mirror of
https://github.com/openhwgroup/cvw
synced 2025-02-11 06:05:49 +00:00
renamed q to u for unified digit selection
This commit is contained in:
parent
705a2bd97b
commit
811f498f63
@ -59,7 +59,7 @@ module fdivsqrt(
|
|||||||
logic [`DIVN-2:0] Dpreproc;
|
logic [`DIVN-2:0] Dpreproc;
|
||||||
logic [`DIVb:0] FirstU, FirstUM;
|
logic [`DIVb:0] FirstU, FirstUM;
|
||||||
logic [`DIVb+1:0] FirstC;
|
logic [`DIVb+1:0] FirstC;
|
||||||
logic Firstqn;
|
logic Firstun;
|
||||||
logic WZero;
|
logic WZero;
|
||||||
|
|
||||||
fdivsqrtpreproc fdivsqrtpreproc(
|
fdivsqrtpreproc fdivsqrtpreproc(
|
||||||
@ -71,9 +71,9 @@ module fdivsqrt(
|
|||||||
.XNaNE, .YNaNE,
|
.XNaNE, .YNaNE,
|
||||||
.XInfE, .YInfE, .WZero);
|
.XInfE, .YInfE, .WZero);
|
||||||
fdivsqrtiter fdivsqrtiter(
|
fdivsqrtiter fdivsqrtiter(
|
||||||
.clk, .Firstqn, .D, .FirstU, .FirstUM, .FirstC, .SqrtE, .SqrtM,
|
.clk, .Firstun, .D, .FirstU, .FirstUM, .FirstC, .SqrtE, .SqrtM,
|
||||||
.X,.Dpreproc, .FirstWS(WS), .FirstWC(WC), .NextWSN, .NextWCN,
|
.X,.Dpreproc, .FirstWS(WS), .FirstWC(WC), .NextWSN, .NextWCN,
|
||||||
.DivStart(DivStartE), .Xe(XeE), .Ye(YeE), .XZeroE, .YZeroE,
|
.DivStart(DivStartE), .Xe(XeE), .Ye(YeE), .XZeroE, .YZeroE,
|
||||||
.DivBusy);
|
.DivBusy);
|
||||||
fdivsqrtpostproc fdivsqrtpostproc(.WS, .WC, .D, .FirstU, .FirstUM, .FirstC, .Firstqn, .SqrtM, .QmM, .WZero, .DivSM);
|
fdivsqrtpostproc fdivsqrtpostproc(.WS, .WC, .D, .FirstU, .FirstUM, .FirstC, .Firstun, .SqrtM, .QmM, .WZero, .DivSM);
|
||||||
endmodule
|
endmodule
|
@ -31,7 +31,7 @@
|
|||||||
`include "wally-config.vh"
|
`include "wally-config.vh"
|
||||||
|
|
||||||
module fdivsqrtfgen2 (
|
module fdivsqrtfgen2 (
|
||||||
input logic sp, sz,
|
input logic up, uz,
|
||||||
input logic [`DIVb+1:0] C,
|
input logic [`DIVb+1:0] C,
|
||||||
input logic [`DIVb:0] U, UM,
|
input logic [`DIVb:0] U, UM,
|
||||||
output logic [`DIVb+3:0] F
|
output logic [`DIVb+3:0] F
|
||||||
@ -51,8 +51,8 @@ module fdivsqrtfgen2 (
|
|||||||
// Choose which adder input will be used
|
// Choose which adder input will be used
|
||||||
|
|
||||||
always_comb
|
always_comb
|
||||||
if (sp) F = FP;
|
if (up) F = FP;
|
||||||
else if (sz) F = FZ;
|
else if (uz) F = FZ;
|
||||||
else F = FN;
|
else F = FN;
|
||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
|
@ -31,7 +31,7 @@
|
|||||||
`include "wally-config.vh"
|
`include "wally-config.vh"
|
||||||
|
|
||||||
module fdivsqrtfgen4 (
|
module fdivsqrtfgen4 (
|
||||||
input logic [3:0] s,
|
input logic [3:0] u,
|
||||||
input logic [`DIVb+3:0] C, U, UM,
|
input logic [`DIVb+3:0] C, U, UM,
|
