mirror of
				https://github.com/openhwgroup/cvw
				synced 2025-02-11 06:05:49 +00:00 
			
		
		
		
	FMA matches diagram and lint warnings fixed
This commit is contained in:
		
							parent
							
								
									96565f9435
								
							
						
					
					
						commit
						77fe00947e
					
				@ -139,12 +139,12 @@ assign	ansnan = FmtE ? &ans[`FLEN-2:`NF] && |ans[`NF-1:0] : &ans[30:23] && |ans[
 | 
			
		||||
    logic [8:0]			NormCntE, NormCntM;
 | 
			
		||||
    
 | 
			
		||||
    fma1 fma1 (.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE({XAssumed1E,XFracE}), .YManE({YAssumed1E,YFracE}), .ZManE({ZAssumed1E,ZFracE}),
 | 
			
		||||
                .BiasE, .XDenormE, .YDenormE, .ZDenormE,  .XZeroE, .YZeroE, .ZZeroE,
 | 
			
		||||
                 .XDenormE, .YDenormE, .ZDenormE,  .XZeroE, .YZeroE, .ZZeroE,
 | 
			
		||||
                .FOpCtrlE, .FmtE, .SumE, .NegSumE, .InvZE, .NormCntE, .ZSgnEffE, .PSgnE,
 | 
			
		||||
                .ProdExpE, .AddendStickyE, .KillProdE); 
 | 
			
		||||
fma2 UUT2(.XSgnM(XSgnE), .YSgnM(YSgnE), .XExpM(XExpE), .YExpM(YExpE), .ZExpM(ZExpE), .XManM({XAssumed1E,XFracE}), .YManM({YAssumed1E,YFracE}), .ZManM({ZAssumed1E,ZFracE}), .XNaNM(XNaNE), .YNaNM(YNaNE), .ZNaNM(ZNaNE), .XZeroM(XZeroE), .YZeroM(YZeroE), .ZZeroM(ZZeroE), .XInfM(XInfE), .YInfM(YInfE), .ZInfM(ZInfE), .XSNaNM(XSNaNE), .YSNaNM(YSNaNE), .ZSNaNM(ZSNaNE),
 | 
			
		||||
              //  .FSrcXE, .FSrcYE, .FSrcZE, .FSrcXM, .FSrcYM, .FSrcZM, 
 | 
			
		||||
               .FOpCtrlM(FOpCtrlE[2:0]), .KillProdM(KillProdE), .AddendStickyM(AddendStickyE), .ProdExpM(ProdExpE), .SumM(SumE), .NegSumM(NegSumE), .InvZM(InvZE), .NormCntM(NormCntE), .ZSgnEffM(ZSgnEffE), .PSgnM(PSgnE),
 | 
			
		||||
                .KillProdM(KillProdE), .AddendStickyM(AddendStickyE), .ProdExpM(ProdExpE), .SumM(SumE), .NegSumM(NegSumE), .InvZM(InvZE), .NormCntM(NormCntE), .ZSgnEffM(ZSgnEffE), .PSgnM(PSgnE),
 | 
			
		||||
               .FmtM(FmtE), .FrmM(FrmE), .FMAFlgM, .FMAResM);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -45,7 +45,6 @@ module fma(
 | 
			
		||||
    input logic                 XSNaNM, YSNaNM, ZSNaNM,     // is signaling NaN
 | 
			
		||||
    input logic                 XZeroM, YZeroM, ZZeroM,     // is zero - memory stage
 | 
			
		||||
    input logic                 XInfM, YInfM, ZInfM,        // is infinity
 | 
			
		||||
    input logic [10:0]          BiasE,      // bias (max exponent/2) ***parameterize in unpacking unit
 | 
			
		||||
	output logic [`FLEN-1:0]    FMAResM,    // FMA result
 | 
			
		||||
	output logic [4:0]		    FMAFlgM);   // FMA flags
 | 
			
		||||
	
 | 
			
		||||
@ -70,7 +69,7 @@ module fma(
 | 
			
		||||
    logic [8:0]			NormCntE, NormCntM;
 | 
			
		||||
    
 | 
			
		||||
    fma1 fma1 (.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE, 
 | 
			
		||||
                .BiasE, .XDenormE, .YDenormE, .ZDenormE,  .XZeroE, .YZeroE, .ZZeroE,
 | 
			
		||||
                .XDenormE, .YDenormE, .ZDenormE,  .XZeroE, .YZeroE, .ZZeroE,
 | 
			
		||||
                .FOpCtrlE, .FmtE, .SumE, .NegSumE, .InvZE, .NormCntE, .ZSgnEffE, .PSgnE,
 | 
			
		||||
                .ProdExpE, .AddendStickyE, .KillProdE); 
 | 
			
		||||
                
 | 
			
		||||
@ -96,7 +95,6 @@ module fma1(
 | 
			
		||||
    input logic  [`NF:0]        XManE, YManE, ZManE,    // fractions in U(0.NF) format
 | 
			
		||||
    input logic                 XDenormE, YDenormE, ZDenormE, // is the input denormal
 | 
			
		||||
    input logic                 XZeroE, YZeroE, ZZeroE, // is the input zero
 | 
			
		||||
    input logic  [`NE-1:0]      BiasE,      // bias (max exponent/2)
 | 
			
		||||
    input logic  [2:0]          FOpCtrlE,   // 000 = fmadd (X*Y)+Z,  001 = fmsub (X*Y)-Z,  010 = fnmsub -(X*Y)+Z,  011 = fnmadd -(X*Y)-Z,  100 = fmul (X*Y)
 | 
			
		||||
    input logic                 FmtE,       // precision 1 = double 0 = single
 | 
			
		||||
    output logic [`NE+1:0]      ProdExpE,       // X exponent + Y exponent - bias in B(NE+2.0) format; adds 2 bits to allow for size of number and negative sign
 | 
			
