Remove old unused file.

This commit is contained in:
Rose Thompson 2024-12-02 15:24:46 -06:00
parent a772edcebb
commit 78e11ed9f3

View File

@ -1,669 +0,0 @@
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2013-2022 Authors ////
//// ////
//// Based on original work by ////
//// Adam Edvardsson (adam.edvardsson@orsoc.se) ////
//// ////
//// Copyright (C) 2009 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from https://www.gnu.org/licenses/ ////
//// ////
//////////////////////////////////////////////////////////////////////
module sdc_controller #(
parameter dma_addr_bits = 32,
parameter fifo_addr_bits = 7,
parameter sdio_card_detect_level = 1,
parameter voltage_controll_reg = 3300,
parameter capabilies_reg = 16'b0000_0000_0000_0011
) (
input wire async_resetn,
(* X_INTERFACE_INFO = "xilinx.com:signal:clock:1.0 clock CLK" *)
(* X_INTERFACE_PARAMETER = "ASSOCIATED_BUSIF M_AXI:S_AXI_LITE, FREQ_HZ 100000000" *)
input wire clock,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_LITE AWADDR" *)
(* X_INTERFACE_PARAMETER = "CLK_DOMAIN clock, ID_WIDTH 0, PROTOCOL AXI4LITE, DATA_WIDTH 32" *)
input wire [15:0] s_axi_awaddr,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_LITE AWVALID" *)
input wire s_axi_awvalid,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_LITE AWREADY" *)
output wire s_axi_awready,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_LITE WDATA" *)
input wire [31:0] s_axi_wdata,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_LITE WVALID" *)
input wire s_axi_wvalid,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_LITE WREADY" *)
output wire s_axi_wready,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_LITE BRESP" *)
output reg [1:0] s_axi_bresp,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_LITE BVALID" *)
output reg s_axi_bvalid,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_LITE BREADY" *)
input wire s_axi_bready,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_LITE ARADDR" *)
input wire [15:0] s_axi_araddr,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_LITE ARVALID" *)
input wire s_axi_arvalid,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_LITE ARREADY" *)
output wire s_axi_arready,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_LITE RDATA" *)
output reg [31:0] s_axi_rdata,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_LITE RRESP" *)
output reg [1:0] s_axi_rresp,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_LITE RVALID" *)
output reg s_axi_rvalid,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_LITE RREADY" *)
input wire s_axi_rready,
(* X_INTERFACE_PARAMETER = "CLK_DOMAIN clock, ID_WIDTH 0, PROTOCOL AXI4, DATA_WIDTH 32" *)
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI AWADDR" *)
output reg [dma_addr_bits-1:0] m_axi_awaddr,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI AWLEN" *)
output reg [7:0] m_axi_awlen,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI AWVALID" *)
