=64) ( module comparator #(parameter WIDTH=64) (
input logic [WIDTH-1:0] a, b, input logic [WIDTH-1:0] a, b,
output logic [2:0] flags); output logic [2:0] flags);

View File

@ -1,7 +1,8 @@
/////////////////////////////////////////// ///////////////////////////////////////////
// controller.sv // controller.sv
// //
// Written: David_Harris@hmc.edu 9 January 2021 // Written: David_Harris@hmc.edu, Sarah.Harris@unlv.edu
// Created: 9 January 2021
// Modified: // Modified:
// //
// Purpose: Top level controller module // Purpose: Top level controller module
@ -30,86 +31,87 @@
module controller( module controller(
input logic clk, reset, input logic clk, reset,
// Decode stage control signals // Decode stage control signals
input logic StallD, FlushD, input logic StallD, FlushD, // Stall, flush Decode stage
input logic [31:0] InstrD, input logic [31:0] InstrD, // Instruction in Decode stage
output logic [2:0] ImmSrcD, output logic [2:0] ImmSrcD, // Type of immediate extension
input logic IllegalIEUInstrFaultD, input logic IllegalIEUInstrFaultD, // Illegal IEU instruction
output logic IllegalBaseInstrFaultD, output logic IllegalBaseInstrFaultD, // Illegal I-type instruction, or illegal RV32 access to upper 16 registers
// Execute stage control signals // Execute stage control signals
input logic StallE, FlushE, input logic StallE, FlushE, // Stall, flush Execute stage
input logic [1:0] FlagsE, input logic [1:0] FlagsE, // Comparison flags ({eq, lt})
input logic FWriteIntE, input logic FWriteIntE, // Write integer register, coming from FPU controller
output logic PCSrcE, // for datapath and Hazard Unit output logic PCSrcE, // Select signal to choose next PC (for datapath and Hazard unit)
output logic [2:0] ALUControlE, output logic [2:0] ALUControlE, // ALU operation to perform
output logic ALUSrcAE, ALUSrcBE, output logic ALUSrcAE, ALUSrcBE, // ALU operands
output logic ALUResultSrcE, output logic ALUResultSrcE, // Selects result to pass on to Memory stage
output logic MemReadE, CSRReadE, // for Hazard Unit output logic MemReadE, CSRReadE, // Instruction reads memory, reads a CSR (needed for Hazard unit)
output logic [2:0] Funct3E, output logic [2:0] Funct3E, // Instruction's funct3 field
output logic IntDivE, MDUE, W64E, output logic IntDivE, // Integer divide
output logic JumpE, output logic MDUE, // MDU (multiply/divide) operatio
output logic SCE, output logic W64E, // RV64 W-type operation
output logic BranchSignedE, output logic JumpE, // jump instruction
output logic SCE, // Store Conditional instruction
output logic BranchSignedE, // Branch comparison operands are signed (if it's a branch)
// Memory stage control signals // Memory stage control signals
input logic StallM, FlushM, input logic StallM, FlushM, // Stall, flush Memory stage
output logic [1:0] MemRWM, output logic [1:0] MemRWM, // Mem read/write: MemRWM[1] = 1 for read, MemRWM[0] = 1 for write
output logic CSRReadM, CSRWriteM, PrivilegedM, output logic CSRReadM, CSRWriteM, PrivilegedM, // CSR read, write, or privileged instruction
output logic [1:0] AtomicM, output logic [1:0] AtomicM, // Atomic (AMO) instruction
output logic [2:0] Funct3M, output logic [2:0] Funct3M, // Instruction's funct3 field
output logic RegWriteM, // for Hazard Unit output logic RegWriteM, // Instruction writes a register (needed for Hazard unit)
output logic InvalidateICacheM, FlushDCacheM, output logic InvalidateICacheM, FlushDCacheM, // Invalidate I$, flush D$
output logic InstrValidM, output logic InstrValidM, // Instruction is valid
output logic FWriteIntM, output logic FWriteIntM, // FPU controller writes integer register file
// Writeback stage control signals // Writeback stage control signals
input logic StallW, FlushW, input logic StallW, FlushW, // Stall, flush Writeback stage
output logic RegWriteW, IntDivW, // for datapath and Hazard Unit output logic RegWriteW, IntDivW, // Instruction writes a register, is an integer divide
output logic [2:0] ResultSrcW, output logic [2:0] ResultSrcW, // Select source of result to write back to register file
// Stall during CSRs // Stall during CSRs
//output logic CSRWriteFencePendingDEM, output logic CSRWriteFenceM, // CSR write or fence instruction; needs to flush the following instructions
output logic CSRWriteFenceM, output logic StoreStallD // Store (memory write) causes stall
output logic StoreStallD
); );
logic [6:0] OpD; logic [6:0] OpD; // Opcode in Decode stage
logic [2:0] Funct3D; logic [2:0] Funct3D; // Funct3 field in Decode stage
logic [6:0] Funct7D; logic [6:0] Funct7D; // Funct7 field in Decode stage
logic [4:0] Rs1D; logic [4:0] Rs1D; // Rs1 source register in Decode stage
`define CTRLW 23 `define CTRLW 23
// pipelined control signals // pipelined control signals
logic RegWriteD, RegWriteE; logic RegWriteD, RegWriteE; // RegWrite (register will be written)