		||||
@ -111,25 +109,26 @@ module fma1(
 | 
			
		||||
    );
 | 
			
		||||
 | 
			
		||||
    logic [`NE-1:0]     Denorm;             // value of a denormaized number based on precision
 | 
			
		||||
    logic [`NE-1:0]     XExpVal, YExpVal;   // Exponent value after taking into account denormals
 | 
			
		||||
    logic [2*`NF+1:0]   ProdManE;           // 1.X frac * 1.Y frac in U(2.2Nf) format
 | 
			
		||||
    logic [3*`NF+5:0]   AlignedAddendE;     // Z aligned for addition in U(NF+5.2NF+1)
 | 
			
		||||
    logic [3*`NF+6:0]   AlignedAddendInv;   // aligned addend possibly inverted
 | 
			
		||||
    logic [2*`NF+1:0]   ProdManKilled;      // the product's mantissa possibly killed
 | 
			
		||||
    logic [3*`NF+6:0]   NegProdManKilled;   // a negated ProdManKilled
 | 
			
		||||
    logic [8:0]         PNormCnt, NNormCnt; // the positive and nagitive LOA results
 | 
			
		||||
    logic [3*`NF+6:0]   PreSum, NegPreSum;  // positive and negitve versions of the sum
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Calculate the product
 | 
			
		||||
    //      - When multipliying two fp numbers, add the exponents
 | 
			
		||||
    //      - Subtract the bias (XExp + YExp has two biases, one from each exponent)
 | 
			
		||||
    //      - If the product is zero then kill the exponent - this is a problem 
 | 
			
		||||
    //      - If the product is zero then kill the exponent
 | 
			
		||||
    //      - Multiply the mantissas
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
   
 | 
			
		||||
    // denormalized numbers have diffrent values depending on which precison it is.
 | 
			
		||||
    //      double - 1
 | 
			
		||||
    //      single - 1024-128+1 = 897
 | 
			
		||||
    assign Denorm = FmtE ? 1 : 897;
 | 
			
		||||
    assign XExpVal = XDenormE ? Denorm : XExpE;
 | 
			
		||||
    assign YExpVal = YDenormE ? Denorm : YExpE;
 | 
			
		||||
    // take into account if the product is zero, the product's exponent does not compute properly if X or Y is zero
 | 
			
		||||
    assign ProdExpE = (XExpVal + YExpVal - BiasE)&{`NE+2{~(XZeroE|YZeroE)}};
 | 
			
		||||
 | 
			
		||||
   // calculate the product's exponent 
 | 
			
		||||
    expadd expadd(.FmtE, .XExpE, .YExpE, .XZeroE, .YZeroE, .XDenormE, .YDenormE, 
 | 
			
		||||
                    .Denorm, .ProdExpE);
 | 
			
		||||
 | 
			
		||||
    // multiplication of the mantissa's
 | 
			
		||||
    mult mult(.XManE, .YManE, .ProdManE);
 | 
			
		||||
@ -138,174 +137,49 @@ module fma1(
 | 
			
		||||
    // Alignment shifter
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    alignshift alignshift(.ZExpE, .ZManE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .Denorm,
 | 
			
		||||
    align align(.ZExpE, .ZManE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .Denorm,
 | 
			
		||||
                        .AlignedAddendE, .AddendStickyE, .KillProdE);
 | 
			
		||||
                        
 | 
			
		||||
                        
 | 
			
		||||
    // Calculate the product's sign
 | 
			
		||||
    //      Negate product's sign if FNMADD or FNMSUB
 | 
			
		||||
 | 
			
		||||
    assign PSgnE = XSgnE ^ YSgnE ^ (FOpCtrlE[1]&~FOpCtrlE[2]);
 | 
			
		||||
    assign ZSgnEffE = ZSgnE^FOpCtrlE[0]; // Swap sign of Z for subtract
 | 
			
		||||
 | 
			
		||||
    // calculate the signs and take the opperation into account
 | 
			
		||||
    sign sign(.FOpCtrlE, .XSgnE, .YSgnE, .ZSgnE, .PSgnE, .ZSgnEffE);
 | 
			
		||||
 | 
			
		||||
    // ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // // Addition/LZA
 | 
			
		||||
    // ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
        
 | 
			
		||||
    fmaadd fmaadd(.AlignedAddendE, .ProdManE, .PSgnE, .ZSgnEffE, .KillProdE, .SumE, .NegSumE, .InvZE, .NormCntE, .XZeroE, .YZeroE);
 | 
			
		||||
    add add(.AlignedAddendE, .ProdManE, .PSgnE, .ZSgnEffE, .KillProdE, .AlignedAddendInv, .ProdManKilled, .NegProdManKilled, .NegSumE, .PreSum, .NegPreSum, .InvZE, .XZeroE, .YZeroE);
 | 
			
		||||
    
 | 
			
		||||
    loa loa(.AlignedAddendE, .AlignedAddendInv, .ProdManKilled, .NegProdManKilled, .PNormCnt, .NNormCnt);
 | 
			
		||||
 | 
			
		||||
    // Choose the positive sum and accompanying LZA result.
 | 
			
		||||
    assign SumE = NegSumE ? NegPreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
 | 
			
		||||
    assign NormCntE = NegSumE ? NNormCnt : PNormCnt;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
module expadd(    
 | 
			
		||||
    input  logic            FmtE,          // precision
 | 
			
		||||
    input  logic [`NE-1:0]  XExpE, YExpE,  // input exponents
 | 
			
		||||
    input  logic            XDenormE, YDenormE,    // are the inputs denormalized
 | 
			
		||||
    input  logic            XZeroE, YZeroE,        // are the inputs zero
 | 
			
		||||
    output logic [`NE-1:0]  Denorm,        // value of denormalized exponent
 | 
			
		||||
    output logic [`NE+1:0]  ProdExpE       // product's exponent B^(1023)NE+2
 | 
			
