1
0
mirror of https://github.com/openhwgroup/cvw synced 2025-02-11 06:05:49 +00:00

Implement PMP checker and revise PMA checker

This commit is contained in:
Thomas Fleming 2021-05-03 17:37:42 -04:00
parent 00c3b5a033
commit 86a93d77b4
6 changed files with 277 additions and 90 deletions

View File

@ -56,6 +56,7 @@ module csr #(parameter
output logic STATUS_MIE, STATUS_SIE, output logic STATUS_MIE, STATUS_SIE,
output logic STATUS_MXR, STATUS_SUM, output logic STATUS_MXR, STATUS_SUM,
output logic STATUS_MPRV, output logic STATUS_MPRV,
output logic [63:0] PMPCFG01_REGW, PMPCFG23_REGW,
output logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [0:15], output logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [0:15],
input logic [4:0] SetFflagsM, input logic [4:0] SetFflagsM,
output logic [2:0] FRM_REGW, output logic [2:0] FRM_REGW,

View File

@ -91,6 +91,8 @@ module csrm #(parameter
output logic [`XLEN-1:0] CSRMReadValM, MEPC_REGW, MTVEC_REGW, output logic [`XLEN-1:0] CSRMReadValM, MEPC_REGW, MTVEC_REGW,
output logic [31:0] MCOUNTEREN_REGW, MCOUNTINHIBIT_REGW, output logic [31:0] MCOUNTEREN_REGW, MCOUNTINHIBIT_REGW,
output logic [`XLEN-1:0] MEDELEG_REGW, MIDELEG_REGW, output logic [`XLEN-1:0] MEDELEG_REGW, MIDELEG_REGW,
// 64-bit registers in RV64, or two 32-bit registers in RV32
output logic [63:0] PMPCFG01_REGW, PMPCFG23_REGW,
output logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [0:15], output logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [0:15],
input logic [11:0] MIP_REGW, MIE_REGW, input logic [11:0] MIP_REGW, MIE_REGW,
output logic WriteMSTATUSM, output logic WriteMSTATUSM,
@ -99,7 +101,6 @@ module csrm #(parameter
logic [`XLEN-1:0] MISA_REGW; logic [`XLEN-1:0] MISA_REGW;
logic [`XLEN-1:0] MSCRATCH_REGW, MCAUSE_REGW, MTVAL_REGW; logic [`XLEN-1:0] MSCRATCH_REGW, MCAUSE_REGW, MTVAL_REGW;
logic [63:0] PMPCFG01_REGW, PMPCFG23_REGW; // 64-bit registers in RV64, or two 32-bit registers in RV32
logic WriteMTVECM, WriteMEDELEGM, WriteMIDELEGM; logic WriteMTVECM, WriteMEDELEGM, WriteMIDELEGM;
logic WriteMSCRATCHM, WriteMEPCM, WriteMCAUSEM, WriteMTVALM; logic WriteMSCRATCHM, WriteMEPCM, WriteMCAUSEM, WriteMTVALM;