output reg m_axi_awvalid,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI AWREADY" *)
input wire m_axi_awready,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI WDATA" *)
output wire [31:0] m_axi_wdata,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI WLAST" *)
output reg m_axi_wlast,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI WVALID" *)
output reg m_axi_wvalid,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI WREADY" *)
input wire m_axi_wready,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI BRESP" *)
input wire [1:0] m_axi_bresp,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI BVALID" *)
input wire m_axi_bvalid,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI BREADY" *)
output wire m_axi_bready,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI ARADDR" *)
output reg [dma_addr_bits-1:0] m_axi_araddr,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI ARLEN" *)
output reg [7:0] m_axi_arlen,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI ARVALID" *)
output reg m_axi_arvalid,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI ARREADY" *)
input wire m_axi_arready,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI RDATA" *)
input wire [31:0] m_axi_rdata,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI RLAST" *)
input wire m_axi_rlast,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI RRESP" *)
input wire [1:0] m_axi_rresp,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI RVALID" *)
input wire m_axi_rvalid,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI RREADY" *)
output wire m_axi_rready,
// SD BUS
//inout wire sdio_cmd,
//inout wire [3:0] sdio_dat,
(* X_INTERFACE_INFO = "xilinx.com:signal:clock:1.0 sdio_clk CLK" *)
(* X_INTERFACE_PARAMETER = "FREQ_HZ 50000000" *)
output reg sdio_clk,
(* X_INTERFACE_INFO = "xilinx.com:signal:reset:1.0 sdio_reset RST" *)
(* X_INTERFACE_PARAMETER = "POLARITY ACTIVE_HIGH" *)
output reg sdio_reset,
input wire sdio_cd,
output reg sd_dat_reg_t,
output reg [3:0] sd_dat_reg_o,
input wire [3:0] sd_dat_i,
output reg sd_cmd_reg_t,
output reg sd_cmd_reg_o,
input wire sd_cmd_i,
// Interrupts
output wire interrupt
);
`include "sd_defines.h"
wire reset;
wire go_idle;
reg cmd_start;
wire [1:0] cmd_setting;
wire cmd_start_tx;
wire [39:0] cmd;
wire [119:0] cmd_response;
wire cmd_crc_ok;
wire cmd_index_ok;
wire cmd_finish;
wire d_write;
wire d_read;
wire [31:0] data_in_rx_fifo;
wire en_tx_fifo;
wire en_rx_fifo;
wire sd_data_busy;
(* mark_debug = "true" *) wire data_busy;
wire data_crc_ok;
wire tx_fifo_re;
wire rx_fifo_we;
reg data_start_rx;
reg data_start_tx;
reg data_prepare_tx;
reg cmd_int_rst;
reg data_int_rst;
reg ctrl_rst;
// AXI accessible registers
(* mark_debug = "true" *) reg [31:0] argument_reg;
(* mark_debug = "true" *) reg [`CMD_REG_SIZE-1:0] command_reg;
(* mark_debug = "true" *) reg [`CMD_TIMEOUT_W-1:0] cmd_timeout_reg;
(* mark_debug = "true" *) reg [`DATA_TIMEOUT_W-1:0] data_timeout_reg;
