mirror of
https://github.com/openhwgroup/cvw
synced 2025-02-11 06:05:49 +00:00
More progress
This commit is contained in:
parent
5da98b5381
commit
81b29a3891
@ -40,18 +40,26 @@ module icache(
|
||||
output logic [31:0] InstrRawD
|
||||
);
|
||||
|
||||
logic DelayF, DelaySideF, FlushDLastCycle;
|
||||
logic [1:0] InstrDMuxChoice;
|
||||
logic [15:0] MisalignedHalfInstrF, MisalignedHalfInstrD;
|
||||
logic [31:0] InstrF, AlignedInstrD;
|
||||
logic [31:0] nop = 32'h00000013; // instruction for NOP
|
||||
logic DelayF, DelaySideF, FlushDLastCycle;
|
||||
logic [1:0] InstrDMuxChoice;
|
||||
logic [15:0] MisalignedHalfInstrF, MisalignedHalfInstrD;
|
||||
logic [31:0] InstrF, AlignedInstrD;
|
||||
logic [31:0] nop = 32'h00000013; // instruction for NOP
|
||||
logic LastReadDataValidF;
|
||||
logic [`XLEN-1:0] LastReadDataF, LastReadAdrF, InDataF;
|
||||
|
||||
flopr #(1) flushDLastCycleFlop(clk, reset, FlushD | (FlushDLastCycle & StallF), FlushDLastCycle);
|
||||
flopenr #(1) delayStateFlop(clk, reset, ~StallF, (DelayF & ~DelaySideF) ? 1'b1 : 1'b0 , DelaySideF);
|
||||
flopenr #(16) halfInstrFlop(clk, reset, DelayF & ~StallF, MisalignedHalfInstrF, MisalignedHalfInstrD);
|
||||
|
||||
// This flop is here to simulate pulling data out of the cache, which is edge-triggered
|
||||
flopenr #(32) instrFlop(clk, reset, ~StallF, InstrF, AlignedInstrD);
|
||||
|
||||
// These flops cache the previous read, to accelerate things
|
||||
flopenr #(`XLEN) lastReadDataFlop(clk, reset, InstrReadF & ~StallF, InstrInF, LastReadDataF);
|
||||
flopenr #(1) lastReadDataVFlop(clk, reset, InstrReadF & ~StallF, 1'b1, LastReadDataValidF);
|
||||
flopenr #(`XLEN) lastReadAdrFlop(clk, reset, InstrReadF & ~StallF, InstrPAdrF, LastReadAdrF);
|
||||
|
||||
// Decide which address needs to be fetched and sent out over InstrPAdrF
|
||||
// If the requested address fits inside one read from memory, we fetch that
|
||||
// address, adjusted to the bit width. Otherwise, we request the lower word
|
||||
@ -64,34 +72,47 @@ module icache(
|
||||
end
|
||||
endgenerate
|
||||
// For now, we always read since the cache doesn't actually cache
|
||||
assign InstrReadF = 1;
|
||||
|
||||
always_comb if (LastReadDataValidF & (InstrPAdrF == LastReadAdrF)) begin
|
||||
assign InstrReadF = 0;
|
||||
end else begin
|
||||
assign InstrReadF = 1;
|
||||
end
|
||||
|
||||
// Pick from the memory input or from the previous read, as appropriate
|
||||
mux2 #(`XLEN) inDataMux(LastReadDataF, InstrInF, InstrReadF, InDataF);
|
||||
|
||||
// If the instruction fits in one memory read, then we put the right bits
|
||||
// into InstrF. Otherwise, we activate DelayF to signal the rest of the
|
||||
// machinery to swizzle bits.