logic [2:0] ResultSrcD, ResultSrcE, ResultSrcM; logic [2:0] ResultSrcD, ResultSrcE, ResultSrcM; // Select which result to write back to register file
logic [1:0] MemRWD, MemRWE; logic [1:0] MemRWD, MemRWE; // Store (write to memory)
logic JumpD; logic JumpD; // Jump instruction
logic BranchD, BranchE; logic BranchD, BranchE; // Branch instruction
logic ALUOpD; logic ALUOpD; // 0 for address generation, 1 for all other operations (must use Funct3)
logic [2:0] ALUControlD; logic [2:0] ALUControlD; // Determines ALU operation
logic ALUSrcAD, ALUSrcBD; logic ALUSrcAD, ALUSrcBD; // ALU inputs
logic ALUResultSrcD, W64D, MDUD; logic ALUResultSrcD, W64D, MDUD; // ALU result, is RV64 W-type, is multiply/divide instruction
logic CSRZeroSrcD; logic CSRZeroSrcD; // Ignore setting and clearing zeros to CSR
logic CSRReadD; logic CSRReadD; // CSR read instruction
logic [1:0] AtomicD; logic [1:0] AtomicD; // Atomic (AMO) instruction
logic FenceXD; logic FenceXD; // Fence instruction
logic InvalidateICacheD, FlushDCacheD; logic InvalidateICacheD, FlushDCacheD;// Invalidate I$, flush D$
logic CSRWriteD, CSRWriteE; logic CSRWriteD, CSRWriteE; // CSR write
logic InstrValidD, InstrValidE; logic InstrValidD, InstrValidE; // Instruction is valid
logic PrivilegedD, PrivilegedE; logic PrivilegedD, PrivilegedE; // Privileged instruction
logic InvalidateICacheE, FlushDCacheE; logic InvalidateICacheE, FlushDCacheE;// Invalidate I$, flush D$
logic [`CTRLW-1:0] ControlsD; logic [`CTRLW-1:0] ControlsD; // Main Instruction Decoder control signals
logic SubArithD; logic SubArithD; // TRUE for R-type subtracts and sra, slt, sltu
logic subD, sraD, sltD, sltuD; logic subD, sraD, sltD, sltuD; // Indicates if is one of these instructions
logic BranchTakenE; logic BranchTakenE; // Branch is taken
logic eqE, ltE; logic eqE, ltE; // Comparator outputs
logic unused; logic unused;
logic BranchFlagE; logic BranchFlagE; // Branch flag to use (chosen between eq or lt)
logic IEURegWriteE; logic IEURegWriteE; // Register write
logic IllegalERegAdrD; logic IllegalERegAdrD; // RV32E attempts to write upper 16 registers
logic [1:0] AtomicE; logic [1:0] AtomicE; // Atomic instruction
logic FenceD, FenceE, FenceM; logic FenceD, FenceE, FenceM; // Fence instruction
logic SFenceVmaD; logic SFenceVmaD; // sfence.vma instruction
logic IntDivM; logic IntDivM; // Integer divide instruction
// Extract fields // Extract fields
@ -122,58 +124,58 @@ module controller(
always_comb always_comb
case(OpD) case(OpD)
// RegWrite_ImmSrc_ALUSrc_MemRW_ResultSrc_Branch_ALUOp_Jump_ALUResultSrc_W64_CSRRead_Privileged_Fence_MDU_Atomic_Illegal // RegWrite_ImmSrc_ALUSrc_MemRW_ResultSrc_Branch_ALUOp_Jump_ALUResultSrc_W64_CSRRead_Privileged_Fence_MDU_Atomic_Illegal
7'b0000000: ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_1; // illegal instruction 7'b0000000: ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_1; // Illegal instruction
7'b0000011: ControlsD = `CTRLW'b1_000_01_10_001_0_0_0_0_0_0_0_0_0_00_0; // lw 7'b0000011: ControlsD = `CTRLW'b1_000_01_10_001_0_0_0_0_0_0_0_0_0_00_0; // lw
7'b0000111: ControlsD = `CTRLW'b0_000_01_10_001_0_0_0_0_0_0_0_0_0_00_0; // flw - only legal if FP supported 7'b0000111: ControlsD = `CTRLW'b0_000_01_10_001_0_0_0_0_0_0_0_0_0_00_0; // flw - only legal if FP supported
7'b0001111: if(`ZIFENCEI_SUPPORTED) 7'b0001111: if (`ZIFENCEI_SUPPORTED)
ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_1_0_00_0; // fence ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_1_0_00_0; // fence
else else
ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_0; // fence treated as nop ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_0; // fence treated as nop
7'b0010011: ControlsD = `CTRLW'b1_000_01_00_000_0_1_0_0_0_0_0_0_0_00_0; // I-type ALU 7'b0010011: ControlsD = `CTRLW'b1_000_01_00_000_0_1_0_0_0_0_0_0_0_00_0; // I-type ALU
7'b0010111: ControlsD = `CTRLW'b1_100_11_00_000_0_0_0_0_0_0_0_0_0_00_0; // auipc 7'b0010111: ControlsD = `CTRLW'b1_100_11_00_000_0_0_0_0_0_0_0_0_0_00_0; // auipc
7'b0011011: if (`XLEN == 64) 7'b0011011: if (`XLEN == 64)
ControlsD = `CTRLW'b1_000_01_00_000_0_1_0_0_1_0_0_0_0_00_0; // IW-type ALU for RV64i ControlsD = `CTRLW'b1_000_01_00_000_0_1_0_0_1_0_0_0_0_00_0; // IW-type ALU for RV64i
else else
ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_1; // non-implemented instruction ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_1; // Non-implemented instruction
7'b0100011: ControlsD = `CTRLW'b0_001_01_01_000_0_0_0_0_0_0_0_0_0_00_0; // sw 7'b0100011: ControlsD = `CTRLW'b0_001_01_01_000_0_0_0_0_0_0_0_0_0_00_0; // sw
7'b0100111: ControlsD = `CTRLW'b0_001_01_01_000_0_0_0_0_0_0_0_0_0_00_0; // fsw - only legal if FP supported 7'b0100111: ControlsD = `CTRLW'b0_001_01_01_000_0_0_0_0_0_0_0_0_0_00_0; // fsw - only legal if FP supported
7'b0101111: if (`A_SUPPORTED) begin 7'b0101111: if (`A_SUPPORTED) begin