(* mark_debug = "true" *) reg [0:0] software_reset_reg;
(* mark_debug = "true" *) wire [31:0] response_0_reg;
(* mark_debug = "true" *) wire [31:0] response_1_reg;
(* mark_debug = "true" *) wire [31:0] response_2_reg;
(* mark_debug = "true" *) wire [31:0] response_3_reg;
(* mark_debug = "true" *) reg [`BLKSIZE_W-1:0] block_size_reg;
(* mark_debug = "true" *) reg [1:0] controller_setting_reg;
(* mark_debug = "true" *) wire [`INT_CMD_SIZE-1:0] cmd_int_status_reg;
(* mark_debug = "true" *) wire [`INT_DATA_SIZE-1:0] data_int_status_reg;
(* mark_debug = "true" *) wire [`INT_DATA_SIZE-1:0] data_int_status;
(* mark_debug = "true" *) reg [`INT_CMD_SIZE-1:0] cmd_int_enable_reg;
(* mark_debug = "true" *) reg [`INT_DATA_SIZE-1:0] data_int_enable_reg;
(* mark_debug = "true" *) reg [`BLKCNT_W-1:0] block_count_reg;
(* mark_debug = "true" *) reg [dma_addr_bits-1:0] dma_addr_reg;
(* mark_debug = "true" *) reg [7:0] clock_divider_reg = 124; // 400KHz
// ------ Clocks and resets
(* ASYNC_REG="true" *)
reg [2:0] reset_sync;
assign reset = reset_sync[2];
always @(posedge clock)
reset_sync <= {reset_sync[1:0], !async_resetn};
reg [7:0] clock_cnt;
(* mark_debug = "true" *) reg clock_state;
(* mark_debug = "true" *) reg clock_posedge;
reg clock_data_in;
wire fifo_almost_full;
wire fifo_almost_empty;
always @(posedge clock) begin
if (reset) begin
clock_posedge <= 0;
clock_data_in <= 0;
clock_state <= 0;
clock_cnt <= 0;
end else if (clock_cnt < clock_divider_reg) begin
clock_posedge <= 0;
clock_data_in <= 0;
clock_cnt <= clock_cnt + 1;
end else if (clock_cnt < 124 && data_busy && en_rx_fifo && fifo_almost_full) begin
// Prevent Rx FIFO overflow
clock_posedge <= 0;
clock_data_in <= 0;
clock_cnt <= clock_cnt + 1;
end else if (clock_cnt < 124 && data_busy && en_tx_fifo && fifo_almost_empty) begin
// Prevent Tx FIFO underflow
clock_posedge <= 0;
clock_data_in <= 0;
clock_cnt <= clock_cnt + 1;
end else begin
clock_state <= !clock_state;
clock_posedge <= !clock_state;
if (clock_divider_reg == 0)
clock_data_in <= !clock_state;
else
clock_data_in <= clock_state;
clock_cnt <= 0;
end
sdio_clk <= sdio_reset || clock_state;
if (reset) sdio_reset <= 0;
else if (clock_posedge) sdio_reset <= controller_setting_reg[1];
end
// ------ SD IO Buffers
// wire sd_cmd_i;
wire sd_cmd_o;
wire sd_cmd_oe;
// reg sd_cmd_reg_o;
// reg sd_cmd_reg_t;
// wire [3:0] sd_dat_i;
wire [3:0] sd_dat_o;
wire sd_dat_oe;
// reg [3:0] sd_dat_reg_o;
// reg sd_dat_reg_t;
// IOBUF IOBUF_cmd (.O(sd_cmd_i), .IO(sdio_cmd), .I(sd_cmd_reg_o), .T(sd_cmd_reg_t));
// IOBUF IOBUF_dat0 (.O(sd_dat_i[0]), .IO(sdio_dat[0]), .I(sd_dat_reg_o[0]), .T(sd_dat_reg_t));
// IOBUF IOBUF_dat1 (.O(sd_dat_i[1]), .IO(sdio_dat[1]), .I(sd_dat_reg_o[1]), .T(sd_dat_reg_t));
// IOBUF IOBUF_dat2 (.O(sd_dat_i[2]), .IO(sdio_dat[2]), .I(sd_dat_reg_o[2]), .T(sd_dat_reg_t));
// IOBUF IOBUF_dat3 (.O(sd_dat_i[3]), .IO(sdio_dat[3]), .I(sd_dat_reg_o[3]), .T(sd_dat_reg_t));
always @(negedge sdio_clk) begin