||||||
output logic [`DIVb+3:0] F
|
output logic [`DIVb+3:0] F
|
||||||
);
|
);
|
||||||
@ -47,9 +47,9 @@ module fdivsqrtfgen4 (
|
|||||||
// Choose which adder input will be used
|
// Choose which adder input will be used
|
||||||
|
|
||||||
always_comb
|
always_comb
|
||||||
if (s[3]) F = F2;
|
if (u[3]) F = F2;
|
||||||
else if (s[2]) F = F1;
|
else if (u[2]) F = F1;
|
||||||
else if (s[1]) F = FN1;
|
else if (U[1]) F = FN1;
|
||||||
else if (s[0]) F = FN2;
|
else if (u[0]) F = FN2;
|
||||||
else F = F0;
|
else F = F0;
|
||||||
endmodule
|
endmodule
|
@ -44,7 +44,7 @@ module fdivsqrtiter(
|
|||||||
output logic [`DIVb+3:0] NextWSN, NextWCN,
|
output logic [`DIVb+3:0] NextWSN, NextWCN,
|
||||||
output logic [`DIVb:0] FirstU, FirstUM,
|
output logic [`DIVb:0] FirstU, FirstUM,
|
||||||
output logic [`DIVb+1:0] FirstC,
|
output logic [`DIVb+1:0] FirstC,
|
||||||
output logic Firstqn,
|
output logic Firstun,
|
||||||
output logic [`DIVb+3:0] FirstWS, FirstWC
|
output logic [`DIVb+3:0] FirstWS, FirstWC
|
||||||
);
|
);
|
||||||
|
|
||||||
@ -66,7 +66,7 @@ module fdivsqrtiter(
|
|||||||
logic [`DIVb:0] UMNext[`DIVCOPIES-1:0];// U1.b
|
logic [`DIVb:0] UMNext[`DIVCOPIES-1:0];// U1.b
|
||||||
logic [`DIVb+1:0] C[`DIVCOPIES:0]; // Q2.b
|
logic [`DIVb+1:0] C[`DIVCOPIES:0]; // Q2.b
|
||||||
logic [`DIVb+1:0] initC; // Q2.b
|
logic [`DIVb+1:0] initC; // Q2.b
|
||||||
logic [`DIVCOPIES-1:0] qn;
|
logic [`DIVCOPIES-1:0] un;
|
||||||
|
|
||||||
/* verilator lint_on UNOPTFLAT */
|
/* verilator lint_on UNOPTFLAT */
|
||||||
logic [`DIVb+3:0] WSN, WCN; // Q4.N-1
|
logic [`DIVb+3:0] WSN, WCN; // Q4.N-1
|
||||||
@ -119,13 +119,13 @@ module fdivsqrtiter(
|
|||||||
if (`RADIX == 2) begin: stage
|
if (`RADIX == 2) begin: stage
|
||||||
fdivsqrtstage2 fdivsqrtstage(.D, .DBar, .SqrtM,
|
fdivsqrtstage2 fdivsqrtstage(.D, .DBar, .SqrtM,
|
||||||
.WS(WS[i]), .WC(WC[i]), .WSA(WSA[i]), .WCA(WCA[i]),
|
.WS(WS[i]), .WC(WC[i]), .WSA(WSA[i]), .WCA(WCA[i]),
|
||||||
.C(C[i]), .U(U[i]), .UM(UM[i]), .CNext(C[i+1]), .UNext(UNext[i]), .UMNext(UMNext[i]), .qn(qn[i]));
|
.C(C[i]), .U(U[i]), .UM(UM[i]), .CNext(C[i+1]), .UNext(UNext[i]), .UMNext(UMNext[i]), .un(un[i]));
|
||||||
end else begin: stage
|
end else begin: stage
|
||||||
logic j1;
|
logic j1;
|
||||||
assign j1 = (i == 0 & ~C[0][`DIVb-1]);
|
assign j1 = (i == 0 & ~C[0][`DIVb-1]);
|
||||||
fdivsqrtstage4 fdivsqrtstage(.D, .DBar, .D2, .DBar2, .SqrtM, .j1,
|
fdivsqrtstage4 fdivsqrtstage(.D, .DBar, .D2, .DBar2, .SqrtM, .j1,
|
||||||
.WS(WS[i]), .WC(WC[i]), .WSA(WSA[i]), .WCA(WCA[i]),
|
.WS(WS[i]), .WC(WC[i]), .WSA(WSA[i]), .WCA(WCA[i]),