if (InstrD[31:27] == 5'b00010) if (InstrD[31:27] == 5'b00010)
ControlsD = `CTRLW'b1_000_00_10_001_0_0_0_0_0_0_0_0_0_01_0; // lr ControlsD = `CTRLW'b1_000_00_10_001_0_0_0_0_0_0_0_0_0_01_0; // lr
else if (InstrD[31:27] == 5'b00011) else if (InstrD[31:27] == 5'b00011)
ControlsD = `CTRLW'b1_101_01_01_100_0_0_0_0_0_0_0_0_0_01_0; // sc ControlsD = `CTRLW'b1_101_01_01_100_0_0_0_0_0_0_0_0_0_01_0; // sc
else else
ControlsD = `CTRLW'b1_101_01_11_001_0_0_0_0_0_0_0_0_0_10_0;; // amo ControlsD = `CTRLW'b1_101_01_11_001_0_0_0_0_0_0_0_0_0_10_0; // amo
end else end else
ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_1; // non-implemented instruction ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_1; // Non-implemented instruction
7'b0110011: if (Funct7D == 7'b0000000 | Funct7D == 7'b0100000) 7'b0110011: if (Funct7D == 7'b0000000 | Funct7D == 7'b0100000)
ControlsD = `CTRLW'b1_000_00_00_000_0_1_0_0_0_0_0_0_0_00_0; // R-type ControlsD = `CTRLW'b1_000_00_00_000_0_1_0_0_0_0_0_0_0_00_0; // R-type
else if (Funct7D == 7'b0000001 & `M_SUPPORTED) else if (Funct7D == 7'b0000001 & `M_SUPPORTED)
ControlsD = `CTRLW'b1_000_00_00_011_0_0_0_0_0_0_0_0_1_00_0; // Multiply/Divide ControlsD = `CTRLW'b1_000_00_00_011_0_0_0_0_0_0_0_0_1_00_0; // Multiply/divide
else else
ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_1; // non-implemented instruction ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_1; // Non-implemented instruction
7'b0110111: ControlsD = `CTRLW'b1_100_01_00_000_0_0_0_1_0_0_0_0_0_00_0; // lui 7'b0110111: ControlsD = `CTRLW'b1_100_01_00_000_0_0_0_1_0_0_0_0_0_00_0; // lui
7'b0111011: if ((Funct7D == 7'b0000000 | Funct7D == 7'b0100000) & `XLEN == 64) 7'b0111011: if ((Funct7D == 7'b0000000 | Funct7D == 7'b0100000) & `XLEN == 64)
ControlsD = `CTRLW'b1_000_00_00_000_0_1_0_0_1_0_0_0_0_00_0; // R-type W instructions for RV64i ControlsD = `CTRLW'b1_000_00_00_000_0_1_0_0_1_0_0_0_0_00_0; // R-type W instructions for RV64i
else if (Funct7D == 7'b0000001 & `M_SUPPORTED & `XLEN == 64) else if (Funct7D == 7'b0000001 & `M_SUPPORTED & `XLEN == 64)
ControlsD = `CTRLW'b1_000_00_00_011_0_0_0_0_1_0_0_0_1_00_0; // W-type Multiply/Divide ControlsD = `CTRLW'b1_000_00_00_011_0_0_0_0_1_0_0_0_1_00_0; // W-type Multiply/Divide
else else
ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_1; // non-implemented instruction ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_1; // Non-implemented instruction
7'b1100011: ControlsD = `CTRLW'b0_010_11_00_000_1_0_0_0_0_0_0_0_0_00_0; // branches 7'b1100011: ControlsD = `CTRLW'b0_010_11_00_000_1_0_0_0_0_0_0_0_0_00_0; // branches
7'b1100111: ControlsD = `CTRLW'b1_000_01_00_000_0_0_1_1_0_0_0_0_0_00_0; // jalr 7'b1100111: ControlsD = `CTRLW'b1_000_01_00_000_0_0_1_1_0_0_0_0_0_00_0; // jalr
7'b1101111: ControlsD = `CTRLW'b1_011_11_00_000_0_0_1_1_0_0_0_0_0_00_0; // jal 7'b1101111: ControlsD = `CTRLW'b1_011_11_00_000_0_0_1_1_0_0_0_0_0_00_0; // jal
7'b1110011: if (`ZICSR_SUPPORTED) begin 7'b1110011: if (`ZICSR_SUPPORTED) begin
if (Funct3D == 3'b000) if (Funct3D == 3'b000)
ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_1_0_0_00_0; // privileged; decoded further in priveleged modules ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_1_0_0_00_0; // privileged; decoded further in priveleged modules
else else
ControlsD = `CTRLW'b1_000_00_00_010_0_0_0_0_0_1_0_0_0_00_0; // csrs ControlsD = `CTRLW'b1_000_00_00_010_0_0_0_0_0_1_0_0_0_00_0; // csrs
end else end else
ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_1; // non-implemented instruction ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_1; // non-implemented instruction
default: ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_1; // non-implemented instruction default: ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_1; // non-implemented instruction
endcase endcase
// unswizzle control bits // Unswizzle control bits
// squash control signals if coming from an illegal compressed instruction // Squash control signals if coming from an illegal compressed instruction
// On RV32E, can't write to upper 16 registers. Checking reads to upper 16 is more costly so disregard them. // On RV32E, can't write to upper 16 registers. Checking reads to upper 16 is more costly so disregard them.
assign IllegalERegAdrD = `E_SUPPORTED & `ZICSR_SUPPORTED & ControlsD[`CTRLW-1] & InstrD[11]; assign IllegalERegAdrD = `E_SUPPORTED & `ZICSR_SUPPORTED & ControlsD[`CTRLW-1] & InstrD[11];
assign IllegalBaseInstrFaultD = ControlsD[0] | IllegalERegAdrD; assign IllegalBaseInstrFaultD = ControlsD[0] | IllegalERegAdrD;
@ -183,7 +185,7 @@ module controller(
assign CSRZeroSrcD = InstrD[14] ? (InstrD[19:15] == 0) : (Rs1D == 0); // Is a CSR instruction using zero as the source? assign CSRZeroSrcD = InstrD[14] ? (InstrD[19:15] == 0) : (Rs1D == 0); // Is a CSR instruction using zero as the source?