// Output data delayed by 1/2 clock cycle (5ns) to ensure
// required hold time: default speed - min 5ns, high speed - min 2ns (actual 5ns)
if (sdio_reset) begin
sd_cmd_reg_o <= 0;
sd_dat_reg_o <= 0;
sd_cmd_reg_t <= 0;
sd_dat_reg_t <= 0;
end else begin
sd_cmd_reg_o <= sd_cmd_o;
sd_dat_reg_o <= sd_dat_o;
sd_cmd_reg_t <= !sd_cmd_oe;
sd_dat_reg_t <= !(sd_dat_oe || (cmd_start_tx && (command_reg == 0)));
end
end
// ------ SD card detect
reg [25:0] sd_detect_cnt;
wire sd_insert_int = sd_detect_cnt[25];
wire sd_remove_int = !sd_detect_cnt[25];
reg sd_insert_ie;
reg sd_remove_ie;
always @(posedge clock) begin
if (sdio_cd != sdio_card_detect_level) begin
sd_detect_cnt <= 0;
end else if (!sd_insert_int) begin
sd_detect_cnt <= sd_detect_cnt + 1;
end
end
// ------ AXI Slave Interface
reg [15:0] read_addr;
reg [15:0] write_addr;
reg [31:0] write_data;
reg rd_req;
reg [1:0] wr_req;
assign s_axi_arready = !rd_req && !s_axi_rvalid;
assign s_axi_awready = !wr_req[0] && !s_axi_bvalid;
assign s_axi_wready = !wr_req[1] && !s_axi_bvalid;
always @(posedge clock) begin
if (reset) begin
s_axi_rdata <= 0;
s_axi_rresp <= 0;
s_axi_rvalid <= 0;
s_axi_bresp <= 0;
s_axi_bvalid <= 0;
rd_req <= 0;
wr_req <= 0;
read_addr <= 0;
write_addr <= 0;
write_data <= 0;
cmd_start <= 0;
data_int_rst <= 0;
cmd_int_rst <= 0;
ctrl_rst <= 0;
argument_reg <= 0;
command_reg <= 0;
cmd_timeout_reg <= 0;
data_timeout_reg <= 0;
block_size_reg <= `RESET_BLOCK_SIZE;
controller_setting_reg <= 0;
cmd_int_enable_reg <= 0;
data_int_enable_reg <= 0;
software_reset_reg <= 0;
clock_divider_reg <= `RESET_CLOCK_DIV;
block_count_reg <= 0;
sd_insert_ie <= 0;
sd_remove_ie <= 0;
dma_addr_reg <= 0;
end else begin
if (clock_posedge) begin
cmd_start <= 0;
data_int_rst <= 0;
cmd_int_rst <= 0;
ctrl_rst <= software_reset_reg[0];
end
if (s_axi_arready && s_axi_arvalid) begin
read_addr <= s_axi_araddr;
rd_req <= 1;
end
if (s_axi_rvalid && s_axi_rready) begin
s_axi_rvalid <= 0;
end else if (!s_axi_rvalid && rd_req) begin
s_axi_rdata <= 0;
if (read_addr[15:8] == 0) begin
case (read_addr[7:0])
`argument : s_axi_rdata <= argument_reg;
`command : s_axi_rdata <= command_reg;
`resp0 : s_axi_rdata <= response_0_reg;
`resp1 : s_axi_rdata <= response_1_reg;
`resp2 : s_axi_rdata <= response_2_reg;
`resp3 : s_axi_rdata <= response_3_reg;
`controller : s_axi_rdata <= controller_setting_reg;
`blksize : s_axi_rdata <= block_size_reg;
`voltage : s_axi_rdata <= voltage_controll_reg;
`capa : s_axi_rdata <= capabilies_reg | (dma_addr_bits << 8);
`clock_d : s_axi_rdata <= clock_divider_reg;
`reset : s_axi_rdata <= { cmd_start, data_int_rst, cmd_int_rst, ctrl_rst };
`cmd_timeout : s_axi_rdata <= cmd_timeout_reg;
`data_timeout : s_axi_rdata <= data_timeout_reg;
`cmd_isr : s_axi_rdata <= cmd_int_status_reg;
`cmd_iser : s_axi_rdata <= cmd_int_enable_reg;
`data_isr : s_axi_rdata <= data_int_status_reg;
`data_iser : s_axi_rdata <= data_int_enable_reg;
`blkcnt : s_axi_rdata <= block_count_reg;