		||||
);
 | 
			
		||||
 | 
			
		||||
    logic [`NE-1:0] XExpVal, YExpVal;       // Exponent value after taking into account denormals
 | 
			
		||||
 | 
			
		||||
    // denormalized numbers have diffrent values depending on which precison it is.
 | 
			
		||||
    //      double - 1
 | 
			
		||||
    //      single - 1024-128+1 = 897
 | 
			
		||||
    assign Denorm = FmtE ? 1 : 897;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
module fma2(
 | 
			
		||||
    
 | 
			
		||||
    input logic                 XSgnM, YSgnM,        // input signs
 | 
			
		||||
    input logic     [`NE-1:0]   XExpM, YExpM, ZExpM, // input exponents
 | 
			
		||||
    input logic     [`NF:0]     XManM, YManM, ZManM, // input mantissas
 | 
			
		||||
    input logic     [2:0]       FrmM,       // rounding mode 000 = rount to nearest, ties to even   001 = round twords zero  010 = round down  011 = round up  100 = round to nearest, ties to max magnitude
 | 
			
		||||
    input logic                 FmtM,       // precision 1 = double 0 = single
 | 
			
		||||
    input logic     [`NE+1:0]   ProdExpM,       // X exponent + Y exponent - bias
 | 
			
		||||
    input logic                 AddendStickyM,  // sticky bit that is calculated during alignment
 | 
			
		||||
    input logic                 KillProdM,      // set the product to zero before addition if the product is too small to matter
 | 
			
		||||
    input logic                 XZeroM, YZeroM, ZZeroM, // inputs are zero
 | 
			
		||||
    input logic                 XInfM, YInfM, ZInfM,    // inputs are infinity
 | 
			
		||||
    input logic                 XNaNM, YNaNM, ZNaNM,    // inputs are NaN
 | 
			
		||||
    input logic                 XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs
 | 
			
		||||
    input logic     [3*`NF+5:0] SumM,       // the positive sum
 | 
			
		||||
    input logic                 NegSumM,    // was the sum negitive
 | 
			
		||||
    input logic                 InvZM,      // do you invert Z
 | 
			
		||||
    input logic                 ZSgnEffM,   // the modified Z sign - depends on instruction
 | 
			
		||||
    input logic                 PSgnM,      // the product's sign
 | 
			
		||||
    input logic     [8:0]       NormCntM,   // the normalization shift count
 | 
			
		||||
    output logic    [`FLEN-1:0] FMAResM,    // FMA final result
 | 
			
		||||
    output logic    [4:0]       FMAFlgM);   // FMA flags {invalid, divide by zero, overflow, underflow, inexact}
 | 
			
		||||
   
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    logic [`NF-1:0]     ResultFrac; // Result fraction
 | 
			
		||||
    logic [`NE-1:0]     ResultExp;  // Result exponent
 | 
			
		||||
    logic               ResultSgn;  // Result sign
 | 
			
		||||
    logic [`NE+1:0]     SumExp;     // exponent of the normalized sum
 | 
			
		||||
    logic [`NE+1:0]     FullResultExp;  // ResultExp with bits to determine sign and overflow
 | 
			
		||||
    logic [`NF+2:0]     NormSum;        // normalized sum
 | 
			
		||||
    logic               NormSumSticky;  // sticky bit calulated from the normalized sum
 | 
			
		||||
    logic               SumZero;        // is the sum zero
 | 
			
		||||
    logic               ResultDenorm;   // is the result denormalized
 | 
			
		||||
    logic               Sticky, UfSticky;           // Sticky bit
 | 
			
		||||
    logic               Plus1, Minus1, CalcPlus1;   // do you add or subtract one for rounding
 | 
			
		||||
    logic               UfPlus1;                    // do you add one (for determining underflow flag)
 | 
			
		||||
    logic               Invalid,Underflow,Overflow; // flags
 | 
			
		||||
    logic               ZeroSgn;        // the result's sign if the sum is zero
 | 
			
		||||
    logic               ResultSgnTmp;   // the result's sign assuming the result is not zero
 | 
			
		||||
    logic               Guard, Round;   // bits needed to determine rounding
 | 
			
		||||
    logic               UfRound, UfLSBNormSum;   // bits needed to determine rounding for underflow flag
 | 
			
		||||
    logic [`FLEN-1:0]   XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
 | 
			
		||||
   
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Normalization
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    normalize normalize(.SumM, .ZExpM, .ProdExpM, .NormCntM, .FmtM, .KillProdM, .AddendStickyM, .NormSum,
 | 
			
		||||
            .SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Rounding
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    // round to nearest even
 | 
			
		||||
    // round to zero
 | 
			
		||||
    // round to -infinity
 | 
			
		||||
    // round to infinity
 | 
			
		||||
    // round to nearest max magnitude
 | 
			
		||||
 | 
			
		||||
    fmaround fmaround(.FmtM, .FrmM, .Sticky, .UfSticky, .NormSum, .AddendStickyM, .NormSumSticky, .ZZeroM, .InvZM, .ResultSgn, .SumExp,
 | 
			
		||||
        .CalcPlus1, .Plus1, .UfPlus1, .Minus1, .FullResultExp, .ResultFrac, .ResultExp, .Round, .Guard, .UfRound, .UfLSBNormSum);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Sign calculation
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    // Determine the sign if the sum is zero
 | 
			
		||||
    //      if cancelation then 0 unless round to -infinity
 | 
			
		||||
    //      otherwise psign
 | 
			
		||||
    assign ZeroSgn = (PSgnM^ZSgnEffM)&~Underflow ? FrmM[1:0] == 2'b10 : PSgnM;
 | 
			
		||||
 | 
			
		||||
    // is the result negitive
 | 
			
		||||
    //  if p - z is the Sum negitive
 | 
			
		||||
    //  if -p + z is the Sum positive
 | 
			
		||||
    //  if -p - z then the Sum is negitive
 | 
			
		||||
    assign ResultSgnTmp = InvZM&(ZSgnEffM)&NegSumM | InvZM&PSgnM&~NegSumM | ((ZSgnEffM)&PSgnM);
 | 
			