assign CSRWriteD = CSRReadD & !(CSRZeroSrcD & InstrD[13]); // Don't write if setting or clearing zeros assign CSRWriteD = CSRReadD & !(CSRZeroSrcD & InstrD[13]); // Don't write if setting or clearing zeros
assign SFenceVmaD = PrivilegedD & (InstrD[31:25] == 7'b0001001); assign SFenceVmaD = PrivilegedD & (InstrD[31:25] == 7'b0001001);
assign FenceD = SFenceVmaD | FenceXD; // possible sfence.vma or fence.i assign FenceD = SFenceVmaD | FenceXD; // possible sfence.vma or fence.i
@ -197,7 +199,7 @@ module controller(
// Fences // Fences
// Ordinary fence is presently a nop // Ordinary fence is presently a nop
// FENCE.I flushes the D$ and invalidates the I$ if Zifencei is supported and I$ is implemented // fence.i flushes the D$ and invalidates the I$ if Zifencei is supported and I$ is implemented
if (`ZIFENCEI_SUPPORTED & `ICACHE) begin:fencei if (`ZIFENCEI_SUPPORTED & `ICACHE) begin:fencei
logic FenceID; logic FenceID;
assign FenceID = FenceXD & (Funct3D == 3'b001); // is it a FENCE.I instruction? assign FenceID = FenceXD & (Funct3D == 3'b001); // is it a FENCE.I instruction?
@ -243,7 +245,7 @@ module controller(
// Flush F, D, and E stages on a CSR write or Fence.I or SFence.VMA // Flush F, D, and E stages on a CSR write or Fence.I or SFence.VMA
assign CSRWriteFenceM = CSRWriteM | FenceM; assign CSRWriteFenceM = CSRWriteM | FenceM;
// assign CSRWriteFencePendingDEM = CSRWriteD | CSRWriteE | CSRWriteM | FenceD | FenceE | FenceM; // assign CSRWriteFencePendingDEM = CSRWriteD | CSRWriteE | CSRWriteM | FenceD | FenceE | FenceM;
// the synchronous DTIM cannot read immediately after write // the synchronous DTIM cannot read immediately after write
// a cache cannot read or write immediately after a write // a cache cannot read or write immediately after a write

View File

@ -1,7 +1,8 @@
/////////////////////////////////////////// ///////////////////////////////////////////
// datapath.sv // datapath.sv
// //
// Written: sarahleilani@gmail.com and David_Harris@hmc.edu 9 January 2021 // Written: David_Harris@hmc.edu, Sarah.Harris@unlv.edu
// Created: 9 January 2021
// Modified: // Modified:
// //
// Purpose: Wally Integer Datapath // Purpose: Wally Integer Datapath
@ -29,73 +30,75 @@
`include "wally-config.vh" `include "wally-config.vh"
module datapath ( module datapath (
input logic clk, reset, input logic clk, reset,
// Decode stage signals // Decode stage signals
input logic [2:0] ImmSrcD, input logic [2:0] ImmSrcD, // Selects type of immediate extension
input logic [31:0] InstrD, input logic [31:0] InstrD, // Instruction in Decode stage
input logic [2:0] Funct3E, input logic [2:0] Funct3E, // Funct3 field of instruction in Execute stage
// Execute stage signals // Execute stage signals
input logic StallE, FlushE, input logic StallE, FlushE, // Stall, flush Execute stage
input logic [1:0] ForwardAE, ForwardBE, input logic [1:0] ForwardAE, ForwardBE, // Forward ALU operands from later stages
input logic [2:0] ALUControlE, input logic [2:0] ALUControlE, // Indicate operation ALU performs
input logic ALUSrcAE, ALUSrcBE, input logic ALUSrcAE, ALUSrcBE, // ALU operands
input logic ALUResultSrcE, input logic ALUResultSrcE, // Selects result to pass on to Memory stage
input logic JumpE, input logic JumpE, // Is a jump (j) instruction
input logic BranchSignedE, input logic BranchSignedE, // Branch comparison operands are signed (if it's a branch)
input logic [`XLEN-1:0] PCE, input logic [`XLEN-1:0] PCE, // PC in Execute stage
input logic [`XLEN-1:0] PCLinkE, input logic [`XLEN-1:0] PCLinkE, // PC + 4 (of instruction in Execute stage)
output logic [1:0] FlagsE, output logic [1:0] FlagsE, // Comparison flags ({eq, lt})
output logic [`XLEN-1:0] IEUAdrE, output logic [`XLEN-1:0] IEUAdrE, // Address computed by ALU
output logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // *** these are the src outputs before the mux choosing between them and PCE to put in srcA/B output logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // ALU sources before the mux chooses between them and PCE to put in srcA/B
// Memory stage signals // Memory stage signals
input logic StallM, FlushM, input logic StallM, FlushM, // Stall, flush Memory stage
input logic FWriteIntM, FCvtIntW, input logic FWriteIntM, FCvtIntW, // FPU writes integer register file, FPU converts float to int
input logic [`XLEN-1:0] FIntResM, input logic [`XLEN-1:0] FIntResM, // FPU integer result
output logic [`XLEN-1:0] SrcAM, output logic [`XLEN-1:0] SrcAM, // ALU's Source A in Memory stage to privilege unit for CSR writes
output logic [`XLEN-1:0] WriteDataM, output logic [`XLEN-1:0] WriteDataM, // Write data in Memory stage
// Writeback stage signals // Writeback stage signals
input logic StallW, FlushW, input logic StallW, FlushW, // Stall, flush Writeback stage
