mirror of
https://github.com/openhwgroup/cvw
synced 2025-02-11 06:05:49 +00:00
commit
77338435ce
@ -2,10 +2,14 @@
|
||||
// spi_apb.sv
|
||||
//
|
||||
// Written: Naiche Whyte-Aguayo nwhyteaguayo@g.hmc.edu 11/16/2022
|
||||
|
||||
//
|
||||
// Purpose: SPI peripheral
|
||||
// See FU540-C000-v1.0 for specifications
|
||||
//
|
||||
// SPI module is written to the specifications described in FU540-C000-v1.0. At the top level, it is consists of synchronous 8 byte transmit and recieve FIFOs connected to shift registers.
|
||||
// The FIFOs are connected to WALLY by an apb control register interface, which includes various control registers for modifying the SPI transmission along with registers for writing
|
||||
// to the transmit FIFO and reading from the receive FIFO. The transmissions themselves are then controlled by a finite state machine. The SPI module uses 4 tristate pins for SPI input/output,
|
||||
// along with a 4 bit Chip Select signal, a clock signal, and an interrupt signal to WALLY.
|
||||
// Current limitations: Flash read sequencer mode not implemented, dual and quad mode not supported
|
||||
//
|
||||
// A component of the Wally configurable RISC-V project.
|
||||
//
|
||||
@ -25,19 +29,6 @@
|
||||
// and limitations under the License.
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Current limitations: Flash read sequencer mode not implemented, dual and quad modes untestable with current test plan.
|
||||
|
||||
// Attempt to move from >= comparisons by initializing in FSM differently
|
||||
// Parameterize SynchFIFO
|
||||
// look at ReadIncrement/WriteIncrement delay necessity
|
||||
|
||||
/*
|
||||
SPI module is written to the specifications described in FU540-C000-v1.0. At the top level, it is consists of synchronous 8 byte transmit and recieve FIFOs connected to shift registers.
|
||||
The FIFOs are connected to WALLY by an apb control register interface, which includes various control registers for modifying the SPI transmission along with registers for writing
|
||||
to the transmit FIFO and reading from the receive FIFO. The transmissions themselves are then controlled by a finite state machine. The SPI module uses 4 tristate pins for SPI input/output,
|
||||
along with a 4 bit Chip Select signal, a clock signal, and an interrupt signal to WALLY.
|
||||
*/
|
||||
|
||||
module spi_apb import cvw::*; #(parameter cvw_t P) (
|
||||
input logic PCLK, PRESETn,
|
||||
input logic PSEL,
|
||||
@ -54,27 +45,27 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
|
||||
output logic SPIIntr
|
||||
);
|
||||
|
||||
//SPI control registers. Refer to SiFive FU540-C000 manual
|
||||
// SPI control registers. Refer to SiFive FU540-C000 manual
|
||||
logic [11:0] SckDiv;
|
||||
logic [1:0] SckMode;
|
||||
logic [1:0] ChipSelectID;
|
||||
logic [3:0] ChipSelectDef;
|
||||
logic [1:0] ChipSelectMode;
|
||||
logic [1:0] SckMode;
|
||||
logic [1:0] ChipSelectID;
|
||||
logic [3:0] ChipSelectDef;
|
||||
logic [1:0] ChipSelectMode;
|
||||
logic [15:0] Delay0, Delay1;
|
||||
logic [4:0] Format;
|
||||
logic [7:0] ReceiveData;