		||||
    assign ResultSgn = SumZero ? ZeroSgn : ResultSgnTmp;
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Flags
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    fmaflags fmaflags(.XSNaNM, .YSNaNM, .ZSNaNM, .XInfM, .YInfM, .ZInfM, .XZeroM, .YZeroM,
 | 
			
		||||
        .XNaNM, .YNaNM, .ZNaNM, .FullResultExp, .SumExp, .ZSgnEffM, .PSgnM, .Round, .Guard, .UfRound, .UfLSBNormSum, .Sticky, .UfPlus1,
 | 
			
		||||
        .FmtM, .Invalid, .Overflow, .Underflow, .FMAFlgM);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Select the result
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    assign XNaNResult = FmtM ? {XSgnM, XExpM, 1'b1, XManM[`NF-2:0]} : {{32{1'b1}}, XSgnM, XExpM[7:0], 1'b1, XManM[50:29]};
 | 
			
		||||
    assign YNaNResult = FmtM ? {YSgnM, YExpM, 1'b1, YManM[`NF-2:0]} : {{32{1'b1}}, YSgnM, YExpM[7:0], 1'b1, YManM[50:29]};
 | 
			
		||||
    assign ZNaNResult = FmtM ? {ZSgnEffM, ZExpM, 1'b1, ZManM[`NF-2:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], 1'b1, ZManM[50:29]};
 | 
			
		||||
    assign OverflowResult =  FmtM ? ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
 | 
			
		||||
                                                                                                                          {ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
 | 
			
		||||
                                    ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{32{1'b1}}, ResultSgn, 8'hfe, {23{1'b1}}} :
 | 
			
		||||
                                                                                                                          {{32{1'b1}}, ResultSgn, 8'hff, 23'b0};
 | 
			
		||||
    assign InvalidResult = FmtM ? {ResultSgn, {`NE{1'b1}}, 1'b1, {`NF-1{1'b0}}} : {{32{1'b1}}, ResultSgn, 8'hff, 1'b1, 22'b0};
 | 
			
		||||
    assign KillProdResult = FmtM ? {ResultSgn, {ZExpM, ZManM[`NF-1:0]} - (Minus1&AddendStickyM) + (Plus1&AddendStickyM)} : {{32{1'b1}}, ResultSgn, {ZExpM[`NE-1],ZExpM[6:0], ZManM[51:29]} - {30'b0, (Minus1&AddendStickyM)} + {30'b0, (Plus1&AddendStickyM)}};
 | 
			
		||||
    assign UnderflowResult = FmtM ? {ResultSgn, {`FLEN-1{1'b0}}} + (CalcPlus1&(AddendStickyM|FrmM[1])) : {{32{1'b1}}, {ResultSgn, 31'b0} + {31'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))}};
 | 
			
		||||
    assign FMAResM = XNaNM ? XNaNResult :
 | 
			
		||||
                        YNaNM ? YNaNResult :
 | 
			
		||||
                        ZNaNM ? ZNaNResult :
 | 
			
		||||
                        Invalid ? InvalidResult :
 | 
			
		||||
                        XInfM ? FmtM ? {PSgnM, XExpM, XManM[`NF-1:0]} : {{32{1'b1}}, PSgnM,  XExpM[7:0], XManM[51:29]} : 
 | 
			
		||||
                        YInfM ? FmtM ? {PSgnM, YExpM, YManM[`NF-1:0]} : {{32{1'b1}}, PSgnM,  YExpM[7:0], YManM[51:29]} :
 | 
			
		||||
                        ZInfM ? FmtM ? {ZSgnEffM, ZExpM, ZManM[`NF-1:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], ZManM[51:29]} :
 | 
			
		||||
                        KillProdM ? KillProdResult :  
 | 
			
		||||
			            Overflow ? OverflowResult :
 | 
			
		||||
                        Underflow & ~ResultDenorm & (ResultExp!=1) ? UnderflowResult :  
 | 
			
		||||
                        FmtM ? {ResultSgn, ResultExp, ResultFrac} :
 | 
			
		||||
                               {{32{1'b1}}, ResultSgn, ResultExp[7:0], ResultFrac[51:29]};
 | 
			
		||||
 | 
			
		||||
// *** use NF where needed
 | 
			
		||||
    // pick denormalized value or exponent
 | 
			
		||||
    assign XExpVal = XDenormE ? Denorm : XExpE;
 | 
			
		||||
    assign YExpVal = YDenormE ? Denorm : YExpE;
 | 
			
		||||
    // kill the exponent if the product is zero - either X or Y is 0
 | 
			
		||||
    assign ProdExpE = (XExpVal + YExpVal - `NE'h3ff)&{`NE+2{~(XZeroE|YZeroE)}};
 | 
			
		||||
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
@ -313,7 +187,6 @@ endmodule
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
module mult(
 | 
			
		||||
    input logic [`NF:0] XManE, YManE,
 | 
			
		||||
    output logic [2*`NF+1:0] ProdManE
 | 
			
		||||
@ -325,7 +198,34 @@ endmodule
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
module alignshift(
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
module sign(    
 | 
			
		||||
    input  logic [2:0]  FOpCtrlE,               // precision
 | 
			
		||||
    input  logic        XSgnE, YSgnE, ZSgnE,    // are the inputs denormalized
 | 
			
		||||
    output logic        PSgnE,     // the product's sign - takes opperation into account
 | 
			
		||||
    output logic        ZSgnEffE   // Z sign used in fma - takes opperation into account
 | 
			