(* mark_debug = "true" *) input logic RegWriteW, IntDivW, (* mark_debug = "true" *) input logic RegWriteW, IntDivW, // Write register file, integer divide instruction
input logic SquashSCW, input logic SquashSCW, // Squash a store conditional when a conflict arose
input logic [2:0] ResultSrcW, input logic [2:0] ResultSrcW, // Select source of result to write back to register file
input logic [`XLEN-1:0] FCvtIntResW, input logic [`XLEN-1:0] FCvtIntResW, // FPU convert fp to integer result
input logic [`XLEN-1:0] ReadDataW, input logic [`XLEN-1:0] ReadDataW, // Read data from LSU
input logic [`XLEN-1:0] CSRReadValW, MDUResultW, input logic [`XLEN-1:0] CSRReadValW, MDUResultW, // CSR read result, MDU (Multiply/divide unit) result
input logic [`XLEN-1:0] FIntDivResultW, input logic [`XLEN-1:0] FIntDivResultW, // FPU's integer divide result
// Hazard Unit signals // Hazard Unit signals
output logic [4:0] Rs1D, Rs2D, Rs1E, Rs2E, output logic [4:0] Rs1D, Rs2D, Rs1E, Rs2E, // Register sources to read in Decode or Execute stage
output logic [4:0] RdE, RdM, RdW output logic [4:0] RdE, RdM, RdW // Register destinations in Execute, Memory, or Writeback stage
); );
// Fetch stage signals // Fetch stage signals
// Decode stage signals // Decode stage signals
logic [`XLEN-1:0] R1D, R2D; logic [`XLEN-1:0] R1D, R2D; // Read data from Rs1 (RD1), Rs2 (RD2)
logic [`XLEN-1:0] ExtImmD; logic [`XLEN-1:0] ImmExtD; // Extended immediate in Decode stage
logic [4:0] RdD; logic [4:0] RdD; // Destination register in Decode stage
// Execute stage signals // Execute stage signals
logic [`XLEN-1:0] R1E, R2E; logic [`XLEN-1:0] R1E, R2E; // Source operands read from register file
logic [`XLEN-1:0] ExtImmE; logic [`XLEN-1:0] ImmExtE; // Extended immediate in Execute stage
logic [`XLEN-1:0] SrcAE, SrcBE; logic [`XLEN-1:0] SrcAE, SrcBE; // ALU operands
logic [`XLEN-1:0] ALUResultE, AltResultE, IEUResultE; logic [`XLEN-1:0] ALUResultE, AltResultE, IEUResultE; // ALU result, Alternative result (ImmExtE or PC+4), computed address *** According to Figure 4.12, IEUResultE should be called IEUAdrE
// Memory stage signals // Memory stage signals
logic [`XLEN-1:0] IEUResultM; logic [`XLEN-1:0] IEUResultM; // Address computed by ALU *** According to Figure 4.12, IEUResultM should be called IEUAdrM
logic [`XLEN-1:0] IFResultM; logic [`XLEN-1:0] IFResultM; // Result from either IEU or single-cycle FPU op writing an integer register
// Writeback stage signals // Writeback stage signals
logic [`XLEN-1:0] SCResultW; logic [`XLEN-1:0] SCResultW; // Store Conditional result
logic [`XLEN-1:0] ResultW; logic [`XLEN-1:0] ResultW; // Result to write to register file
logic [`XLEN-1:0] IFResultW, IFCvtResultW, MulDivResultW; logic [`XLEN-1:0] IFResultW; // Result from either IEU or single-cycle FPU op writing an integer register
logic [`XLEN-1:0] IFCvtResultW; // Result from IEU, signle-cycle FPU op, or 2-cycle FCVT float to int
logic [`XLEN-1:0] MulDivResultW; // Multiply always comes from MDU. Divide could come from MDU or FPU (when using fdivsqrt for integer division)
// Decode stage // Decode stage
assign Rs1D = InstrD[19:15]; assign Rs1D = InstrD[19:15];
assign Rs2D = InstrD[24:20]; assign Rs2D = InstrD[24:20];
assign RdD = InstrD[11:7]; assign RdD = InstrD[11:7];
regfile regf(clk, reset, RegWriteW, Rs1D, Rs2D, RdW, ResultW, R1D, R2D); regfile regf(clk, reset, RegWriteW, Rs1D, Rs2D, RdW, ResultW, R1D, R2D);
extend ext(.InstrD(InstrD[31:7]), .ImmSrcD, .ExtImmD); extend ext(.InstrD(InstrD[31:7]), .ImmSrcD, .ImmExtD);
// Execute stage pipeline register and logic // Execute stage pipeline register and logic
flopenrc #(`XLEN) RD1EReg(clk, reset, FlushE, ~StallE, R1D, R1E); flopenrc #(`XLEN) RD1EReg(clk, reset, FlushE, ~StallE, R1D, R1E);
flopenrc #(`XLEN) RD2EReg(clk, reset, FlushE, ~StallE, R2D, R2E); flopenrc #(`XLEN) RD2EReg(clk, reset, FlushE, ~StallE, R2D, R2E);
flopenrc #(`XLEN) ExtImmEReg(clk, reset, FlushE, ~StallE, ExtImmD, ExtImmE); flopenrc #(`XLEN) ImmExtEReg(clk, reset, FlushE, ~StallE, ImmExtD, ImmExtE);
flopenrc #(5) Rs1EReg(clk, reset, FlushE, ~StallE, Rs1D, Rs1E); flopenrc #(5) Rs1EReg(clk, reset, FlushE, ~StallE, Rs1D, Rs1E);
flopenrc #(5) Rs2EReg(clk, reset, FlushE, ~StallE, Rs2D, Rs2E); flopenrc #(5) Rs2EReg(clk, reset, FlushE, ~StallE, Rs2D, Rs2E);
flopenrc #(5) RdEReg(clk, reset, FlushE, ~StallE, RdD, RdE); flopenrc #(5) RdEReg(clk, reset, FlushE, ~StallE, RdD, RdE);
@ -104,9 +107,9 @@ module datapath (
mux3 #(`XLEN) fbemux(R2E, ResultW, IFResultM, ForwardBE, ForwardedSrcBE); mux3 #(`XLEN) fbemux(R2E, ResultW, IFResultM, ForwardBE, ForwardedSrcBE);
comparator_dc_flip #(`XLEN) comp(ForwardedSrcAE, ForwardedSrcBE, BranchSignedE, FlagsE); comparator_dc_flip #(`XLEN) comp(ForwardedSrcAE, ForwardedSrcBE, BranchSignedE, FlagsE);
mux2 #(`XLEN) srcamux(ForwardedSrcAE, PCE, ALUSrcAE, SrcAE); mux2 #(`XLEN) srcamux(ForwardedSrcAE, PCE, ALUSrcAE, SrcAE);