|
||||
logic [2:0] TransmitWatermark, ReceiveWatermark;
|
||||
logic [8:0] TransmitData;
|
||||
logic [1:0] InterruptEnable, InterruptPending;
|
||||
logic [4:0] Format;
|
||||
logic [7:0] ReceiveData;
|
||||
logic [2:0] TransmitWatermark, ReceiveWatermark;
|
||||
logic [8:0] TransmitData;
|
||||
logic [1:0] InterruptEnable, InterruptPending;
|
||||
|
||||
//Bus interface signals
|
||||
// Bus interface signals
|
||||
logic [7:0] Entry;
|
||||
logic Memwrite;
|
||||
logic [31:0] Din, Dout;
|
||||
logic TransmitInactive; //High when there is no transmission, used as hardware interlock signal
|
||||
logic TransmitInactive; // High when there is no transmission, used as hardware interlock signal
|
||||
|
||||
//FIFO FSM signals
|
||||
//Watermark signals - TransmitReadMark = ip[0], ReceiveWriteMark = ip[1]
|
||||
// FIFO FSM signals
|
||||
// Watermark signals - TransmitReadMark = ip[0], ReceiveWriteMark = ip[1]
|
||||
logic TransmitWriteMark, TransmitReadMark, RecieveWriteMark, RecieveReadMark;
|
||||
logic TransmitFIFOWriteFull, TransmitFIFOReadEmpty;
|
||||
logic TransmitFIFOReadIncrement;
|
||||
@ -83,75 +74,68 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
|
||||
logic ReceiveFIFOWriteFull, ReceiveFIFOReadEmpty;
|
||||
logic [7:0] TransmitFIFOReadData, ReceiveFIFOWriteData;
|
||||
logic [2:0] TransmitWriteWatermarkLevel, ReceiveReadWatermarkLevel;
|
||||
logic [7:0] ReceiveShiftRegEndian; //reverses ReceiveShiftReg if Format[2] set (little endian transmission)
|
||||
logic [7:0] ReceiveShiftRegEndian; // Reverses ReceiveShiftReg if Format[2] set (little endian transmission)
|
||||
|
||||
//Transmission signals
|
||||
// Transmission signals
|
||||
logic sck;
|
||||
logic [11:0] DivCounter; //counter for sck
|
||||
logic SCLKenable; //flip flop enable high every sclk edge
|
||||
logic [11:0] DivCounter; // Counter for sck
|
||||
logic SCLKenable; // Flip flop enable high every sclk edge
|
||||
|
||||
//Delay signals
|
||||
logic [8:0] ImplicitDelay1; //Adds implicit delay to cs-sck delay counter based on phase
|
||||
logic [8:0] ImplicitDelay2; //Adds implicit delay to sck-cs delay counter based on phase
|
||||
logic [8:0] CS_SCKCount; //Counter for cs-sck delay
|
||||
logic [8:0] SCK_CSCount; //Counter for sck-cs delay
|
||||
logic [8:0] InterCSCount; //Counter for inter cs delay
|
||||
logic [8:0] InterXFRCount; //Counter for inter xfr delay
|
||||
logic CS_SCKCompare; //Boolean comparison signal, high when CS_SCKCount >= cs-sck delay
|
||||
logic SCK_CSCompare; //Boolean comparison signal, high when SCK_CSCount >= sck-cs delay
|
||||
logic InterCSCompare; //Boolean comparison signal, high when InterCSCount >= inter cs delay
|
||||
logic InterXFRCompare; //Boolean comparison signal, high when InterXFRCount >= inter xfr delay
|
||||
logic ZeroDelayHoldMode; //High when ChipSelectMode is hold and Delay1[15:8] (InterXFR delay) is 0
|
||||
// Delay signals
|
||||
logic [8:0] ImplicitDelay1; // Adds implicit delay to cs-sck delay counter based on phase
|
||||
logic [8:0] ImplicitDelay2; // Adds implicit delay to sck-cs delay counter based on phase