|
||||||
.C(C[i]), .U(U[i]), .UM(UM[i]), .CNext(C[i+1]), .UNext(UNext[i]), .UMNext(UMNext[i]), .qn(qn[i]));
|
.C(C[i]), .U(U[i]), .UM(UM[i]), .CNext(C[i+1]), .UNext(UNext[i]), .UMNext(UMNext[i]), .un(un[i]));
|
||||||
end
|
end
|
||||||
if(i<(`DIVCOPIES-1)) begin
|
if(i<(`DIVCOPIES-1)) begin
|
||||||
assign WS[i+1] = WSA[i] << `LOGR;
|
assign WS[i+1] = WSA[i] << `LOGR;
|
||||||
@ -149,6 +149,6 @@ module fdivsqrtiter(
|
|||||||
assign FirstU = U[0];
|
assign FirstU = U[0];
|
||||||
assign FirstUM = UM[0];
|
assign FirstUM = UM[0];
|
||||||
assign FirstC = C[0];
|
assign FirstC = C[0];
|
||||||
assign Firstqn = qn[0];
|
assign Firstun = un[0];
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
|
@ -35,7 +35,7 @@ module fdivsqrtpostproc(
|
|||||||
input logic [`DIVN-2:0] D, // U0.N-1
|
input logic [`DIVN-2:0] D, // U0.N-1
|
||||||
input logic [`DIVb:0] FirstU, FirstUM,
|
input logic [`DIVb:0] FirstU, FirstUM,
|
||||||
input logic [`DIVb+1:0] FirstC,
|
input logic [`DIVb+1:0] FirstC,
|
||||||
input logic Firstqn,
|
input logic Firstun,
|
||||||
input logic SqrtM,
|
input logic SqrtM,
|
||||||
output logic [`DIVb:0] QmM,
|
output logic [`DIVb:0] QmM,
|
||||||
output logic WZero,
|
output logic WZero,
|
||||||
@ -60,7 +60,7 @@ module fdivsqrtpostproc(
|
|||||||
assign FZero = SqrtM ? {FirstUM[`DIVb], FirstUM, 2'b0} | {FirstK,1'b0} : {3'b1,D,{`DIVb-`DIVN+2{1'b0}}};
|
assign FZero = SqrtM ? {FirstUM[`DIVb], FirstUM, 2'b0} | {FirstK,1'b0} : {3'b1,D,{`DIVb-`DIVN+2{1'b0}}};
|
||||||
csa #(`DIVb+4) fadd(WS, WC, FZero, 1'b0, WSF, WCF); // compute {WCF, WSF} = {WS + WC + FZero};
|
csa #(`DIVb+4) fadd(WS, WC, FZero, 1'b0, WSF, WCF); // compute {WCF, WSF} = {WS + WC + FZero};
|
||||||
aplusbeq0 #(`DIVb+4) wcfpluswsfeq0(WCF, WSF, wfeq0);
|
aplusbeq0 #(`DIVb+4) wcfpluswsfeq0(WCF, WSF, wfeq0);
|
||||||
assign WZero = weq0|(wfeq0 & Firstqn);
|
assign WZero = weq0|(wfeq0 & Firstun);
|
||||||
end else begin
|
end else begin
|
||||||
assign WZero = weq0;
|
assign WZero = weq0;
|
||||||
end
|
end
|
||||||
|
@ -32,7 +32,7 @@
|
|||||||
|
|
||||||
module fdivsqrtqsel2 (
|
module fdivsqrtqsel2 (
|
||||||
input logic [3:0] ps, pc,
|
input logic [3:0] ps, pc,
|
||||||
output logic qp, qz, qn
|
output logic up, uz, un
|
||||||
);
|
);
|
||||||
|
|
||||||
logic [3:0] p, g;
|
logic [3:0] p, g;
|
||||||
@ -42,7 +42,7 @@ module fdivsqrtqsel2 (
|
|||||||
// for efficiency. You can probably optimize your logic to
|
// for efficiency. You can probably optimize your logic to
|
||||||
// select the proper divisor with less delay.
|
// select the proper divisor with less delay.