View File

@ -47,47 +47,83 @@ module pmachecker (
); );
// Signals are high if the memory access is within the given region // Signals are high if the memory access is within the given region
logic BootTim, Tim, CLINT, GPIO, UART, PLIC;
logic [5:0] Regions;
// Actual HSEL signals sent to uncore
logic HSELBootTim, HSELTim, HSELCLINT, HSELGPIO, HSELUART, HSELPLIC; logic HSELBootTim, HSELTim, HSELCLINT, HSELGPIO, HSELUART, HSELPLIC;
logic ValidBootTim, ValidTim, ValidCLINT, ValidGPIO, ValidUART, ValidPLIC;
logic PreHSELUART; // Attributes of memory region accessed
logic Executable, Readable, Writable;
logic ExecutableRegion, ReadableRegion, WritableRegion; logic Fault;
logic Empty;
// Determine which region of physical memory (if any) is being accessed attributes attributes(.Address(HADDR), .*);
adrdec boottimdec(HADDR, `BOOTTIMBASE, `BOOTTIMRANGE, HSELBootTim);
adrdec timdec(HADDR, `TIMBASE, `TIMRANGE, HSELTim);
adrdec clintdec(HADDR, `CLINTBASE, `CLINTRANGE, HSELCLINT);
adrdec gpiodec(HADDR, `GPIOBASE, `GPIORANGE, HSELGPIO);
adrdec uartdec(HADDR, `UARTBASE, `UARTRANGE, PreHSELUART);
adrdec plicdec(HADDR, `PLICBASE, `PLICRANGE, HSELPLIC);
// *** Should this fault? // Unswizzle region bits
assign HSELUART = PreHSELUART && (HSIZE == 3'b000); // only byte writes to UART are supported assign {BootTim, Tim, CLINT, GPIO, UART, PLIC} = Regions;
assign ValidBootTim = '1;
assign ValidTim = '1;
assign ValidCLINT = ~ExecuteAccessF && (HSIZE == 3'b010);
assign ValidGPIO = ~ExecuteAccessF && (HSIZE == 3'b010);
assign ValidUART = ~ExecuteAccessF && (HSIZE == 3'b000);
assign HSELBootTim = BootTim && ValidBootTim;
assign HSELTim = Tim && ValidTim;
assign HSELCLINT = CLINT && ValidCLINT;
assign HSELGPIO = GPIO && ValidGPIO;
assign HSELUART = UART && ValidUART; // only byte writes to UART are supported
assign HSELPLIC = PLIC && ValidPLIC;
// Swizzle region bits // Swizzle region bits
assign HSELRegions = {HSELBootTim, HSELTim, HSELCLINT, HSELGPIO, HSELUART, HSELPLIC}; assign HSELRegions = {HSELBootTim, HSELTim, HSELCLINT, HSELGPIO, HSELUART, HSELPLIC};
// Only RAM memory regions are cacheable assign Fault = ~|HSELRegions;
assign Cacheable = HSELBootTim | HSELTim;
// *** Temporarily assume only RAM regions are idempotent -- likely wrong assign PMAInstrAccessFaultF = ExecuteAccessF && Fault;
assign Idempotent = HSELBootTim | HSELTim; assign PMALoadAccessFaultM = ReadAccessM && Fault;
assign PMAStoreAccessFaultM = WriteAccessM && Fault;
// *** Temporarily assume only RAM regions allow full atomic operations -- likely wrong assign PMASquashBusAccess = PMAInstrAccessFaultF || PMALoadAccessFaultM || PMAStoreAccessFaultM;
assign AtomicAllowed = HSELBootTim | HSELTim;
endmodule
assign ExecutableRegion = HSELBootTim | HSELTim;
assign ReadableRegion = HSELBootTim | HSELTim | HSELCLINT | HSELGPIO | HSELUART | HSELPLIC; module attributes (
assign WritableRegion = HSELBootTim | HSELTim | HSELCLINT | HSELGPIO | HSELUART | HSELPLIC; input logic clk, reset,
assign Empty = ~|HSELRegions; input logic [31:0] Address,
assign PMAInstrAccessFaultF = ExecuteAccessF && (Empty || ~ExecutableRegion); output logic [5:0] Regions,
assign PMALoadAccessFaultM = ReadAccessM && (Empty || ~ReadableRegion);
assign PMAStoreAccessFaultM = WriteAccessM && (Empty || ~WritableRegion); output logic Cacheable, Idempotent, AtomicAllowed,
output logic Executable, Readable, Writable
//assign PMASquashBusAccess = PMAInstrAccessFaultF || PMALoadAccessFaultM || PMAStoreAccessFaultM; );
assign PMASquashBusAccess = 0;
// Signals are high if the memory access is within the given region
logic BootTim, Tim, CLINT, GPIO, UART, PLIC;
// Determine which region of physical memory (if any) is being accessed
adrdec boottimdec(Address, `BOOTTIMBASE, `BOOTTIMRANGE, BootTim);
adrdec timdec(Address, `TIMBASE, `TIMRANGE, Tim);
adrdec clintdec(Address, `CLINTBASE, `CLINTRANGE, CLINT);
adrdec gpiodec(Address, `GPIOBASE, `GPIORANGE, GPIO);
adrdec uartdec(Address, `UARTBASE, `UARTRANGE, UART);
adrdec plicdec(Address, `PLICBASE, `PLICRANGE, PLIC);
// Swizzle region bits
assign Regions = {BootTim, Tim, CLINT, GPIO, UART, PLIC};
// Only RAM memory regions are cacheable
assign Cacheable = BootTim | Tim;
assign Idempotent = BootTim | Tim;
assign AtomicAllowed = BootTim | Tim;
assign Executable = BootTim | Tim;
assign Readable = BootTim | Tim | CLINT | GPIO | UART | PLIC;
assign Writable = BootTim | Tim | CLINT | GPIO | UART | PLIC;
endmodule endmodule

