Simplified branch predictor.

This commit is contained in:
Ross Thompson 2023-02-08 18:24:38 -06:00
parent c8085fead4
commit 996bb289d3
2 changed files with 23 additions and 43 deletions

View File

@ -69,12 +69,12 @@ module bpred (
logic PredValidF;
logic [1:0] DirPredictionF;
logic [3:0] BTBPredInstrClassF, PredInstrClassF, PredInstrClassD, PredInstrClassE;
logic [3:0] BTBPredInstrClassF, PredInstrClassF, PredInstrClassD;
logic [`XLEN-1:0] PredPCF, RASPCF;
logic PredictionPCWrongE;
logic PredictionInstrClassWrongE;
logic AnyWrongPredInstrClassD, AnyWrongPredInstrClassE;
logic [3:0] InstrClassF, InstrClassD, InstrClassE, InstrClassW;
logic DirPredictionWrongE, BTBPredPCWrongE, RASPredPCWrongE, BPPredClassNonCFIWrongE;
logic DirPredictionWrongE, BTBPredPCWrongE, RASPredPCWrongE;
logic SelBPPredF;
logic [`XLEN-1:0] BPPredPCF;
@ -82,7 +82,6 @@ module bpred (
logic [`XLEN-1:0] PCCorrectE;
logic [3:0] WrongPredInstrClassD;
logic BTBTargetWrongE;
logic RASTargetWrongE;
logic JumpOrTakenBranchE;
@ -132,20 +131,15 @@ module bpred (
-----/\----- EXCLUDED -----/\----- */
end
// this predictor will have two pieces of data,
// 1) A direction (1 = Taken, 0 = Not Taken)
// 2) Any information which is necessary for the predictor to build its next state.
// For a 2 bit table this is the prediction count.
// Part 2 Branch target address prediction
// *** For now the BTB will house the direct and indirect targets
// BTB contains target address for all CFI
btb TargetPredictor(.clk, .reset, .StallF, .StallD, .StallM, .FlushD, .FlushM,
.PCNextF, .PCF, .PCD, .PCE,
.PredPCF,
.BTBPredInstrClassF,
.PredValidF,
.PredictionInstrClassWrongE,
.AnyWrongPredInstrClassE,
.IEUAdrE,
.InstrClassD,
.InstrClassE);
@ -205,16 +199,15 @@ module bpred (
flopenrc #(4) InstrClassRegM(clk, reset, FlushM, ~StallM, InstrClassE, InstrClassM);
flopenrc #(4) InstrClassRegW(clk, reset, FlushW, ~StallW, InstrClassM, InstrClassW);
flopenrc #(1) BPPredWrongMReg(clk, reset, FlushM, ~StallM, BPPredWrongE, BPPredWrongM);
flopenrc #(1) JumpOrTakenBranchMReg(clk, reset, FlushM, ~StallM, JumpOrTakenBranchE, JumpOrTakenBranchM);
// branch predictor
flopenrc #(4) BPPredWrongRegM(clk, reset, FlushM, ~StallM,
{DirPredictionWrongE, BTBPredPCWrongE, RASPredPCWrongE, PredictionInstrClassWrongE},
{DirPredictionWrongE, BTBPredPCWrongE, RASPredPCWrongE, AnyWrongPredInstrClassE},
{DirPredictionWrongM, BTBPredPCWrongM, RASPredPCWrongM, PredictionInstrClassWrongM});
// pipeline the class
flopenrc #(4) PredInstrClassRegD(clk, reset, FlushD, ~StallD, PredInstrClassF, PredInstrClassD);
flopenrc #(4) PredInstrClassRegE(clk, reset, FlushE, ~StallE, PredInstrClassD, PredInstrClassE);
flopenrc #(1) WrongInstrClassRegE(clk, reset, FlushE, ~StallE, AnyWrongPredInstrClassD, AnyWrongPredInstrClassE);
// Check the prediction
// if it is a CFI then check if the next instruction address (PCD) matches the branch's target or fallthrough address.
@ -223,11 +216,13 @@ module bpred (
// The next instruction is always valid as no other flush would occur at the same time as the branch and not
// also flush the branch. This will change in a superscaler cpu.
assign PredictionPCWrongE = PCCorrectE != PCD;
assign BPPredWrongE = PredictionPCWrongE & (|InstrClassE | BPPredClassNonCFIWrongE);
// The branch direction is checked inside each branch predictor, but does not actually matter for
// branch miss prediction recovery. If the class or direction is wrong, but the target is correct
// we an ignore the branch miss-prediction.
// branch class prediction wrong.
assign WrongPredInstrClassD = PredInstrClassD ^ InstrClassD;
assign AnyWrongPredInstrClassD = |WrongPredInstrClassD;
// Finally indicate if the branch predictor was wrong