`card_detect : s_axi_rdata <= { sd_remove_int, sd_remove_ie, sd_insert_int, sd_insert_ie };
`dst_src_addr : s_axi_rdata <= dma_addr_reg[31:0];
`dst_src_addr_high : if (dma_addr_bits > 32) s_axi_rdata <= dma_addr_reg[dma_addr_bits-1:32];
endcase
end
s_axi_rresp <= 0;
s_axi_rvalid <= 1;
rd_req <= 0;
end
if (s_axi_awready && s_axi_awvalid) begin
write_addr <= s_axi_awaddr;
wr_req[0] <= 1;
end
if (s_axi_wready && s_axi_wvalid) begin
write_data <= s_axi_wdata;
wr_req[1] <= 1;
end
if (s_axi_bvalid && s_axi_bready) begin
s_axi_bvalid <= 0;
end else if (!s_axi_bvalid && wr_req == 2'b11) begin
if (write_addr[15:8] == 0) begin
case (write_addr[7:0])
`argument : begin argument_reg <= write_data; cmd_start <= 1; end
`command : command_reg <= write_data;
`reset : software_reset_reg <= write_data;
`cmd_timeout : cmd_timeout_reg <= write_data;
`data_timeout : data_timeout_reg <= write_data;
`blksize : block_size_reg <= write_data;
`controller : controller_setting_reg <= write_data;
`cmd_isr : cmd_int_rst <= 1;
`cmd_iser : cmd_int_enable_reg <= write_data;
`clock_d : clock_divider_reg <= write_data;
`data_isr : data_int_rst <= 1;
`data_iser : data_int_enable_reg <= write_data;
`blkcnt : block_count_reg <= write_data;
`card_detect : begin sd_remove_ie <= write_data[2]; sd_insert_ie <= write_data[0]; end
`dst_src_addr : dma_addr_reg[31:0] <= write_data;
`dst_src_addr_high : if (dma_addr_bits > 32) dma_addr_reg[dma_addr_bits-1:32] <= write_data;
endcase
end
s_axi_bresp <= 0;
s_axi_bvalid <= 1;
wr_req <= 0;
end
end
end
// ------ Data FIFO
reg [31:0] fifo_mem [(1<<fifo_addr_bits)-1:0];
reg [fifo_addr_bits-1:0] fifo_inp_pos;
reg [fifo_addr_bits-1:0] fifo_out_pos;
wire [fifo_addr_bits-1:0] fifo_inp_nxt = fifo_inp_pos + 1;
wire [fifo_addr_bits-1:0] fifo_out_nxt = fifo_out_pos + 1;
wire [fifo_addr_bits-1:0] fifo_data_len = fifo_inp_pos - fifo_out_pos;
wire [fifo_addr_bits-1:0] fifo_free_len = fifo_out_pos - fifo_inp_nxt;
wire fifo_full = fifo_inp_nxt == fifo_out_pos;
wire fifo_empty = fifo_inp_pos == fifo_out_pos;
wire fifo_ready = fifo_data_len >= (1 << fifo_addr_bits) / 2;
wire [31:0] fifo_din = en_rx_fifo ? data_in_rx_fifo : m_bus_dat_i;
wire fifo_we = en_rx_fifo ? rx_fifo_we && clock_posedge : m_axi_rready && m_axi_rvalid;
wire fifo_re = en_rx_fifo ? m_axi_wready && m_axi_wvalid : tx_fifo_re && clock_posedge;
reg [31:0] fifo_dout;
assign fifo_almost_full = fifo_data_len > (1 << fifo_addr_bits) * 3 / 4;
assign fifo_almost_empty = fifo_free_len > (1 << fifo_addr_bits) * 3 / 4;
wire tx_stb = en_tx_fifo && fifo_free_len >= (1 << fifo_addr_bits) / 3;
wire rx_stb = en_rx_fifo && m_axi_bresp_cnt != 3'b111 && (fifo_data_len >= (1 << fifo_addr_bits) / 3 || (!fifo_empty && !data_busy));
always @(posedge clock)
if (reset || ctrl_rst || !(en_rx_fifo || en_tx_fifo)) begin
fifo_inp_pos <= 0;
fifo_out_pos <= 0;
end else begin
if (fifo_we && !fifo_full) begin
fifo_mem[fifo_inp_pos] <= fifo_din;
fifo_inp_pos <= fifo_inp_nxt;
if (fifo_empty) fifo_dout <= fifo_din;
end