|
||||
logic [8:0] CS_SCKCount; // Counter for cs-sck delay
|
||||
logic [8:0] SCK_CSCount; // Counter for sck-cs delay
|
||||
logic [8:0] InterCSCount; // Counter for inter cs delay
|
||||
logic [8:0] InterXFRCount; // Counter for inter xfr delay
|
||||
logic ZeroDelayHoldMode; // High when ChipSelectMode is hold and Delay1[15:8] (InterXFR delay) is 0
|
||||
|
||||
//Frame counting signals
|
||||
logic [3:0] FrameCount; //Counter for number of frames in transmission
|
||||
logic FrameCompare; //Boolean comparison signal, high when FrameCount = Format[7:4]
|
||||
logic [3:0] ReceivePenultimateFrame; //Frame number - 1
|
||||
logic [3:0] ReceivePenultimateFrameCount; //Counter
|
||||
logic ReceivePenultimateFrameBoolean; //High when penultimate frame in transmission has been reached
|
||||
// Frame counting signals
|
||||
logic [3:0] FrameCount; // Counter for number of frames in transmission
|
||||
logic [3:0] ReceivePenultimateFrameCount; // Counter
|
||||
logic ReceivePenultimateFrame; // High when penultimate frame in transmission has been reached
|
||||
|
||||
//State fsm signals
|
||||
logic Active; //High when state is either Active1 or Active0 (during transmission)
|
||||
logic Active0; //High when state is Active0
|
||||
// State fsm signals
|
||||
logic Active; // High when state is either Active1 or Active0 (during transmission)
|
||||
logic Active0; // High when state is Active0
|
||||
|
||||
//Shift reg signals
|
||||
logic ShiftEdge; //Determines which edge of sck to shift from TransmitShiftReg
|
||||
logic [7:0] TransmitShiftReg; //Transmit shift register
|
||||
logic [7:0] ReceiveShiftReg; //Receive shift register
|
||||
logic SampleEdge; //Determines which edge of sck to sample from ReceiveShiftReg
|
||||
logic [7:0] TransmitDataEndian; //Reverses TransmitData from txFIFO if littleendian, since TransmitReg always shifts MSB
|
||||
logic TransmitShiftRegLoad; //Determines when to load TransmitShiftReg
|
||||
logic ReceiveShiftFull; //High when receive shift register is full
|
||||
logic TransmitShiftEmpty; //High when transmit shift register is empty
|
||||
logic ShiftIn; //Determines whether to shift from SPIIn or SPIOut (if SPI_LOOPBACK_TEST)
|
||||
logic [3:0] LeftShiftAmount; //Determines left shift amount to left-align data when little endian
|
||||
logic [7:0] ASR; //AlignedReceiveShiftReg
|
||||
// Shift reg signals
|
||||
logic ShiftEdge; // Determines which edge of sck to shift from TransmitShiftReg
|
||||
logic [7:0] TransmitShiftReg; // Transmit shift register
|
||||
logic [7:0] ReceiveShiftReg; // Receive shift register
|
||||
logic SampleEdge; // Determines which edge of sck to sample from ReceiveShiftReg
|
||||
logic [7:0] TransmitDataEndian; // Reverses TransmitData from txFIFO if littleendian, since TransmitReg always shifts MSB
|
||||
logic TransmitShiftRegLoad; // Determines when to load TransmitShiftReg
|
||||
logic ReceiveShiftFull; // High when receive shift register is full
|
||||
logic TransmitShiftEmpty; // High when transmit shift register is empty
|
||||