|
||||||
|
|
||||||
// Qmient equations from EE371 lecture notes 13-20
|
// Quotient equations from EE371 lecture notes 13-20
|
||||||
assign p = ps ^ pc;
|
assign p = ps ^ pc;
|
||||||
assign g = ps & pc;
|
assign g = ps & pc;
|
||||||
|
|
||||||
@ -56,8 +56,8 @@ module fdivsqrtqsel2 (
|
|||||||
(ps[1]&pc[1] | ((ps[1]^pc[1]) &
|
(ps[1]&pc[1] | ((ps[1]^pc[1]) &
|
||||||
(ps[0]&pc[0])))));
|
(ps[0]&pc[0])))));
|
||||||
|
|
||||||
// Produce quotient = +1, 0, or -1
|
// Produce digit = +1, 0, or -1
|
||||||
assign qp = magnitude & ~sign;
|
assign up = magnitude & ~sign;
|
||||||
assign qz = ~magnitude;
|
assign uz = ~magnitude;
|
||||||
assign qn = magnitude & sign;
|
assign un = magnitude & sign;
|
||||||
endmodule
|
endmodule
|
||||||
|
@ -35,7 +35,7 @@ module fdivsqrtqsel4 (
|
|||||||
input logic [4:0] Smsbs,
|
input logic [4:0] Smsbs,
|
||||||
input logic [`DIVb+3:0] WS, WC,
|
input logic [`DIVb+3:0] WS, WC,
|
||||||
input logic Sqrt, j1,
|
input logic Sqrt, j1,
|
||||||
output logic [3:0] q
|
output logic [3:0] u
|
||||||
);
|
);
|
||||||
logic [6:0] Wmsbs;
|
logic [6:0] Wmsbs;
|
||||||
logic [7:0] PreWmsbs;
|
logic [7:0] PreWmsbs;
|
||||||
@ -49,7 +49,7 @@ module fdivsqrtqsel4 (
|
|||||||
// W = xxxx.xxx...
|
// W = xxxx.xxx...
|
||||||
// Wmsbs = | |
|
// Wmsbs = | |
|
||||||
|
|
||||||
logic [3:0] QSel4[1023:0];
|
logic [3:0] USel4[1023:0];
|
||||||
|
|
||||||
always_comb begin
|
always_comb begin
|
||||||
integer a, w, i, w2;
|
integer a, w, i, w2;
|
||||||
@ -58,46 +58,46 @@ module fdivsqrtqsel4 (
|
|||||||
i = a*128+w;
|
i = a*128+w;
|
||||||
w2 = w-128*(w>=64); // convert to two's complement
|
w2 = w-128*(w>=64); // convert to two's complement
|
||||||
case(a)
|
case(a)
|
||||||
0: if($signed(w2)>=$signed(12)) QSel4[i] = 4'b1000;
|
0: if($signed(w2)>=$signed(12)) USel4[i] = 4'b1000;
|
||||||
else if(w2>=4) QSel4[i] = 4'b0100;
|
else if(w2>=4) USel4[i] = 4'b0100;
|
||||||
else if(w2>=-4) QSel4[i] = 4'b0000;
|
else if(w2>=-4) USel4[i] = 4'b0000;
|
||||||
else if(w2>=-13) QSel4[i] = 4'b0010;
|
else if(w2>=-13) USel4[i] = 4'b0010;
|
||||||
else QSel4[i] = 4'b0001;
|
else USel4[i] = 4'b0001;
|
||||||
1: if(w2>=14) QSel4[i] = 4'b1000;
|
1: if(w2>=14) USel4[i] = 4'b1000;
|
||||||
else if(w2>=4) QSel4[i] = 4'b0100;
|
else if(w2>=4) USel4[i] = 4'b0100;
|
||||||
else if(w2>=-4) QSel4[i] = 4'b0000;
|
else if(w2>=-4) USel4[i] = 4'b0000;
|
||||||
else if(w2>=-14) QSel4[i] = 4'b0010;
|
else if(w2>=-14) USel4[i] = 4'b0010;
|
||||||
else QSel4[i] = 4'b0001;
|
else USel4[i] = 4'b0001;
|
||||||
2: if(w2>=16) QSel4[i] = 4'b1000;
|
2: if(w2>=16) USel4[i] = 4'b1000;
|
||||||
else if(w2>=4) QSel4[i] = 4'b0100;
|
else if(w2>=4) USel4[i] = 4'b0100;