		||||
);
 | 
			
		||||
 | 
			
		||||
    // Calculate the product's sign
 | 
			
		||||
    //      Negate product's sign if FNMADD or FNMSUB
 | 
			
		||||
    
 | 
			
		||||
    // flip is negation opperation
 | 
			
		||||
    assign PSgnE = XSgnE ^ YSgnE ^ (FOpCtrlE[1]&~FOpCtrlE[2]);
 | 
			
		||||
    // flip if subtraction
 | 
			
		||||
    assign ZSgnEffE = ZSgnE^FOpCtrlE[0];
 | 
			
		||||
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
module align(
 | 
			
		||||
    input logic  [`NE-1:0]      ZExpE,      // biased exponents in B(NE.0) format
 | 
			
		||||
    input logic  [`NF:0]        ZManE,      // fractions in U(0.NF) format]
 | 
			
		||||
    input logic                 ZDenormE,   // is the input denormal
 | 
			
		||||
@ -397,22 +297,25 @@ module alignshift(
 | 
			
		||||
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
module fmaadd(
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
module add(
 | 
			
		||||
    input logic  [3*`NF+5:0]    AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
 | 
			
		||||
    input logic  [2*`NF+1:0]    ProdManE,       // the product's mantissa
 | 
			
		||||
    input logic                 PSgnE, ZSgnEffE,// the product and modified Z signs
 | 
			
		||||
    input logic                 KillProdE,      // should the product be set to 0
 | 
			
		||||
    input logic                 XZeroE, YZeroE, // is the input zero
 | 
			
		||||
    output logic [3*`NF+5:0]    SumE,           // the positive sum
 | 
			
		||||
    output logic [3*`NF+6:0] AlignedAddendInv,  // aligned addend possibly inverted
 | 
			
		||||
    output logic [2*`NF+1:0] ProdManKilled,     // the product's mantissa possibly killed
 | 
			
		||||
    output logic [3*`NF+6:0] NegProdManKilled,  // a negated ProdManKilled
 | 
			
		||||
    output logic                NegSumE,        // was the sum negitive
 | 
			
		||||
    output logic                InvZE,          // do you invert Z
 | 
			
		||||
    output logic [8:0]          NormCntE        // normalization shift count
 | 
			
		||||
    output logic [3*`NF+6:0]   PreSum, NegPreSum// possibly negitive sum
 | 
			
		||||
);
 | 
			
		||||
    logic [3*`NF+6:0]   PreSum, NegPreSum;  // possibly negitive sum
 | 
			
		||||
    logic [2*`NF+1:0]   ProdMan2;           // product being added
 | 
			
		||||
    logic [3*`NF+6:0]   AlignedAddend2;     // possibly inverted aligned Z
 | 
			
		||||
    logic [3*`NF+6:0]   NegProdMan2;        // a negated ProdMan2
 | 
			
		||||
    logic [8:0]         PNormCnt, NNormCnt; // results from the LZA
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Addition
 | 
			
		||||
@ -424,36 +327,42 @@ module fmaadd(
 | 
			
		||||
    assign InvZE = ZSgnEffE ^ PSgnE;
 | 
			
		||||
 | 
			
		||||
    // Choose an inverted or non-inverted addend - the one has to be added now for the LZA
 | 
			
		||||
    assign AlignedAddend2 = InvZE ? -{1'b0, AlignedAddendE} : {1'b0, AlignedAddendE};
 | 
			
		||||
    assign AlignedAddendInv = InvZE ? -{1'b0, AlignedAddendE} : {1'b0, AlignedAddendE};
 | 
			
		||||
    // Kill the product if the product is too small to effect the addition (determined in fma1.sv)
 | 
			
		||||
    assign ProdMan2 = ProdManE&{2*`NF+2{~KillProdE}};
 | 
			
		||||
    assign ProdManKilled = ProdManE&{2*`NF+2{~KillProdE}};
 | 
			
		||||
    // Negate ProdMan for LZA and the negitive sum calculation
 | 
			
		||||
    assign NegProdMan2 = {{`NF+3{~(XZeroE|YZeroE|KillProdE)}}, -ProdMan2, 2'b0};
 | 
			
		||||
    assign NegProdManKilled = {{`NF+3{~(XZeroE|YZeroE|KillProdE)}}, -ProdManKilled, 2'b0};
 | 
			
		||||
 | 
			
		||||
    // LZAs one for the positive result and one for the negitive
 | 
			
		||||
    //      - the +1 from inverting causes problems for normalization
 | 
			
		||||
    poslza poslza(AlignedAddend2, ProdMan2, PNormCnt);
 | 
			
		||||
    neglza neglza({1'b0,AlignedAddendE}, NegProdMan2, NNormCnt);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    // Do the addition
 | 
			
		||||
    //      - calculate a positive and negitive sum in parallel
 | 
			
		||||
    assign PreSum = AlignedAddend2 + {ProdMan2, 2'b0};
 | 
			
		||||
    assign NegPreSum = AlignedAddendE + NegProdMan2;
 | 
			
		||||
    assign PreSum = AlignedAddendInv + {ProdManKilled, 2'b0};
 | 
			
		||||
    assign NegPreSum = AlignedAddendE + NegProdManKilled;
 | 
			
		||||
     
 | 
			
		||||
    // Is the sum negitive
 | 
			
		||||
    assign NegSumE = PreSum[3*`NF+6];
 | 
			
		||||
    // Choose the positive sum and accompanying LZA result.
 | 
			
		||||
    assign SumE = NegSumE ? NegPreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
 | 
			
		||||
    assign NormCntE = NegSumE ? NNormCnt : PNormCnt;
 | 
			
		||||
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
module loa(
 | 
			
		||||
    input logic [3*`NF+5:0] AlignedAddendE,     // Z aligned for addition in U(NF+5.2NF+1)
 | 
			
		||||
    input logic [3*`NF+6:0] AlignedAddendInv,   // aligned addend possibly inverted
 | 
			
		||||
    input logic [2*`NF+1:0] ProdManKilled,      // the product's mantissa possibly killed
 | 
			
		||||
    input logic [3*`NF+6:0] NegProdManKilled,   // a negated ProdManKilled
 | 
			