if (fifo_re && !fifo_empty) begin
if (fifo_we && !fifo_full && fifo_out_nxt == fifo_inp_pos) fifo_dout <= fifo_din;
else fifo_dout <= fifo_mem[fifo_out_nxt];
fifo_out_pos <= fifo_out_nxt;
end
end
// ------ AXI Master Interface
// AXI transaction (DDR access) is over 80 clock cycles
// Must use burst to achive required throughput
reg m_axi_cyc;
wire m_axi_write = en_rx_fifo;
reg [7:0] m_axi_wcnt;
reg [dma_addr_bits-1:2] m_bus_adr_o;
wire [31:0] m_bus_dat_i;
reg [2:0] m_axi_bresp_cnt;
reg m_bus_error;
assign m_axi_bready = m_axi_bresp_cnt != 0;
assign m_axi_rready = m_axi_cyc & !m_axi_write;
assign m_bus_dat_i = {m_axi_rdata[7:0],m_axi_rdata[15:8],m_axi_rdata[23:16],m_axi_rdata[31:24]};
assign m_axi_wdata = {fifo_dout[7:0],fifo_dout[15:8],fifo_dout[23:16],fifo_dout[31:24]};
// AXI burst cannot cross a 4KB boundary
wire [fifo_addr_bits-1:0] tx_burst_len;
wire [fifo_addr_bits-1:0] rx_burst_len;
assign tx_burst_len = m_bus_adr_o[11:2] + fifo_free_len >= m_bus_adr_o[11:2] ? fifo_free_len - 1 : ~m_bus_adr_o[fifo_addr_bits+1:2];
assign rx_burst_len = m_bus_adr_o[11:2] + fifo_data_len >= m_bus_adr_o[11:2] ? fifo_data_len - 1 : ~m_bus_adr_o[fifo_addr_bits+1:2];
assign data_int_status_reg = { data_int_status[`INT_DATA_SIZE-1:1],
!en_rx_fifo && !en_tx_fifo && !m_axi_cyc && m_axi_bresp_cnt == 0 && data_int_status[0] };
always @(posedge clock) begin
if (reset | ctrl_rst) begin
m_axi_arvalid <= 0;
m_axi_awvalid <= 0;
m_axi_wvalid <= 0;
m_axi_cyc <= 0;
end else if (m_axi_cyc) begin
if (m_axi_awvalid && m_axi_awready) begin
m_axi_awvalid <= 0;
end
if (m_axi_arvalid && m_axi_arready) begin
m_axi_arvalid <= 0;
end
if (m_axi_wvalid && m_axi_wready) begin
if (m_axi_wlast) begin
m_axi_wvalid <= 0;
m_axi_cyc <= 0;
end else begin
m_axi_wlast <= m_axi_wcnt + 1 == m_axi_awlen;
m_axi_wcnt <= m_axi_wcnt + 1;
end
end
if (m_axi_rvalid && m_axi_rready && m_axi_rlast) begin
m_axi_cyc <= 0;
end
end else if (tx_stb || rx_stb) begin
m_axi_cyc <= 1;
m_axi_wcnt <= 0;
if (m_axi_write) begin
m_axi_awaddr <= { m_bus_adr_o, 2'b00 };
m_axi_awlen <= rx_burst_len < 8'hff ? rx_burst_len : 8'hff;
m_axi_wlast <= rx_burst_len == 0;
m_axi_awvalid <= 1;
m_axi_wvalid <= 1;
end else begin
m_axi_araddr <= { m_bus_adr_o, 2'b00 };
m_axi_arlen <= tx_burst_len < 8'hff ? tx_burst_len : 8'hff;
m_axi_arvalid <= 1;
end
end
if (reset | ctrl_rst) begin
m_bus_adr_o <= 0;
end else if ((m_axi_wready && m_axi_wvalid) || (m_axi_rready && m_axi_rvalid)) begin
m_bus_adr_o <= m_bus_adr_o + 1;
end else if (!m_axi_cyc && !en_rx_fifo && !en_tx_fifo) begin
m_bus_adr_o <= dma_addr_reg[dma_addr_bits-1:2];
end
if (reset | ctrl_rst) begin
m_axi_bresp_cnt <= 0;
end else if ((m_axi_awvalid && m_axi_awready) && !(m_axi_bvalid && m_axi_bready)) begin
m_axi_bresp_cnt <= m_axi_bresp_cnt + 1;
end else if (!(m_axi_awvalid && m_axi_awready) && (m_axi_bvalid && m_axi_bready)) begin
m_axi_bresp_cnt <= m_axi_bresp_cnt - 1;
end
if (reset | ctrl_rst | cmd_start) begin
m_bus_error <= 0;