logic ShiftIn; // Determines whether to shift from SPIIn or SPIOut (if SPI_LOOPBACK_TEST)
|
||||
logic [3:0] LeftShiftAmount; // Determines left shift amount to left-align data when little endian
|
||||
logic [7:0] ASR; // AlignedReceiveShiftReg
|
||||
|
||||
//CS signals
|
||||
logic [3:0] ChipSelectAuto; //Assigns ChipSelect value to selected CS signal based on CS ID
|
||||
logic [3:0] ChipSelectInternal; //Defines what each ChipSelect signal should be based on transmission status and ChipSelectDef
|
||||
logic DelayMode; //Determines where to place implicit half cycle delay based on sck phase for CS assertion
|
||||
// CS signals
|
||||
logic [3:0] ChipSelectAuto; // Assigns ChipSelect value to selected CS signal based on CS ID
|
||||
logic [3:0] ChipSelectInternal; // Defines what each ChipSelect signal should be based on transmission status and ChipSelectDef
|
||||
logic DelayMode; // Determines where to place implicit half cycle delay based on sck phase for CS assertion
|
||||
|
||||
//Miscellaneous signals delayed/early by 1 PCLK cycle
|
||||
logic ReceiveShiftFullDelay; //Delays ReceiveShiftFull signal by 1 PCLK cycle
|
||||
logic TransmitFIFOWriteIncrementDelay; //TransmitFIFOWriteIncrement delayed by 1 PCLK cycle
|
||||
logic ReceiveShiftFullDelayPCLK; //ReceiveShiftFull delayed by 1 PCLK cycle
|
||||
// Miscellaneous signals delayed/early by 1 PCLK cycle
|
||||
logic ReceiveShiftFullDelay; // Delays ReceiveShiftFull signal by 1 PCLK cycle
|
||||
logic ReceiveShiftFullDelayPCLK; // ReceiveShiftFull delayed by 1 PCLK cycle
|
||||
logic TransmitFIFOReadEmptyDelay;
|
||||
logic SCLKenableEarly; //SCLKenable 1 PCLK cycle early, needed for on time register changes when ChipSelectMode is hold and Delay1[15:8] (InterXFR delay) is 0
|
||||
logic SCLKenableEarly; // SCLKenable 1 PCLK cycle early, needed for on time register changes when ChipSelectMode is hold and Delay1[15:8] (InterXFR delay) is 0
|
||||
|
||||
//APB access
|
||||
assign Entry = {PADDR[7:2],2'b00}; // 32-bit word-aligned accesses
|
||||
assign Memwrite = PWRITE & PENABLE & PSEL; // only write in access phase
|
||||
assign PREADY = TransmitInactive; // tie PREADY to transmission for hardware interlock
|
||||
// APB access
|
||||
assign Entry = {PADDR[7:2],2'b00}; // 32-bit word-aligned accesses
|
||||
assign Memwrite = PWRITE & PENABLE & PSEL; // Only write in access phase
|
||||
assign PREADY = TransmitInactive; // Tie PREADY to transmission for hardware interlock
|
||||
|
||||
//Account for subword read/write circuitry
|
||||
// Account for subword read/write circuitry
|
||||
// -- Note SPI registers are 32 bits no matter what; access them with LW SW.
|
||||
|
||||
assign Din = PWDATA[31:0];
|
||||
if (P.XLEN == 64) assign PRDATA = {Dout, Dout};
|
||||
else assign PRDATA = Dout;
|
||||
|
||||
//Register access
|
||||
// Register access
|
||||
always_ff@(posedge PCLK, negedge PRESETn)
|
||||
if (~PRESETn) begin
|
||||
SckDiv <= #1 12'd3;
|
||||
@ -167,13 +151,12 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
|
||||
ReceiveWatermark <= #1 3'b0;
|
||||
InterruptEnable <= #1 2'b0;