mux2 #(`XLEN) srcbmux(ForwardedSrcBE, ExtImmE, ALUSrcBE, SrcBE); mux2 #(`XLEN) srcbmux(ForwardedSrcBE, ImmExtE, ALUSrcBE, SrcBE);
alu #(`XLEN) alu(SrcAE, SrcBE, ALUControlE, Funct3E, ALUResultE, IEUAdrE); alu #(`XLEN) alu(SrcAE, SrcBE, ALUControlE, Funct3E, ALUResultE, IEUAdrE);
mux2 #(`XLEN) altresultmux(ExtImmE, PCLinkE, JumpE, AltResultE); mux2 #(`XLEN) altresultmux(ImmExtE, PCLinkE, JumpE, AltResultE);
mux2 #(`XLEN) ieuresultmux(ALUResultE, AltResultE, ALUResultSrcE, IEUResultE); mux2 #(`XLEN) ieuresultmux(ALUResultE, AltResultE, ALUResultSrcE, IEUResultE);
// Memory stage pipeline register // Memory stage pipeline register

View File

@ -1,7 +1,8 @@
/////////////////////////////////////////// ///////////////////////////////////////////
// extend.sv // extend.sv
// //
// Written: David_Harris@hmc.edu 9 January 2021 // Written: David_Harris@hmc.edu, Sarah.Harris@unlv.edu
// Created: 9 January 2021
// Modified: // Modified:
// //
// Purpose: Produce sign-extended immediates from various formats // Purpose: Produce sign-extended immediates from various formats
@ -29,27 +30,27 @@
`include "wally-config.vh" `include "wally-config.vh"
module extend ( module extend (
input logic [31:7] InstrD, input logic [31:7] InstrD, // All instruction bits except opcode (lower 7 bits)
input logic [2:0] ImmSrcD, input logic [2:0] ImmSrcD, // Select what kind of extension to perform
output logic [`XLEN-1:0 ] ExtImmD); output logic [`XLEN-1:0 ] ImmExtD); // Extended immediate
localparam [`XLEN-1:0] undefined = {(`XLEN){1'bx}}; // could change to 0 after debug localparam [`XLEN-1:0] undefined = {(`XLEN){1'bx}}; // could change to 0 after debug
always_comb always_comb
case(ImmSrcD) case(ImmSrcD)
// I-type // I-type
3'b000: ExtImmD = {{(`XLEN-12){InstrD[31]}}, InstrD[31:20]}; 3'b000: ImmExtD = {{(`XLEN-12){InstrD[31]}}, InstrD[31:20]};
// S-type (stores) // S-type (stores)
3'b001: ExtImmD = {{(`XLEN-12){InstrD[31]}}, InstrD[31:25], InstrD[11:7]}; 3'b001: ImmExtD = {{(`XLEN-12){InstrD[31]}}, InstrD[31:25], InstrD[11:7]};
// B-type (branches) // B-type (branches)
3'b010: ExtImmD = {{(`XLEN-12){InstrD[31]}}, InstrD[7], InstrD[30:25], InstrD[11:8], 1'b0}; 3'b010: ImmExtD = {{(`XLEN-12){InstrD[31]}}, InstrD[7], InstrD[30:25], InstrD[11:8], 1'b0};
// J-type (jal) // J-type (jal)
3'b011: ExtImmD = {{(`XLEN-20){InstrD[31]}}, InstrD[19:12], InstrD[20], InstrD[30:21], 1'b0}; 3'b011: ImmExtD = {{(`XLEN-20){InstrD[31]}}, InstrD[19:12], InstrD[20], InstrD[30:21], 1'b0};
// U-type (lui, auipc) // U-type (lui, auipc)
3'b100: ExtImmD = {{(`XLEN-31){InstrD[31]}}, InstrD[30:12], 12'b0}; 3'b100: ImmExtD = {{(`XLEN-31){InstrD[31]}}, InstrD[30:12], 12'b0};
// Store Conditional: zero offset // Store Conditional: zero offset
3'b101: if (`A_SUPPORTED) ExtImmD = 0; 3'b101: if (`A_SUPPORTED) ImmExtD = 0;
else ExtImmD = undefined; else ImmExtD = undefined;
default: ExtImmD = undefined; // undefined default: ImmExtD = undefined; // undefined
endcase endcase
endmodule endmodule

View File

@ -1,7 +1,8 @@
/////////////////////////////////////////// ///////////////////////////////////////////
// forward.sv // forward.sv
// //
// Written: David_Harris@hmc.edu 9 January 2021 // Written: David_Harris@hmc.edu, Sarah.Harris@unlv.edu
// Created: 9 January 2021
// Modified: // Modified:
// //
// Purpose: Determine datapath forwarding // Purpose: Determine datapath forwarding
@ -30,17 +31,17 @@
module forward( module forward(
// Detect hazards // Detect hazards
input logic [4:0] Rs1D, Rs2D, Rs1E, Rs2E, RdE, RdM, RdW, input logic [4:0] Rs1D, Rs2D, Rs1E, Rs2E, RdE, RdM, RdW, // Source and destination registers
input logic MemReadE, MDUE, CSRReadE, input logic MemReadE, MDUE, CSRReadE, // Execute stage instruction is a load (MemReadE), divide (MDUE), or CSR read (CSRReadE)
input logic RegWriteM, RegWriteW, input logic RegWriteM, RegWriteW, // Instruction in Memory or Writeback stage writes register file
input logic FCvtIntE, input logic FCvtIntE, // FPU convert float to int
input logic SCE, input logic SCE, // Store Conditional instruction
// Forwarding controls // Forwarding controls
output logic [1:0] ForwardAE, ForwardBE, output logic [1:0] ForwardAE, ForwardBE, // Select signals for forwarding multiplexers
output logic FCvtIntStallD, LoadStallD, MDUStallD, CSRRdStallD output logic FCvtIntStallD, LoadStallD, MDUStallD, CSRRdStallD // Stall due to conversion, load, multiply/divide, CSR read
); );
logic MatchDE; logic MatchDE; // Match between a source register in Decode stage and destination register in Execute stage
always_comb begin always_comb begin
ForwardAE = 2'b00; ForwardAE = 2'b00;

View File

@ -29,67 +29,66 @@
`include "wally-config.vh" `include "wally-config.vh"
module ieu ( module ieu (
input logic clk, reset, input logic clk, reset,
// Decode Stage interface // Decode stage signals
input logic [31:0] InstrD, input logic [31:0] InstrD, // Instruction