assign BPPredWrongE = PredictionPCWrongE & (|InstrClassE | AnyWrongPredInstrClassE);
// Output the predicted PC or corrected PC on miss-predict.
// Selects the BP or PC+2/4.
@ -242,27 +237,6 @@ module bpred (
if(`INSTR_CLASS_PRED) mux2 #(`XLEN) pcmuxBPWrongInvalidateFlush(PCE, PCF, BPPredWrongM, NextValidPCE);
else assign NextValidPCE = PCE;
// Finally we need to check if the class is wrong. When the class is wrong the BTB needs to be updated.
// Also we want to track this in a performance counter.
assign PredictionInstrClassWrongE = InstrClassE != PredInstrClassE;
// The remaining checks are used for performance counters.
// If we have a jump, jump register or jal or jalr and the PC is wrong we need to increment the performance counter.
//assign BTBPredPCWrongE = (InstrClassE[3] | InstrClassE[1] | InstrClassE[0]) & PredictionPCWrongE;
//assign BTBPredPCWrongE = TargetWrongE & (InstrClassE[3] | InstrClassE[1] | InstrClassE[0]) & PCSrcE;
assign BTBPredPCWrongE = BTBTargetWrongE;
// similar with RAS. Over counts ras if the class prediction was wrong.
//assign RASPredPCWrongE = TargetWrongE & InstrClassE[2] & PCSrcE;
assign RASPredPCWrongE = RASTargetWrongE;
// Finally if the real instruction class is non CFI but the predictor said it was we need to count.
assign BPPredClassNonCFIWrongE = PredictionInstrClassWrongE & ~|InstrClassE;
// branch class prediction wrong.
assign WrongPredInstrClassD = PredInstrClassD ^ InstrClassD;
// performance counters
// 1. class (class wrong / minstret) (PredictionInstrClassWrongM / csr) // Correct now
@ -270,11 +244,17 @@ module bpred (
// 3. target ras (ras target wrong / class[2])
// 4. direction (br dir wrong / class[0])
assign BTBTargetWrongE = (PredPCE != IEUAdrE) & (InstrClassE[0] | InstrClassE[1] | InstrClassE[3]) & PCSrcE;
assign RASTargetWrongE = (RASPCE != IEUAdrE) & InstrClassE[2] & PCSrcE;
// Unforuantely we can't relay on PCD to infer the correctness of the BTB or RAS because the class prediction
// could be wrong or the fall through address selected for branch predict not taken.
// By pipeline the BTB's PC and RAS address through the pipeline we can measure the accuracy of
// both without the above inaccuracies.
assign BTBPredPCWrongE = (PredPCE != IEUAdrE) & (InstrClassE[0] | InstrClassE[1] | InstrClassE[3]) & PCSrcE;
assign RASPredPCWrongE = (RASPCE != IEUAdrE) & InstrClassE[2] & PCSrcE;
assign JumpOrTakenBranchE = (InstrClassE[0] & PCSrcE) | InstrClassE[1] | InstrClassE[3];
flopenrc #(1) JumpOrTakenBranchMReg(clk, reset, FlushM, ~StallM, JumpOrTakenBranchE, JumpOrTakenBranchM);
flopenrc #(`XLEN) BTBTargetDReg(clk, reset, FlushD, ~StallD, PredPCF, PredPCD);
flopenrc #(`XLEN) BTBTargetEReg(clk, reset, FlushE, ~StallE, PredPCD, PredPCE);

View File

@ -39,7 +39,7 @@ module btb #(parameter int Depth = 10 ) (
output logic [3:0] BTBPredInstrClassF, // BTB's guess at instruction class
output logic PredValidF, // BTB's guess is valid
// update
input logic PredictionInstrClassWrongE, // BTB's instruction class guess was wrong
input logic AnyWrongPredInstrClassE, // BTB's instruction class guess was wrong
input logic [`XLEN-1:0] IEUAdrE, // Branch/jump target address to insert into btb
input logic [3:0] InstrClassD, // Instruction class to insert into btb
input logic [3:0] InstrClassE // Instruction class to insert into btb
@ -98,7 +98,7 @@ module btb #(parameter int Depth = 10 ) (
//assign PredValidF = MatchXF ? 1'b1 : TablePredValidF;
assign UpdateEn = |InstrClassE | PredictionInstrClassWrongE;
assign UpdateEn = |InstrClassE | AnyWrongPredInstrClassE;
// An optimization may be using a PC relative address.
ram2p1r1wbe #(2**Depth, `XLEN+4) memory(