|
||||
InterruptPending <= #1 2'b0;
|
||||
end else begin //writes
|
||||
//According to FU540 spec: Once interrupt is pending, it will remain set until number
|
||||
//of entries in tx/rx fifo is strictly more/less than tx/rxmark
|
||||
end else begin // writes
|
||||
|
||||
|
||||
/* verilator lint_off CASEINCOMPLETE */
|
||||
if (Memwrite & TransmitInactive)
|
||||
case(Entry) //flop to sample inputs
|
||||
case(Entry) // flop to sample inputs
|
||||
8'h00: SckDiv <= Din[11:0];
|
||||
8'h04: SckMode <= Din[1:0];
|
||||
8'h10: ChipSelectID <= Din[1:0];
|
||||
@ -188,18 +171,21 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
|
||||
8'h70: InterruptEnable <= Din[1:0];
|
||||
endcase
|
||||
/* verilator lint_off CASEINCOMPLETE */
|
||||
//interrupt clearance
|
||||
|
||||
// According to FU540 spec: Once interrupt is pending, it will remain set until number
|
||||
// of entries in tx/rx fifo is strictly more/less than tx/rxmark
|
||||
InterruptPending[0] <= TransmitReadMark;
|
||||
InterruptPending[1] <= RecieveWriteMark;
|
||||
case(Entry) // flop to sample inputs
|
||||
|
||||
case(Entry) // Flop to sample inputs
|
||||
8'h00: Dout <= #1 {20'b0, SckDiv};
|
||||
8'h04: Dout <= #1 {30'b0, SckMode};
|
||||
8'h10: Dout <= #1 {30'b0, ChipSelectID};
|
||||
8'h14: Dout <= #1 {28'b0, ChipSelectDef};
|
||||
8'h18: Dout <= #1 {30'b0, ChipSelectMode};
|
||||
8'h28: Dout <= {8'b0, Delay0[15:8], 8'b0, Delay0[7:0]};
|
||||
8'h2C: Dout <= {8'b0, Delay1[15:8], 8'b0, Delay1[7:0]};
|
||||
8'h40: Dout <= {12'b0, Format[4:1], 13'b0, Format[0], 2'b0};
|
||||
8'h28: Dout <= #1 {8'b0, Delay0[15:8], 8'b0, Delay0[7:0]};
|
||||
8'h2C: Dout <= #1 {8'b0, Delay1[15:8], 8'b0, Delay1[7:0]};
|
||||
8'h40: Dout <= #1 {12'b0, Format[4:1], 13'b0, Format[0], 2'b0};
|
||||
8'h48: Dout <= #1 {23'b0, TransmitFIFOWriteFull, 8'b0};
|
||||
8'h4C: Dout <= #1 {23'b0, ReceiveFIFOReadEmpty, ReceiveData[7:0]};
|
||||
8'h50: Dout <= #1 {29'b0, TransmitWatermark};
|
||||
@ -210,8 +196,9 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
|
||||
endcase
|
||||
end
|
||||
|
||||
//SPI enable generation, where SCLK = PCLK/(2*(SckDiv + 1))
|
||||
//Generates a high signal at the rising and falling edge of SCLK by counting from 0 to SckDiv
|
||||
// SPI enable generation, where SCLK = PCLK/(2*(SckDiv + 1))
|
||||
// Asserts SCLKenable at the rising and falling edge of SCLK by counting from 0 to SckDiv
|
||||
// Active at 2x SCLK frequency to account for implicit half cycle delays and actions on both clock edges depending on phase
|
||||
assign SCLKenable = (DivCounter == SckDiv);
|
||||
assign SCLKenableEarly = ((DivCounter + 12'b1) == SckDiv);
|
||||
always_ff @(posedge PCLK, negedge PRESETn)
|
||||
@ -219,44 +206,38 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
|
||||
else if (SCLKenable) DivCounter <= 0;
|
||||
else DivCounter <= DivCounter + 12'b1;
|
||||
|
||||
//Boolean logic that tracks frame progression
|
||||
assign FrameCompare = (FrameCount < Format[4:1]);
|
||||
assign ReceivePenultimateFrameBoolean = ((FrameCount + 4'b0001) == Format[4:1]);
|
||||