		||||
    output logic [8:0]      PNormCnt, NNormCnt  // positive and negitive LOA result    
 | 
			
		||||
);
 | 
			
		||||
 | 
			
		||||
    // LZAs one for the positive result and one for the negitive
 | 
			
		||||
    //      - the +1 from inverting causes problems for normalization
 | 
			
		||||
    posloa posloa(AlignedAddendInv, ProdManKilled, PNormCnt);
 | 
			
		||||
    negloa negloa({1'b0,AlignedAddendE}, NegProdManKilled, NNormCnt);
 | 
			
		||||
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
module poslza(
 | 
			
		||||
module posloa(
 | 
			
		||||
    input logic  [3*`NF+6:0] A,     // addend
 | 
			
		||||
    input logic  [2*`NF+1:0] P,     // product
 | 
			
		||||
    output logic [8:0]       PCnt   // normalization shift count for the positive result
 | 
			
		||||
@ -484,7 +393,7 @@ module poslza(
 | 
			
		||||
  
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
module neglza(
 | 
			
		||||
module negloa(
 | 
			
		||||
    input logic  [3*`NF+6:0]    A,      // addend
 | 
			
		||||
    input logic  [3*`NF+6:0]    P,      // product
 | 
			
		||||
    output logic [8:0]          NCnt    // normalization shift count for the negitive result
 | 
			
		||||
@ -512,6 +421,197 @@ endmodule
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
module fma2(
 | 
			
		||||
    
 | 
			
		||||
    input logic                 XSgnM, YSgnM,        // input signs
 | 
			
		||||
    input logic     [`NE-1:0]   XExpM, YExpM, ZExpM, // input exponents
 | 
			
		||||
    input logic     [`NF:0]     XManM, YManM, ZManM, // input mantissas
 | 
			
		||||
    input logic     [2:0]       FrmM,       // rounding mode 000 = rount to nearest, ties to even   001 = round twords zero  010 = round down  011 = round up  100 = round to nearest, ties to max magnitude
 | 
			
		||||
    input logic                 FmtM,       // precision 1 = double 0 = single
 | 
			
		||||
    input logic     [`NE+1:0]   ProdExpM,       // X exponent + Y exponent - bias
 | 
			
		||||
    input logic                 AddendStickyM,  // sticky bit that is calculated during alignment
 | 
			
		||||
    input logic                 KillProdM,      // set the product to zero before addition if the product is too small to matter
 | 
			
		||||
    input logic                 XZeroM, YZeroM, ZZeroM, // inputs are zero
 | 
			
		||||
    input logic                 XInfM, YInfM, ZInfM,    // inputs are infinity
 | 
			
		||||
    input logic                 XNaNM, YNaNM, ZNaNM,    // inputs are NaN
 | 
			
		||||
    input logic                 XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs
 | 
			
		||||
    input logic     [3*`NF+5:0] SumM,       // the positive sum
 | 
			
		||||
    input logic                 NegSumM,    // was the sum negitive
 | 
			
		||||
    input logic                 InvZM,      // do you invert Z
 | 
			
		||||
    input logic                 ZSgnEffM,   // the modified Z sign - depends on instruction
 | 
			
		||||
    input logic                 PSgnM,      // the product's sign
 | 
			
		||||
    input logic     [8:0]       NormCntM,   // the normalization shift count
 | 
			
		||||
    output logic    [`FLEN-1:0] FMAResM,    // FMA final result
 | 
			
		||||
    output logic    [4:0]       FMAFlgM);   // FMA flags {invalid, divide by zero, overflow, underflow, inexact}
 | 
			
		||||
   
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    logic [`NF-1:0]     ResultFrac; // Result fraction
 | 
			
		||||
    logic [`NE-1:0]     ResultExp;  // Result exponent
 | 
			
		||||
    logic               ResultSgn;  // Result sign
 | 
			
		||||
    logic [`NE+1:0]     SumExp;     // exponent of the normalized sum
 | 
			
		||||
    logic [`NE+1:0]     FullResultExp;  // ResultExp with bits to determine sign and overflow
 | 
			
		||||
    logic [`NF+2:0]     NormSum;        // normalized sum
 | 
			
		||||
    logic               NormSumSticky;  // sticky bit calulated from the normalized sum
 | 
			
		||||
    logic               SumZero;        // is the sum zero
 | 
			
		||||
    logic               ResultDenorm;   // is the result denormalized
 | 
			
		||||
    logic               Sticky, UfSticky;           // Sticky bit
 | 
			
		||||
    logic               Plus1, Minus1, CalcPlus1;   // do you add or subtract one for rounding
 | 
			
		||||
    logic               UfPlus1;                    // do you add one (for determining underflow flag)
 | 
			
		||||
    logic               Invalid,Underflow,Overflow; // flags
 | 
			
		||||
    logic               ZeroSgn;        // the result's sign if the sum is zero
 | 
			
		||||
    logic               ResultSgnTmp;   // the result's sign assuming the result is not zero
 | 
			
		||||
    logic               Guard, Round;   // bits needed to determine rounding
 | 
			
		||||
    logic               UfRound, UfLSBNormSum;   // bits needed to determine rounding for underflow flag
 | 
			
		||||
   
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Normalization
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    normalize normalize(.SumM, .ZExpM, .ProdExpM, .NormCntM, .FmtM, .KillProdM, .AddendStickyM, .NormSum,
 | 
			
		||||
            .SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Rounding
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    // round to nearest even
 | 
			
		||||
    // round to zero
 | 
			
		||||
    // round to -infinity
 | 
			
		||||
    // round to infinity
 | 
			
		||||
    // round to nearest max magnitude
 | 
			
		||||
 | 
			
		||||
    fmaround fmaround(.FmtM, .FrmM, .Sticky, .UfSticky, .NormSum, .AddendStickyM, .NormSumSticky, .ZZeroM, .InvZM, .ResultSgn, .SumExp,
 | 
			