|
||||||
else if(w2>=-6) QSel4[i] = 4'b0000;
|
else if(w2>=-6) USel4[i] = 4'b0000;
|
||||||
else if(w2>=-16) QSel4[i] = 4'b0010;
|
else if(w2>=-16) USel4[i] = 4'b0010;
|
||||||
else QSel4[i] = 4'b0001;
|
else USel4[i] = 4'b0001;
|
||||||
3: if(w2>=16) QSel4[i] = 4'b1000;
|
3: if(w2>=16) USel4[i] = 4'b1000;
|
||||||
else if(w2>=4) QSel4[i] = 4'b0100;
|
else if(w2>=4) USel4[i] = 4'b0100;
|
||||||
else if(w2>=-6) QSel4[i] = 4'b0000;
|
else if(w2>=-6) USel4[i] = 4'b0000;
|
||||||
else if(w2>=-17) QSel4[i] = 4'b0010;
|
else if(w2>=-17) USel4[i] = 4'b0010;
|
||||||
else QSel4[i] = 4'b0001;
|
else USel4[i] = 4'b0001;
|
||||||
4: if(w2>=18) QSel4[i] = 4'b1000;
|
4: if(w2>=18) USel4[i] = 4'b1000;
|
||||||
else if(w2>=6) QSel4[i] = 4'b0100;
|
else if(w2>=6) USel4[i] = 4'b0100;
|
||||||
else if(w2>=-6) QSel4[i] = 4'b0000;
|
else if(w2>=-6) USel4[i] = 4'b0000;
|
||||||
else if(w2>=-18) QSel4[i] = 4'b0010;
|
else if(w2>=-18) USel4[i] = 4'b0010;
|
||||||
else QSel4[i] = 4'b0001;
|
else USel4[i] = 4'b0001;
|
||||||
5: if(w2>=20) QSel4[i] = 4'b1000;
|
5: if(w2>=20) USel4[i] = 4'b1000;
|
||||||
else if(w2>=6) QSel4[i] = 4'b0100;
|
else if(w2>=6) USel4[i] = 4'b0100;
|
||||||
else if(w2>=-8) QSel4[i] = 4'b0000;
|
else if(w2>=-8) USel4[i] = 4'b0000;
|
||||||
else if(w2>=-20) QSel4[i] = 4'b0010;
|
else if(w2>=-20) USel4[i] = 4'b0010;
|
||||||
else QSel4[i] = 4'b0001;
|
else USel4[i] = 4'b0001;
|
||||||
6: if(w2>=20) QSel4[i] = 4'b1000;
|
6: if(w2>=20) USel4[i] = 4'b1000;
|
||||||
else if(w2>=8) QSel4[i] = 4'b0100;
|
else if(w2>=8) USel4[i] = 4'b0100;
|
||||||
else if(w2>=-8) QSel4[i] = 4'b0000;
|
else if(w2>=-8) USel4[i] = 4'b0000;
|
||||||
else if(w2>=-22) QSel4[i] = 4'b0010;
|
else if(w2>=-22) USel4[i] = 4'b0010;
|
||||||
else QSel4[i] = 4'b0001;
|
else USel4[i] = 4'b0001;
|
||||||
7: if(w2>=24) QSel4[i] = 4'b1000;
|
7: if(w2>=24) USel4[i] = 4'b1000;
|
||||||
else if(w2>=8) QSel4[i] = 4'b0100;
|
else if(w2>=8) USel4[i] = 4'b0100;
|
||||||
else if(w2>=-8) QSel4[i] = 4'b0000;
|
else if(w2>=-8) USel4[i] = 4'b0000;
|
||||||
else if(w2>=-22) QSel4[i] = 4'b0010;
|
else if(w2>=-22) USel4[i] = 4'b0010;
|
||||||
else QSel4[i] = 4'b0001;
|
else USel4[i] = 4'b0001;
|
||||||
endcase
|
endcase
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
@ -107,6 +107,6 @@ module fdivsqrtqsel4 (
|
|||||||
else if (Smsbs == 5'b10000) A = 3'b111;
|
else if (Smsbs == 5'b10000) A = 3'b111;
|
||||||
else A = Smsbs[2:0];
|
else A = Smsbs[2:0];
|
||||||
end else A = Dmsbs;
|
end else A = Dmsbs;
|
||||||
assign q = QSel4[{A,Wmsbs}];
|
assign u = USel4[{A,Wmsbs}];
|
||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
|
@ -38,7 +38,7 @@ module fdivsqrtstage2 (