View File

@ -0,0 +1,120 @@
///////////////////////////////////////////
// pmpadrdec.sv
//
// Written: tfleming@hmc.edu 28 April 2021
// Modified:
//
// Purpose: Address decoder for the PMP checker. Decides whether a given address
// falls within the PMP range for each address-matching mode
// (top-of-range/TOR, naturally aligned four-byte region/NA4, and
// naturally aligned power-of-two region/NAPOT), then selects the
// output based on which mode is input.
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
`include "wally-constants.vh"
module pmpadrdec (
input logic [31:0] HADDR,
input logic [1:0] AdrMode,
input logic [`XLEN-1:0] PreviousPMPAdr, CurrentPMPAdr,
output logic Match
);
localparam TOR = 2'b01;
localparam NA4 = 2'b10;
localparam NAPOT = 2'b11;
logic TORMatch, NA4Match, NAPOTMatch;
logic [31:0] PreviousAdrFull, CurrentAdrFull;
logic [33:0] Range;
assign PreviousAdrFull = {PreviousPMPAdr[29:0], 2'b00};
assign CurrentAdrFull = {CurrentPMPAdr[29:0], 2'b00};
// Top-of-range (TOR)
// *** Check if this synthesizes
// if not, literally do comparison (HADDR - PreviousAdrFull == 0)
assign TORMatch = HADDR inside {[PreviousAdrFull:CurrentAdrFull]};
// *** cut number of comparators in half (treat entire pmp space as TOR and have 16 comparators)
// Naturally aligned four-byte region
adrdec na4dec(HADDR, CurrentAdrFull, (2**2)-1, NA4Match);
generate
if (`XLEN == 32 || `XLEN == 64) begin
// priority encoder to translate address to range
// *** We'd like to replace this with a
// *** We should not be truncating 64 bit physical addresses to 32 bits...
always_comb
casez (CurrentPMPAdr[31:0])
32'b???????????????????????????????0: Range = (2**3) - 1;
32'b??????????????????????????????01: Range = (2**4) - 1;
32'b?????????????????????????????011: Range = (2**5) - 1;
32'b????????????????????????????0111: Range = (2**6) - 1;
32'b???????????????????????????01111: Range = (2**7) - 1;
32'b??????????????????????????011111: Range = (2**8) - 1;
32'b?????????????????????????0111111: Range = (2**9) - 1;
32'b????????????????????????01111111: Range = (2**10) - 1;
32'b???????????????????????011111111: Range = (2**11) - 1;
32'b??????????????????????0111111111: Range = (2**12) - 1;
32'b?????????????????????01111111111: Range = (2**13) - 1;
32'b????????????????????011111111111: Range = (2**14) - 1;
32'b???????????????????0111111111111: Range = (2**15) - 1;
32'b??????????????????01111111111111: Range = (2**16) - 1;
32'b?????????????????011111111111111: Range = (2**17) - 1;
32'b????????????????0111111111111111: Range = (2**18) - 1;
32'b???????????????01111111111111111: Range = (2**19) - 1;
32'b??????????????011111111111111111: Range = (2**20) - 1;
32'b?????????????0111111111111111111: Range = (2**21) - 1;
32'b????????????01111111111111111111: Range = (2**22) - 1;
32'b???????????011111111111111111111: Range = (2**23) - 1;
32'b??????????0111111111111111111111: Range = (2**24) - 1;
32'b?????????01111111111111111111111: Range = (2**25) - 1;
32'b????????011111111111111111111111: Range = (2**26) - 1;
32'b???????0111111111111111111111111: Range = (2**27) - 1;
32'b??????01111111111111111111111111: Range = (2**28) - 1;
32'b?????011111111111111111111111111: Range = (2**29) - 1;
32'b????0111111111111111111111111111: Range = (2**30) - 1;
32'b???01111111111111111111111111111: Range = (2**31) - 1;
32'b??011111111111111111111111111111: Range = (2**32) - 1;
32'b?0111111111111111111111111111111: Range = (2**33) - 1;
32'b01111111111111111111111111111111: Range = (2**34) - 1;
32'b11111111111111111111111111111111: Range = (2**35) - 1;
default: Range = '0;
endcase
end else begin
assign Range = '0;
end
endgenerate
// *** Range should not be truncated... but our physical address space is
// currently only 32 bits wide.
adrdec napotdec(HADDR, CurrentAdrFull, Range[31:0], NAPOTMatch);
assign Match = (AdrMode == TOR) ? TORMatch :
(AdrMode == NA4) ? NA4Match :
(AdrMode == NAPOT) ? NAPOTMatch :
0;
endmodule