|
||||
generate
|
||||
if (`XLEN == 32) begin
|
||||
assign InstrF = PCPF[1] ? {16'b0, InstrInF[31:16]} : InstrInF;
|
||||
assign InstrF = PCPF[1] ? {16'b0, InDataF[31:16]} : InDataF;
|
||||
assign DelayF = PCPF[1];
|
||||
assign MisalignedHalfInstrF = InstrInF[31:16];
|
||||
assign MisalignedHalfInstrF = InDataF[31:16];
|
||||
end else begin
|
||||
assign InstrF = PCPF[2] ? (PCPF[1] ? {16'b0, InstrInF[63:48]} : InstrInF[63:32]) : (PCPF[1] ? InstrInF[47:16] : InstrInF[31:0]);
|
||||
assign InstrF = PCPF[2] ? (PCPF[1] ? {16'b0, InDataF[63:48]} : InDataF[63:32]) : (PCPF[1] ? InDataF[47:16] : InDataF[31:0]);
|
||||
assign DelayF = PCPF[1] && PCPF[2];
|
||||
assign MisalignedHalfInstrF = InstrInF[63:48];
|
||||
assign MisalignedHalfInstrF = InDataF[63:48];
|
||||
end
|
||||
endgenerate
|
||||
assign ICacheStallF = DelayF & ~DelaySideF;
|
||||
assign ICacheStallF = 0; //DelayF & ~DelaySideF;
|
||||
|
||||
// Detect if the instruction is compressed
|
||||
// TODO Low-hanging optimization, don't delay if compressed
|
||||
assign CompressedF = DelaySideF ? (MisalignedHalfInstrD[1:0] != 2'b11) : (InstrF[1:0] != 2'b11);
|
||||
// TODO Low-hanging optimization, don't delay if getting a compressed instruction
|
||||
assign CompressedF = (DelaySideF & DelayF) ? (MisalignedHalfInstrD[1:0] != 2'b11) : (InstrF[1:0] != 2'b11);
|
||||
|
||||
// Pick the correct output, depending on whether we have to assemble this
|
||||
// instruction from two reads or not.
|
||||
// Output the requested instruction (we don't need to worry if the read is
|
||||
// incomplete, since the pipeline stalls for us when it isn't), or a NOP for
|
||||
// the cycle when the first of two reads comes in.
|
||||
always_comb
|
||||
assign InstrDMuxChoice = FlushDLastCycle ? 2'b10 : (DelayF ? (DelaySideF ? 2'b01 : 2'b10) : 2'b00);
|
||||
mux3 #(32) instrDMux (AlignedInstrD, {InstrInF[15:0], MisalignedHalfInstrD}, nop, InstrDMuxChoice, InstrRawD);
|
||||
always_comb if (DelayF & (MisalignedHalfInstrF[1:0] != 2'b11)) begin
|
||||
assign InstrDMuxChoice = 2'b11;
|
||||
end else if (FlushDLastCycle) begin
|
||||
assign InstrDMuxChoice = 2'b10;
|
||||
end else begin
|
||||
assign InstrDMuxChoice = {1'b0, DelaySideF};
|
||||
end
|
||||
mux4 #(32) instrDMux (AlignedInstrD, {InstrInF[15:0], MisalignedHalfInstrD}, nop, {16'b0, MisalignedHalfInstrD}, InstrDMuxChoice, InstrRawD);
|
||||
endmodule
|
||||
|
@ -53,14 +53,13 @@ module testbench();
|
||||
// "rv64m/I-REMW-01", "3000"
|
||||
};
|
||||
string tests64ic[] = '{
|
||||
|
||||
"rv64ic/I-C-BEQZ-01", "3000",
|
||||
"rv64ic/I-C-ADD-01", "3000",
|
||||
"rv64ic/I-C-ADDI-01", "3000",
|
||||
"rv64ic/I-C-ADDIW-01", "3000",
|
||||
"rv64ic/I-C-ADDW-01", "3000",
|
||||
"rv64ic/I-C-AND-01", "3000",
|
||||
"rv64ic/I-C-ANDI-01", "3000",
|
||||
"rv64ic/I-C-BEQZ-01", "3000",
|
||||
"rv64ic/I-C-BNEZ-01", "3000",
|
||||
"rv64ic/I-C-EBREAK-01", "2000",
|
||||
"rv64ic/I-C-J-01", "3000",
|
||||
|
Loading…
Reference in New Issue
Block a user