|
|||||||
input logic [`DIVb+3:0] WS, WC,
|
input logic [`DIVb+3:0] WS, WC,
|
||||||
input logic [`DIVb+1:0] C,
|
input logic [`DIVb+1:0] C,
|
||||||
input logic SqrtM,
|
input logic SqrtM,
|
||||||
output logic qn,
|
output logic un,
|
||||||
output logic [`DIVb+1:0] CNext,
|
output logic [`DIVb+1:0] CNext,
|
||||||
output logic [`DIVb:0] UNext, UMNext,
|
output logic [`DIVb:0] UNext, UMNext,
|
||||||
output logic [`DIVb+3:0] WSA, WCA
|
output logic [`DIVb+3:0] WSA, WCA
|
||||||
@ -46,30 +46,34 @@ module fdivsqrtstage2 (
|
|||||||
/* verilator lint_on UNOPTFLAT */
|
/* verilator lint_on UNOPTFLAT */
|
||||||
|
|
||||||
logic [`DIVb+3:0] Dsel;
|
logic [`DIVb+3:0] Dsel;
|
||||||
logic qp, qz;
|
logic up, uz;
|
||||||
logic [`DIVb+3:0] F;
|
logic [`DIVb+3:0] F;
|
||||||
logic [`DIVb+3:0] AddIn;
|
logic [`DIVb+3:0] AddIn;
|
||||||
|
|
||||||
assign CNext = {1'b1, C[`DIVb+1:1]};
|
assign CNext = {1'b1, C[`DIVb+1:1]};
|
||||||
|
|
||||||
// Qmient Selection logic
|
// Qmient Selection logic
|
||||||
// Given partial remainder, select quotient of +1, 0, or -1 (qp, qz, pm)
|
// Given partial remainder, select digit of +1, 0, or -1 (up, uz, un)
|
||||||
// q encoding:
|
// q encoding:
|
||||||
// 1000 = +2
|
// 1000 = +2
|
||||||
// 0100 = +1
|
// 0100 = +1
|
||||||
// 0000 = 0
|
// 0000 = 0
|
||||||
// 0010 = -1
|
// 0010 = -1
|
||||||
// 0001 = -2
|
// 0001 = -2
|
||||||
fdivsqrtqsel2 qsel2(WS[`DIVb+3:`DIVb], WC[`DIVb+3:`DIVb], qp, qz, qn);
|
fdivsqrtqsel2 qsel2(WS[`DIVb+3:`DIVb], WC[`DIVb+3:`DIVb], up, uz, un);
|
||||||
fdivsqrtfgen2 fgen2(.sp(qp), .sz(qz), .C(CNext), .U, .UM, .F);
|
fdivsqrtfgen2 fgen2(.up, .uz, .C(CNext), .U, .UM, .F);
|
||||||
|
|
||||||
|
always_comb
|
||||||
|
if (up) Dsel = DBar;
|
||||||
|
else if (uz) Dsel = '0; // qz
|
||||||
|
else Dsel = {3'b0, 1'b1, D, {`DIVb-`DIVN+1{1'b0}}}; // un
|
||||||
|
|
||||||
assign Dsel = {`DIVb+4{~qz}}&(qp ? DBar : {3'b0, 1'b1, D, {`DIVb-`DIVN+1{1'b0}}});
|
|
||||||
// Partial Product Generation
|
// Partial Product Generation
|
||||||
// WSA, WCA = WS + WC - qD
|
// WSA, WCA = WS + WC - qD
|
||||||
assign AddIn = SqrtM ? F : Dsel;
|
assign AddIn = SqrtM ? F : Dsel;
|
||||||
csa #(`DIVb+4) csa(WS, WC, AddIn, qp&~SqrtM, WSA, WCA);
|
csa #(`DIVb+4) csa(WS, WC, AddIn, up&~SqrtM, WSA, WCA);
|
||||||
|
|
||||||
fdivsqrtuotfc2 uotfc2(.sp(qp), .sz(qz), .C(CNext), .U, .UM, .UNext, .UMNext);
|
fdivsqrtuotfc2 uotfc2(.up, .uz, .C(CNext), .U, .UM, .UNext, .UMNext);
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
|
|
||||||
|
@ -39,34 +39,33 @@ module fdivsqrtstage4 (
|
|||||||
input logic [`DIVb+1:0] C,
|
input logic [`DIVb+1:0] C,
|
||||||
output logic [`DIVb+1:0] CNext,