		||||
        .CalcPlus1, .Plus1, .UfPlus1, .Minus1, .FullResultExp, .ResultFrac, .ResultExp, .Round, .Guard, .UfRound, .UfLSBNormSum);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Sign calculation
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
    resultsign resultsign(.FrmM, .PSgnM, .ZSgnEffM, .Underflow, .InvZM, .NegSumM, .SumZero, .ResultSgn);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Flags
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    fmaflags fmaflags(.XSNaNM, .YSNaNM, .ZSNaNM, .XInfM, .YInfM, .ZInfM, .XZeroM, .YZeroM,
 | 
			
		||||
        .XNaNM, .YNaNM, .ZNaNM, .FullResultExp, .SumExp, .ZSgnEffM, .PSgnM, .Round, .Guard, .UfRound, .UfLSBNormSum, .Sticky, .UfPlus1,
 | 
			
		||||
        .FmtM, .Invalid, .Overflow, .Underflow, .FMAFlgM);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Select the result
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    resultselect resultselect(.XSgnM, .YSgnM, .XExpM, .YExpM, .ZExpM, .XManM, .YManM, .ZManM, 
 | 
			
		||||
        .FrmM, .FmtM, .AddendStickyM, .KillProdM, .XInfM, .YInfM, .ZInfM, .XNaNM, .YNaNM, .ZNaNM, 
 | 
			
		||||
        .ZSgnEffM, .PSgnM, .ResultSgn, .Minus1, .Plus1, .CalcPlus1, .Invalid, .Overflow, .Underflow, 
 | 
			
		||||
        .ResultDenorm, .ResultExp, .ResultFrac, .FMAResM);
 | 
			
		||||
 | 
			
		||||
// *** use NF where needed
 | 
			
		||||
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
module resultsign(
 | 
			
		||||
    input logic [2:0]   FrmM,
 | 
			
		||||
    input logic         PSgnM, ZSgnEffM,
 | 
			
		||||
    input logic         Underflow,
 | 
			
		||||
    input logic         InvZM,
 | 
			
		||||
    input logic         NegSumM,
 | 
			
		||||
    input logic         SumZero,
 | 
			
		||||
    output logic        ResultSgn
 | 
			
		||||
);
 | 
			
		||||
 | 
			
		||||
    logic ZeroSgn;
 | 
			
		||||
    logic ResultSgnTmp;
 | 
			
		||||
 | 
			
		||||
    // Determine the sign if the sum is zero
 | 
			
		||||
    //      if cancelation then 0 unless round to -infinity
 | 
			
		||||
    //      otherwise psign
 | 
			
		||||
    assign ZeroSgn = (PSgnM^ZSgnEffM)&~Underflow ? FrmM[1:0] == 2'b10 : PSgnM;
 | 
			
		||||
 | 
			
		||||
    // is the result negitive
 | 
			
		||||
    //  if p - z is the Sum negitive
 | 
			
		||||
    //  if -p + z is the Sum positive
 | 
			
		||||
    //  if -p - z then the Sum is negitive
 | 
			
		||||
    assign ResultSgnTmp = InvZM&(ZSgnEffM)&NegSumM | InvZM&PSgnM&~NegSumM | ((ZSgnEffM)&PSgnM);
 | 
			
		||||
    assign ResultSgn = SumZero ? ZeroSgn : ResultSgnTmp;
 | 
			
		||||
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
module resultselect(
 | 
			
		||||
    input logic                 XSgnM, YSgnM,        // input signs
 | 
			
		||||
    input logic     [`NE-1:0]   XExpM, YExpM, ZExpM, // input exponents
 | 
			
		||||
    input logic     [`NF:0]     XManM, YManM, ZManM, // input mantissas
 | 
			
		||||
    input logic     [2:0]       FrmM,       // rounding mode 000 = rount to nearest, ties to even   001 = round twords zero  010 = round down  011 = round up  100 = round to nearest, ties to max magnitude
 | 
			
		||||
    input logic                 FmtM,       // precision 1 = double 0 = single
 | 
			
		||||
    input logic                 AddendStickyM,  // sticky bit that is calculated during alignment
 | 
			
		||||
    input logic                 KillProdM,      // set the product to zero before addition if the product is too small to matter
 | 
			
		||||
    input logic                 XInfM, YInfM, ZInfM,    // inputs are infinity
 | 
			
		||||
    input logic                 XNaNM, YNaNM, ZNaNM,    // inputs are NaN
 | 
			
		||||
    input logic                 ZSgnEffM,   // the modified Z sign - depends on instruction
 | 
			
		||||
    input logic                 PSgnM,      // the product's sign
 | 
			
		||||
    input logic                 ResultSgn,  // the result's sign
 | 
			
		||||
    input logic                 Minus1, Plus1, CalcPlus1, // rounding bits
 | 
			
		||||
    input logic                 Invalid, Overflow, Underflow,  // flags
 | 
			
		||||
    input logic                 ResultDenorm,       // is the result denormalized
 | 
			
		||||
    input logic     [`NE-1:0]   ResultExp,          // Result exponent
 | 
			
		||||
    input logic     [`NF-1:0]   ResultFrac,         // Result fraction
 | 
			
		||||
    output logic    [`FLEN-1:0] FMAResM     // FMA final result
 | 
			
		||||
);
 | 
			
		||||
    logic [`FLEN-1:0]   XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
 | 
			
		||||
 | 
			
		||||
    assign XNaNResult = FmtM ? {XSgnM, XExpM, 1'b1, XManM[`NF-2:0]} : {{32{1'b1}}, XSgnM, XExpM[7:0], 1'b1, XManM[50:29]};
 | 
			
		||||
    assign YNaNResult = FmtM ? {YSgnM, YExpM, 1'b1, YManM[`NF-2:0]} : {{32{1'b1}}, YSgnM, YExpM[7:0], 1'b1, YManM[50:29]};
 | 
			