input logic IllegalIEUInstrFaultD, input logic IllegalIEUInstrFaultD, // Illegal instruction
output logic IllegalBaseInstrFaultD, output logic IllegalBaseInstrFaultD, // Illegal I-type instruction, or illegal RV32 access to upper 16 registers
// Execute Stage interface // Execute stage signals
input logic [`XLEN-1:0] PCE, input logic [`XLEN-1:0] PCE, // PC
input logic [`XLEN-1:0] PCLinkE, input logic [`XLEN-1:0] PCLinkE, // PC + 4
input logic FWriteIntE, FCvtIntE, FCvtIntW, input logic FWriteIntE, FCvtIntE, // FPU writes to integer register file, FPU converts float to int
output logic [`XLEN-1:0] IEUAdrE, output logic [`XLEN-1:0] IEUAdrE, // Memory address
output logic IntDivE, W64E, output logic IntDivE, W64E, // Integer divide, RV64 W-type instruction
output logic [2:0] Funct3E, output logic [2:0] Funct3E, // Funct3 instruction field
output logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // these are the src outputs before the mux choosing between them and PCE to put in srcA/B output logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // ALU src inputs before the mux choosing between them and PCE to put in srcA/B
output logic [4:0] RdE, // Destination register
// Memory stage interface // Memory stage signals
input logic SquashSCW, // from LSU input logic SquashSCW, // Squash store conditional, from LSU
output logic [1:0] MemRWM, // read/write control goes to LSU output logic [1:0] MemRWM, // Read/write control goes to LSU
output logic [1:0] AtomicM, // atomic control goes to LSU output logic [1:0] AtomicM, // Atomic control goes to LSU
output logic [`XLEN-1:0] WriteDataM, // write data to LSU output logic [`XLEN-1:0] WriteDataM, // Write data to LSU
output logic [2:0] Funct3M, // Funct3 (size and signedness) to LSU
output logic [2:0] Funct3M, // size and signedness to LSU output logic [`XLEN-1:0] SrcAM, // ALU SrcA to Privileged unit and FPU
output logic [`XLEN-1:0] SrcAM, // to privilege and fpu output logic [4:0] RdM, // Destination register
output logic [4:0] RdE, RdM, input logic [`XLEN-1:0] FIntResM, // Integer result from FPU (fmv, fclass, fcmp)
input logic [`XLEN-1:0] FIntResM, output logic InvalidateICacheM, FlushDCacheM, // Invalidate I$, flush D$
output logic InvalidateICacheM, FlushDCacheM, output logic InstrValidM, // Instruction is valid
// Writeback stage signals
// Writeback stage input logic [`XLEN-1:0] FIntDivResultW, // Integer divide result from FPU fdivsqrt
input logic [`XLEN-1:0] FIntDivResultW, input logic [`XLEN-1:0] CSRReadValW, MDUResultW, // CSR read value, MDU (multiply/divide unit) result
input logic [`XLEN-1:0] CSRReadValW, MDUResultW, input logic [`XLEN-1:0] FCvtIntResW, // FPU's float to int conversion result
input logic [`XLEN-1:0] FCvtIntResW, input logic FCvtIntW, // FPU converts float to int
output logic [4:0] RdW, output logic [4:0] RdW, // Destination register
input logic [`XLEN-1:0] ReadDataW, input logic [`XLEN-1:0] ReadDataW, // LSU's read data
output logic InstrValidM, // Hazard unit signals
// hazards input logic StallD, StallE, StallM, StallW, // Stall signals from hazard unit
input logic StallD, StallE, StallM, StallW, input logic FlushD, FlushE, FlushM, FlushW, // Flush signals
input logic FlushD, FlushE, FlushM, FlushW, output logic FCvtIntStallD, LoadStallD, // Stall causes from IEU to hazard unit
output logic FCvtIntStallD, LoadStallD, MDUStallD, CSRRdStallD, output logic MDUStallD, CSRRdStallD, StoreStallD,
output logic PCSrcE, output logic PCSrcE, // Select next PC (between PC+4 and IEUAdrE)
output logic CSRReadM, CSRWriteM, PrivilegedM, output logic CSRReadM, CSRWriteM, PrivilegedM,// CSR read, CSR write, is privileged instruction
output logic CSRWriteFenceM, output logic CSRWriteFenceM // CSR write or fence instruction needs to flush subsequent instructions
output logic StoreStallD
); );
logic [2:0] ImmSrcD; logic [2:0] ImmSrcD; // Select type of immediate extension
logic [1:0] FlagsE; logic [1:0] FlagsE; // Comparison flags ({eq, lt})
logic [2:0] ALUControlE; logic [2:0] ALUControlE; // ALU Control
logic ALUSrcAE, ALUSrcBE; logic ALUSrcAE, ALUSrcBE; // ALU source operands
logic [2:0] ResultSrcW; logic [2:0] ResultSrcW; // Source of result in Writeback stage
logic ALUResultSrcE; logic ALUResultSrcE; // ALU result
logic SCE; logic SCE; // Store Conditional instruction
logic FWriteIntM; logic FWriteIntM; // FPU writing to integer register file
logic IntDivW; logic IntDivW; // Integer divide instruction
// forwarding signals // forwarding signals
logic [4:0] Rs1D, Rs2D, Rs1E, Rs2E; logic [4:0] Rs1D, Rs2D, Rs1E, Rs2E; // Source and destination registers
logic [1:0] ForwardAE, ForwardBE; logic [1:0] ForwardAE, ForwardBE; // Select signals for forwarding multiplexers
logic RegWriteM, RegWriteW; logic RegWriteM, RegWriteW; // Register will be written in Memory, Writeback stages