View File

@ -38,6 +38,8 @@ module pmpchecker (
input logic [1:0] STATUS_MPP, input logic [1:0] STATUS_MPP,
input logic STATUS_MPRV, input logic STATUS_MPRV,
input logic [63:0] PMPCFG01_REGW, PMPCFG23_REGW,
input logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [0:15], input logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [0:15],
input logic ExecuteAccessF, WriteAccessM, ReadAccessM, input logic ExecuteAccessF, WriteAccessM, ReadAccessM,
@ -49,56 +51,82 @@ module pmpchecker (
output logic PMPStoreAccessFaultM output logic PMPStoreAccessFaultM
); );
assign PMPSquashBusAccess = '0; // Bit i is high when the address falls in PMP region i
assign PMPInstrAccessFaultF = '0; logic [15:0] Regions;
assign PMPLoadAccessFaultM = '0; logic [3:0] MatchedRegion;
assign PMPStoreAccessFaultM = '0; logic Match;
logic [7:0] PMPCFG [0:15];
logic L_Bit, X_Bit, W_Bit, R_Bit;
logic InvalidExecute, InvalidWrite, InvalidRead;
assign {PMPCFG[15], PMPCFG[14], PMPCFG[13], PMPCFG[12],
PMPCFG[11], PMPCFG[10], PMPCFG[9], PMPCFG[8]} = PMPCFG23_REGW;
assign {PMPCFG[7], PMPCFG[6], PMPCFG[5], PMPCFG[4],
PMPCFG[3], PMPCFG[2], PMPCFG[1], PMPCFG[0]} = PMPCFG01_REGW;
pmpadrdec pmpadrdec0(HADDR, PMPCFG[0][4:3],
'0, PMPADDR_ARRAY_REGW[0],
Regions[0]);
generate
genvar i;
for (i = 1; i < 16; i++) begin
pmpadrdec pmpadrdec(HADDR, PMPCFG[i][4:3],
PMPADDR_ARRAY_REGW[i-1], PMPADDR_ARRAY_REGW[i],
Regions[i]);
end
endgenerate
assign Match = |Regions;
always_comb
casez (Regions)
16'b???????????????1: MatchedRegion = 0;
16'b??????????????10: MatchedRegion = 1;
16'b?????????????100: MatchedRegion = 2;
16'b????????????1000: MatchedRegion = 3;
16'b???????????10000: MatchedRegion = 4;
16'b??????????100000: MatchedRegion = 5;
16'b?????????1000000: MatchedRegion = 6;
16'b????????10000000: MatchedRegion = 7;
16'b???????100000000: MatchedRegion = 8;
16'b??????1000000000: MatchedRegion = 9;
16'b?????10000000000: MatchedRegion = 10;
16'b????100000000000: MatchedRegion = 11;
16'b???1000000000000: MatchedRegion = 12;
16'b??10000000000000: MatchedRegion = 13;
16'b?100000000000000: MatchedRegion = 14;
16'b1000000000000000: MatchedRegion = 15;
default: MatchedRegion = 0; // Should only occur if there is no match
endcase
assign L_Bit = PMPCFG[MatchedRegion][7];
assign X_Bit = PMPCFG[MatchedRegion][2];
assign W_Bit = PMPCFG[MatchedRegion][1];
assign R_Bit = PMPCFG[MatchedRegion][0];
assign InvalidExecute = ExecuteAccessF && ~X_Bit;
assign InvalidWrite = WriteAccessM && ~W_Bit;
assign InvalidRead = ReadAccessM && ~R_Bit;
assign PMPInstrAccessFaultF = (PrivilegeModeW == `M_MODE) ?
Match && L_Bit && InvalidExecute :
~Match || InvalidExecute;
assign PMPStoreAccessFaultM = (PrivilegeModeW == `M_MODE) ?