end else if (m_axi_bvalid && m_axi_bready && m_axi_bresp) begin
m_bus_error <= 1;
end else if (m_axi_rvalid && m_axi_rready && m_axi_rresp) begin
m_bus_error <= 1;
end
if (reset | ctrl_rst) begin
data_start_tx <= 0;
data_start_rx <= 0;
data_prepare_tx <= 0;
end else if (clock_posedge) begin
data_start_tx <= 0;
data_start_rx <= 0;
if (cmd_start) begin
data_prepare_tx <= 0;
if (command_reg[`CMD_WITH_DATA] == 2'b01) data_start_rx <= 1;
else if (command_reg[`CMD_WITH_DATA] != 2'b00) data_prepare_tx <= 1;
end else if (data_prepare_tx) begin
if (cmd_int_status_reg[`INT_CMD_CC]) begin
data_prepare_tx <= 0;
data_start_tx <= 1;
end else if (cmd_int_status_reg[`INT_CMD_EI]) begin
data_prepare_tx <= 0;
end
end
end
end
// ------ SD Card Interface
sd_cmd_master sd_cmd_master0(
.clock (clock),
.clock_posedge (clock_posedge),
.reset (reset | ctrl_rst),
.start (cmd_start),
.int_status_rst (cmd_int_rst),
.setting (cmd_setting),
.start_xfr (cmd_start_tx),
.go_idle (go_idle),
.cmd (cmd),
.response (cmd_response),
.crc_error (!cmd_crc_ok),
.index_ok (cmd_index_ok),
.busy (sd_data_busy),
.finish (cmd_finish),
.argument (argument_reg),
.command (command_reg),
.timeout (cmd_timeout_reg),
.int_status (cmd_int_status_reg),
.response_0 (response_0_reg),
.response_1 (response_1_reg),
.response_2 (response_2_reg),
.response_3 (response_3_reg)
);
sd_cmd_serial_host cmd_serial_host0(
.clock (clock),
.clock_posedge (clock_posedge),
.clock_data_in (clock_data_in),
.reset (reset | ctrl_rst | go_idle),
.setting (cmd_setting),
.cmd (cmd),
.start (cmd_start_tx),
.finish (cmd_finish),
.response (cmd_response),
.crc_ok (cmd_crc_ok),
.index_ok (cmd_index_ok),
.cmd_i (sd_cmd_i),
.cmd_o (sd_cmd_o),
.cmd_oe (sd_cmd_oe)
);
sd_data_master sd_data_master0(
.clock (clock),
.clock_posedge (clock_posedge),
.reset (reset | ctrl_rst),
.start_tx (data_start_tx),
.start_rx (data_start_rx),
.timeout (data_timeout_reg),
.d_write (d_write),
.d_read (d_read),
.en_tx_fifo (en_tx_fifo),
.en_rx_fifo (en_rx_fifo),
.fifo_empty (fifo_empty),
.fifo_ready (fifo_ready),
.fifo_full (fifo_full),
.bus_cycle (m_axi_cyc || m_axi_bresp_cnt != 0),
.xfr_complete (!data_busy),
.crc_error (!data_crc_ok),
.bus_error (m_bus_error),
.int_status (data_int_status),
.int_status_rst (data_int_rst)
);
sd_data_serial_host sd_data_serial_host0(
.clock (clock),
.clock_posedge (clock_posedge),
.clock_data_in (clock_data_in),
.reset (reset | ctrl_rst),
.data_in (fifo_dout),
.rd (tx_fifo_re),
.data_out (data_in_rx_fifo),
.we (rx_fifo_we),
.dat_oe (sd_dat_oe),
.dat_o (sd_dat_o),
.dat_i (sd_dat_i),
.blksize (block_size_reg),
.bus_4bit (controller_setting_reg[0]),
.blkcnt (block_count_reg),
.start ({d_read, d_write}),
.byte_alignment (dma_addr_reg[1:0]),
.sd_data_busy (sd_data_busy),
.busy (data_busy),
.crc_ok (data_crc_ok)
);
assign interrupt =
|(cmd_int_status_reg & cmd_int_enable_reg) ||
|(data_int_status_reg & data_int_enable_reg) ||
(sd_insert_int & sd_insert_ie) ||
(sd_remove_int & sd_remove_ie);
endmodule