logic MemReadE, CSRReadE; logic MemReadE, CSRReadE; // Load, CSRRead instruction
logic JumpE; logic JumpE; // Jump instruction
logic BranchSignedE; logic BranchSignedE; // Branch does signed comparison on operands
logic MDUE; logic MDUE; // Multiply/divide instruction
controller c( controller c(
.clk, .reset, .StallD, .FlushD, .InstrD, .ImmSrcD, .clk, .reset, .StallD, .FlushD, .InstrD, .ImmSrcD,

View File

@ -1,7 +1,8 @@
/////////////////////////////////////////// ///////////////////////////////////////////
// regfile.sv // regfile.sv
// //
// Written: David_Harris@hmc.edu 9 January 2021 // Written: David_Harris@hmc.edu, Sarah.Harris@unlv.edu
// Created: 9 January 2021
// Modified: // Modified:
// //
// Purpose: 3-port register file // Purpose: 3-port register file
@ -30,26 +31,26 @@
module regfile ( module regfile (
input logic clk, reset, input logic clk, reset,
input logic we3, input logic we3, // Write enable
input logic [ 4:0] a1, a2, a3, input logic [ 4:0] a1, a2, a3, // Source registers to read (a1, a2), destination register to write (a3)
input logic [`XLEN-1:0] wd3, input logic [`XLEN-1:0] wd3, // Write data for port 3
output logic [`XLEN-1:0] rd1, rd2); output logic [`XLEN-1:0] rd1, rd2); // Read data for ports 1, 2
localparam NUMREGS = `E_SUPPORTED ? 16 : 32; // only 16 registers in E mode localparam NUMREGS = `E_SUPPORTED ? 16 : 32; // only 16 registers in E mode
(* mark_debug = "true" *) logic [`XLEN-1:0] rf[NUMREGS-1:1]; (* mark_debug = "true" *) logic [`XLEN-1:0] rf[NUMREGS-1:1];
integer i; integer i;
// three ported register file // Three ported register file
// read two ports combinationally (A1/RD1, A2/RD2) // Read two ports combinationally (a1/rd1, a2/rd2)
// write third port on rising edge of clock (A3/WD3/WE3) // Write third port on rising edge of clock (a3/wd3/we3)
// write occurs on falling edge of clock // Write occurs on falling edge of clock
// register 0 hardwired to 0 // Register 0 hardwired to 0
// reset is intended for simulation only, not synthesis // reset is intended for simulation only, not synthesis
// can logic be adjusted to not need resettable registers? // can logic be adjusted to not need resettable registers?
always_ff @(negedge clk) // or posedge reset) // *** make this a preload in testbench rather than reset always_ff @(negedge clk)
if (reset) for(i=1; i<NUMREGS; i++) rf[i] <= 0; if (reset) for(i=1; i<NUMREGS; i++) rf[i] <= 0;
else if (we3) rf[a3] <= wd3; else if (we3) rf[a3] <= wd3;

View File

@ -1,7 +1,8 @@
/////////////////////////////////////////// ///////////////////////////////////////////
// shifter.sv // shifter.sv
// //
// Written: David_Harris@hmc.edu 9 January 2021 // Written: David_Harris@hmc.edu, Sarah.Harris@unlv.edu
// Created: 9 January 2021
// Modified: // Modified:
// //
// Purpose: RISC-V 32/64 bit shifter // Purpose: RISC-V 32/64 bit shifter
@ -29,19 +30,19 @@
`include "wally-config.vh" `include "wally-config.vh"
module shifter ( module shifter (
input logic [`XLEN-1:0] A, input logic [`XLEN-1:0] A, // Source
input logic [`LOG_XLEN-1:0] Amt, input logic [`LOG_XLEN-1:0] Amt, // Shift amount
input logic Right, Arith, W64, input logic Right, Arith, W64, // Shift right, arithmetic, RV64 W-type shift
output logic [`XLEN-1:0] Y); output logic [`XLEN-1:0] Y); // Shifted result
logic [2*`XLEN-2:0] z, zshift; logic [2*`XLEN-2:0] z, zshift; // Input to funnel shifter, shifted amount before truncated to 32 or 64 bits
logic [`LOG_XLEN-1:0] amttrunc, offset; logic [`LOG_XLEN-1:0] amttrunc, offset; // Shift amount adjusted for RV64, right-shift amount
// Handle left and right shifts with a funnel shifter. // Handle left and right shifts with a funnel shifter.
// For RV32, only 32-bit shifts are needed. // For RV32, only 32-bit shifts are needed.
// For RV64, 32 and 64-bit shifts are needed, with sign extension. // For RV64, 32- and 64-bit shifts are needed, with sign extension.
// funnel shifter input (see CMOS VLSI Design 4e Section 11.8.1, note Table 11.11 shift types wrong) // Funnel shifter input (see CMOS VLSI Design 4e Section 11.8.1, note Table 11.11 shift types wrong)
if (`XLEN==32) begin:shifter // RV32 if (`XLEN==32) begin:shifter // RV32
always_comb // funnel mux always_comb // funnel mux
if (Right) if (Right)
@ -62,13 +63,13 @@ module shifter (
else z = {63'b0, A}; else z = {63'b0, A};
else z = {A, 63'b0}; else z = {A, 63'b0};
end end
assign amttrunc = W64 ? {1'b0, Amt[4:0]} : Amt; // 32 or 64-bit shift assign amttrunc = W64 ? {1'b0, Amt[4:0]} : Amt; // 32- or 64-bit shift
end end
// opposite offset for right shfits // Opposite offset for right shifts
assign offset = Right ? amttrunc : ~amttrunc; assign offset = Right ? amttrunc : ~amttrunc;
// funnel operation // Funnel operation
assign zshift = z >> offset; assign zshift = z >> offset;
assign Y = zshift[`XLEN-1:0]; assign Y = zshift[`XLEN-1:0];
endmodule endmodule