		||||
    assign ZNaNResult = FmtM ? {ZSgnEffM, ZExpM, 1'b1, ZManM[`NF-2:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], 1'b1, ZManM[50:29]};
 | 
			
		||||
    assign OverflowResult =  FmtM ? ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
 | 
			
		||||
                                                                                                                          {ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
 | 
			
		||||
                                    ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{32{1'b1}}, ResultSgn, 8'hfe, {23{1'b1}}} :
 | 
			
		||||
                                                                                                                          {{32{1'b1}}, ResultSgn, 8'hff, 23'b0};
 | 
			
		||||
    assign InvalidResult = FmtM ? {ResultSgn, {`NE{1'b1}}, 1'b1, {`NF-1{1'b0}}} : {{32{1'b1}}, ResultSgn, 8'hff, 1'b1, 22'b0};
 | 
			
		||||
    assign KillProdResult = FmtM ? {ResultSgn, {ZExpM, ZManM[`NF-1:0]} - (Minus1&AddendStickyM) + (Plus1&AddendStickyM)} : {{32{1'b1}}, ResultSgn, {ZExpM[`NE-1],ZExpM[6:0], ZManM[51:29]} - {30'b0, (Minus1&AddendStickyM)} + {30'b0, (Plus1&AddendStickyM)}};
 | 
			
		||||
    assign UnderflowResult = FmtM ? {ResultSgn, {`FLEN-1{1'b0}}} + (CalcPlus1&(AddendStickyM|FrmM[1])) : {{32{1'b1}}, {ResultSgn, 31'b0} + {31'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))}};
 | 
			
		||||
    assign FMAResM = XNaNM ? XNaNResult :
 | 
			
		||||
                        YNaNM ? YNaNResult :
 | 
			
		||||
                        ZNaNM ? ZNaNResult :
 | 
			
		||||
                        Invalid ? InvalidResult :
 | 
			
		||||
                        XInfM ? FmtM ? {PSgnM, XExpM, XManM[`NF-1:0]} : {{32{1'b1}}, PSgnM,  XExpM[7:0], XManM[51:29]} : 
 | 
			
		||||
                        YInfM ? FmtM ? {PSgnM, YExpM, YManM[`NF-1:0]} : {{32{1'b1}}, PSgnM,  YExpM[7:0], YManM[51:29]} :
 | 
			
		||||
                        ZInfM ? FmtM ? {ZSgnEffM, ZExpM, ZManM[`NF-1:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], ZManM[51:29]} :
 | 
			
		||||
                        KillProdM ? KillProdResult :  
 | 
			
		||||
			            Overflow ? OverflowResult :
 | 
			
		||||
                        Underflow & ~ResultDenorm & (ResultExp!=1) ? UnderflowResult :  
 | 
			
		||||
                        FmtM ? {ResultSgn, ResultExp, ResultFrac} :
 | 
			
		||||
                               {{32{1'b1}}, ResultSgn, ResultExp[7:0], ResultFrac[51:29]};
 | 
			
		||||
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
module normalize(
 | 
			
		||||
    input logic  [3*`NF+5:0]    SumM,       // the positive sum
 | 
			
		||||
    input logic  [`NE-1:0]      ZExpM,      // exponent of Z
 | 
			
		||||
 | 
			
		||||
@ -89,13 +89,16 @@ module fpu (
 | 
			
		||||
     logic [10:0] 	  BiasE;                   // bias based on precision (single=7f double=3ff - max expoent/2)
 | 
			
		||||
     logic 		  XNaNE, YNaNE, ZNaNE;           // is the input a NaN - execute stage
 | 
			
		||||
     logic 		  XNaNM, YNaNM, ZNaNM;           // is the input a NaN - memory stage
 | 
			
		||||
     logic       XNaNQ, YNaNQ;                  // is the input a NaN - divide
 | 
			
		||||
     logic 		  XSNaNE, YSNaNE, ZSNaNE;        // is the input a signaling NaN - execute stage
 | 
			
		||||
     logic 		  XSNaNM, YSNaNM, ZSNaNM;        // is the input a signaling NaN - memory stage
 | 
			
		||||
     logic 		  XDenormE, YDenormE, ZDenormE;  // is the input denormalized
 | 
			
		||||
     logic 		  XZeroE, YZeroE, ZZeroE;        // is the input zero - execute stage
 | 
			
		||||
     logic 		  XZeroM, YZeroM, ZZeroM;        // is the input zero - memory stage
 | 
			
		||||
     logic       XZeroQ, YZeroQ;                // is the input zero - divide
 | 
			
		||||
     logic 		  XInfE, YInfE, ZInfE;           // is the input infinity - execute stage
 | 
			
		||||
     logic 		  XInfM, YInfM, ZInfM;           // is the input infinity - memory stage
 | 
			
		||||
     logic       XInfQ, YInfQ;                  // is the input infinity - divide
 | 
			
		||||
     logic 		  XExpMaxE;                      // is the exponent all ones (max value)
 | 
			
		||||
     logic 		  XNormE;                 // is normal     
 | 
			
		||||
     
 | 
			
		||||
@ -180,7 +183,7 @@ module fpu (
 | 
			
		||||
     //   - handles FMA and multiply instructions
 | 
			
		||||
     fma fma (.clk, .reset, .FlushM, .StallM, 
 | 
			
		||||
	      .XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE, 
 | 
			
		||||
	      .XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .BiasE, 
 | 
			
		||||
	      .XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
 | 
			
		||||
	      .XSgnM, .YSgnM, .XExpM, .YExpM, .ZExpM, .XManM, .YManM, .ZManM, 
 | 
			
		||||
	      .XNaNM, .YNaNM, .ZNaNM, .XZeroM, .YZeroM, .ZZeroM, 
 | 
			
		||||
	      .XInfM, .YInfM, .ZInfM, .XSNaNM, .YSNaNM, .ZSNaNM,
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user