Match && L_Bit && InvalidWrite :
~Match || InvalidWrite;
assign PMPLoadAccessFaultM = (PrivilegeModeW == `M_MODE) ?
Match && L_Bit && InvalidRead :
~Match || InvalidRead;
/* /*
// Signals are high if the memory access is within the given region If no PMP entry matches an M-mode access, the access succeeds. If no PMP entry matches an
logic HSELBootTim, HSELTim, HSELCLINT, HSELGPIO, HSELUART, HSELPLIC; S-mode or U-mode access, but at least one PMP entry is implemented, the access fails.
logic PreHSELUART;
logic ExecutableRegion, ReadableRegion, WritableRegion;
logic Empty;
// Determine which region of physical memory (if any) is being accessed
adrdec boottimdec(HADDR, `BOOTTIMBASE, `BOOTTIMRANGE, HSELBootTim);
adrdec timdec(HADDR, `TIMBASE, `TIMRANGE, HSELTim);
adrdec clintdec(HADDR, `CLINTBASE, `CLINTRANGE, HSELCLINT);
adrdec gpiodec(HADDR, `GPIOBASE, `GPIORANGE, HSELGPIO);
adrdec uartdec(HADDR, `UARTBASE, `UARTRANGE, PreHSELUART);
adrdec plicdec(HADDR, `PLICBASE, `PLICRANGE, HSELPLIC);
// *** Should this fault?
assign HSELUART = PreHSELUART && (HSIZE == 3'b000); // only byte writes to UART are supported
// Swizzle region bits
assign HSELRegions = {HSELBootTim, HSELTim, HSELCLINT, HSELGPIO, HSELUART, HSELPLIC};
// Only RAM memory regions are cacheable
assign Cacheable = HSELBootTim | HSELTim;
// *** Temporarily assume only RAM regions are idempotent -- likely wrong
assign Idempotent = HSELBootTim | HSELTim;
// *** Temporarily assume only RAM regions allow full atomic operations -- likely wrong
assign AtomicAllowed = HSELBootTim | HSELTim;
assign ExecutableRegion = HSELBootTim | HSELTim;
assign ReadableRegion = HSELBootTim | HSELTim | HSELCLINT | HSELGPIO | HSELUART | HSELPLIC;
assign WritableRegion = HSELBootTim | HSELTim | HSELCLINT | HSELGPIO | HSELUART | HSELPLIC;
assign Empty = ~|HSELRegions;
assign InstrAccessFaultF = ExecuteAccessF && (Empty || ~ExecutableRegion);
assign LoadAccessFaultM = ReadAccessM && (Empty || ~ReadableRegion);
assign StoreAccessFaultM = WriteAccessM && (Empty || ~WritableRegion);
assign SquashBusAccess = InstrAccessFaultF || LoadAccessFaultM || StoreAccessFaultM;
*/ */
assign PMPSquashBusAccess = PMPInstrAccessFaultF || PMPLoadAccessFaultM || PMPStoreAccessFaultM;
endmodule endmodule

View File

@ -96,6 +96,7 @@ module privileged (
logic [11:0] MIP_REGW, MIE_REGW; logic [11:0] MIP_REGW, MIE_REGW;
logic md, sd; logic md, sd;
logic [63:0] PMPCFG01_REGW, PMPCFG23_REGW;
logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [0:15]; logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [0:15];
logic PMASquashBusAccess, PMPSquashBusAccess; logic PMASquashBusAccess, PMPSquashBusAccess;