|
output logic [`DIVb+1:0] CNext,
|
||||||
input logic SqrtM, j1,
|
input logic SqrtM, j1,
|
||||||
output logic qn,
|
output logic un,
|
||||||
output logic [`DIVb:0] UNext, UMNext,
|
output logic [`DIVb:0] UNext, UMNext,
|
||||||
output logic [`DIVb+3:0] WSA, WCA
|
output logic [`DIVb+3:0] WSA, WCA
|
||||||
);
|
);
|
||||||
/* verilator lint_on UNOPTFLAT */
|
/* verilator lint_on UNOPTFLAT */
|
||||||
|
|
||||||
logic [`DIVb+3:0] Dsel;
|
logic [`DIVb+3:0] Dsel;
|
||||||
logic [3:0] q;
|
logic [3:0] u;
|
||||||
logic [`DIVb+3:0] F;
|
logic [`DIVb+3:0] F;
|
||||||
logic [`DIVb+3:0] AddIn;
|
logic [`DIVb+3:0] AddIn;
|
||||||
logic [4:0] Smsbs;
|
logic [4:0] Smsbs;
|
||||||
logic CarryIn;
|
logic CarryIn;
|
||||||
assign CNext = {2'b11, C[`DIVb+1:2]};
|
assign CNext = {2'b11, C[`DIVb+1:2]};
|
||||||
|
|
||||||
// Qmient Selection logic
|
// Digit Selection logic
|
||||||
// Given partial remainder, select quotient of +1, 0, or -1 (qp, qz, pm)
|
// u encoding:
|
||||||
// q encoding:
|
|
||||||
// 1000 = +2
|
// 1000 = +2
|
||||||
// 0100 = +1
|
// 0100 = +1
|
||||||
// 0000 = 0
|
// 0000 = 0
|
||||||
// 0010 = -1
|
// 0010 = -1
|
||||||
// 0001 = -2
|
// 0001 = -2
|
||||||
assign Smsbs = U[`DIVb:`DIVb-4];
|
assign Smsbs = U[`DIVb:`DIVb-4];
|
||||||
fdivsqrtqsel4 qsel4(.D, .Smsbs, .WS, .WC, .Sqrt(SqrtM), .j1, .q);
|
fdivsqrtqsel4 qsel4(.D, .Smsbs, .WS, .WC, .Sqrt(SqrtM), .j1, .u);
|
||||||
fdivsqrtfgen4 fgen4(.s(q), .C({2'b11, CNext}), .U({3'b000, U}), .UM({3'b000, UM}), .F);
|
fdivsqrtfgen4 fgen4(.u, .C({2'b11, CNext}), .U({3'b000, U}), .UM({3'b000, UM}), .F);
|
||||||
|
|
||||||
always_comb
|
always_comb
|
||||||
case (q)
|
case (u)
|
||||||
4'b1000: Dsel = DBar2;
|
4'b1000: Dsel = DBar2;
|
||||||
4'b0100: Dsel = DBar;
|
4'b0100: Dsel = DBar;
|
||||||
4'b0000: Dsel = '0;
|
4'b0000: Dsel = '0;
|
||||||
@ -78,12 +77,12 @@ module fdivsqrtstage4 (
|
|||||||
// Partial Product Generation
|
// Partial Product Generation
|
||||||
// WSA, WCA = WS + WC - qD
|
// WSA, WCA = WS + WC - qD
|
||||||
assign AddIn = SqrtM ? F : Dsel;
|
assign AddIn = SqrtM ? F : Dsel;
|
||||||
assign CarryIn = ~SqrtM & (q[3] | q[2]); // +1 for 2's complement of -D and -2D
|
assign CarryIn = ~SqrtM & (u[3] | u[2]); // +1 for 2's complement of -D and -2D
|
||||||
csa #(`DIVb+4) csa(WS, WC, AddIn, CarryIn, WSA, WCA);
|
csa #(`DIVb+4) csa(WS, WC, AddIn, CarryIn, WSA, WCA);
|
||||||
|
|
||||||
fdivsqrtuotfc4 fdivsqrtuotfc4(.s(q), .Sqrt(SqrtM), .C(CNext[`DIVb:0]), .U, .UM, .UNext, .UMNext);
|
fdivsqrtuotfc4 fdivsqrtuotfc4(.u, .Sqrt(SqrtM), .C(CNext[`DIVb:0]), .U, .UM, .UNext, .UMNext);
|
||||||
|
|
||||||
assign qn = 0; // unused for radix 4
|
assign un = 0; // unused for radix 4
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
|
|
||||||
|
@ -34,7 +34,7 @@
|
|||||||
// Unified OTFC, Radix 2 //
|
// Unified OTFC, Radix 2 //
|
||||||
///////////////////////////////
|
///////////////////////////////
|
||||||
module fdivsqrtuotfc2(
|
module fdivsqrtuotfc2(
|
||||||
input logic sp, sz,
|
input logic up, uz,
|
||||||
input logic [`DIVb+1:0] C,
|
input logic [`DIVb+1:0] C,
|
||||||
input logic [`DIVb:0] U, UM,
|
input logic [`DIVb:0] U, UM,
|
||||||
output logic [`DIVb:0] UNext, UMNext
|
output logic [`DIVb:0] UNext, UMNext
|
||||||
@ -46,13 +46,13 @@ module fdivsqrtuotfc2(
|
|||||||
assign K = (C[`DIVb:0] & ~(C[`DIVb:0] << 1));
|
assign K = (C[`DIVb:0] & ~(C[`DIVb:0] << 1));
|
||||||
|
|
||||||
always_comb begin
|
always_comb begin
|
||||||
if (sp) begin
|
if (up) begin
|
||||||
UNext = U | K;
|
UNext = U | K;
|
||||||
UMNext = U;
|
UMNext = U;
|
||||||
end else if (sz) begin
|
end else if (uz) begin
|
||||||
UNext = U;
|
UNext = U;
|
||||||
UMNext = UM | K;
|
UMNext = UM | K;
|
||||||
end else begin // If sp and sz are not true, then sn is
|
end else begin // If up and uz are not true, then un is
|
||||||
UNext = UM | K;
|
UNext = UM | K;
|
||||||
UMNext = UM;
|
UMNext = UM;
|
||||||
end
|
end
|
||||||
|
@ -31,7 +31,7 @@
|
|||||||
`include "wally-config.vh"
|
`include "wally-config.vh"
|
||||||
|
|
||||||
module fdivsqrtuotfc4(
|
module fdivsqrtuotfc4(
|
||||||
input logic [3:0] s,
|
input logic [3:0] u,
|
||||||
input logic Sqrt,
|
input logic Sqrt,
|
||||||
input logic [`DIVb:0] U, UM,
|
input logic [`DIVb:0] U, UM,
|
||||||
input logic [`DIVb:0] C,
|
input logic [`DIVb:0] C,
|
||||||
@ -47,19 +47,19 @@ module fdivsqrtuotfc4(
|
|||||||
assign K3 = (C & ~(C << 2)); // 3K
|
assign K3 = (C & ~(C << 2)); // 3K
|
||||||
|
|
||||||
always_comb begin
|
always_comb begin
|
||||||
if (s[3]) begin
|
if (u[3]) begin
|
||||||
UNext = U | K2;
|
UNext = U | K2;
|
||||||
UMNext = U | K1;
|
UMNext = U | K1;
|
||||||
end else if (s[2]) begin
|
end else if (u[2]) begin
|
||||||
UNext = U | K1;
|
UNext = U | K1;
|
||||||
UMNext = U;
|
UMNext = U;
|
||||||
end else if (s[1]) begin
|
end else if (u[1]) begin
|
||||||
UNext = UM | K3;
|
UNext = UM | K3;
|
||||||
UMNext = UM | K2;
|
UMNext = UM | K2;
|
||||||
end else if (s[0]) begin
|
end else if (u[0]) begin
|
||||||
UNext = UM | K2;
|
UNext = UM | K2;
|
||||||
UMNext = UM | K1;
|
UMNext = UM | K1;
|
||||||
end else begin // If sp and sn are not true, then sz is
|
end else begin // digit = 0
|
||||||
UNext = U;
|
UNext = U;
|
||||||
UMNext = UM | K3;
|
UMNext = UM | K3;
|
||||||
end
|
end
|
||||||
|
Loading…
Reference in New Issue
Block a user