// Asserts when transmission is one frame before complete
|
||||
assign ReceivePenultimateFrame = ((FrameCount + 4'b0001) == Format[4:1]);
|
||||
|
||||
//Computing delays
|
||||
// Computing delays
|
||||
// When sckmode.pha = 0, an extra half-period delay is implicit in the cs-sck delay, and vice-versa for sck-cs
|
||||
assign ImplicitDelay1 = SckMode[0] ? 9'b0 : 9'b1;
|
||||
assign ImplicitDelay2 = SckMode[0] ? 9'b1 : 9'b0;
|
||||
|
||||
assign CS_SCKCompare = CS_SCKCount >= (({Delay0[7:0], 1'b0}) + ImplicitDelay1);
|
||||
assign SCK_CSCompare = SCK_CSCount >= (({Delay0[15:8], 1'b0}) + ImplicitDelay2);
|
||||
assign InterCSCompare = (InterCSCount >= ({Delay1[7:0],1'b0}));
|
||||
assign InterXFRCompare = (InterXFRCount >= ({Delay1[15:8], 1'b0}));
|
||||
// Calculate when tx/rx shift registers are full/empty
|
||||
TransmitShiftFSM TransmitShiftFSM(PCLK, PRESETn, TransmitFIFOReadEmpty, ReceivePenultimateFrame, Active0, TransmitShiftEmpty);
|
||||
ReceiveShiftFSM ReceiveShiftFSM(PCLK, PRESETn, SCLKenable, ReceivePenultimateFrame, SampleEdge, SckMode[0], ReceiveShiftFull);
|
||||
|
||||
//Calculate when tx/rx shift registers are full/empty
|
||||
TransmitShiftFSM TransmitShiftFSM_1 (PCLK, PRESETn, TransmitFIFOReadEmpty, ReceivePenultimateFrameBoolean, Active0, TransmitShiftEmpty);
|
||||
ReceiveShiftFSM ReceiveShiftFSM_1 (PCLK, PRESETn, SCLKenable, ReceivePenultimateFrameBoolean, SampleEdge, SckMode[0], ReceiveShiftFull);
|
||||
|
||||
//Calculate tx/rx fifo write and recieve increment signals
|
||||
assign TransmitFIFOWriteIncrement = (Memwrite & (Entry == 8'h48) & ~TransmitFIFOWriteFull & TransmitInactive);
|
||||
// Calculate tx/rx fifo write and recieve increment signals
|
||||
|
||||
always_ff @(posedge PCLK, negedge PRESETn)
|
||||
if (~PRESETn) TransmitFIFOWriteIncrementDelay <= 0;
|
||||
else TransmitFIFOWriteIncrementDelay <= TransmitFIFOWriteIncrement;
|
||||
if (~PRESETn) TransmitFIFOWriteIncrement <= 0;
|
||||
else TransmitFIFOWriteIncrement <= (Memwrite & (Entry == 8'h48) & ~TransmitFIFOWriteFull & TransmitInactive);
|
||||
|
||||
always_ff @(posedge PCLK, negedge PRESETn)
|
||||
if (~PRESETn) ReceiveFIFOReadIncrement <= 0;
|
||||
else ReceiveFIFOReadIncrement <= ((Entry == 8'h4C) & ~ReceiveFIFOReadEmpty & PSEL & ~ReceiveFIFOReadIncrement);
|
||||
|
||||
//Tx/Rx FIFOs
|
||||
SynchFIFO #(3,8) txFIFO(PCLK, 1'b1, SCLKenable, PRESETn, TransmitFIFOWriteIncrementDelay, TransmitShiftEmpty, TransmitData[7:0], TransmitWriteWatermarkLevel, TransmitWatermark[2:0], TransmitFIFOReadData[7:0], TransmitFIFOWriteFull, TransmitFIFOReadEmpty, TransmitWriteMark, TransmitReadMark);
|
||||
SynchFIFO #(3,8) rxFIFO(PCLK, SCLKenable, 1'b1, PRESETn, ReceiveShiftFullDelay, ReceiveFIFOReadIncrement, ReceiveShiftRegEndian, ReceiveWatermark[2:0], ReceiveReadWatermarkLevel, ReceiveData[7:0], ReceiveFIFOWriteFull, ReceiveFIFOReadEmpty, RecieveWriteMark, RecieveReadMark);
|
||||
// Tx/Rx FIFOs
|
||||
SynchFIFO #(3,8) txFIFO(PCLK, 1'b1, SCLKenable, PRESETn, TransmitFIFOWriteIncrement, TransmitShiftEmpty, TransmitData[7:0], TransmitWriteWatermarkLevel, TransmitWatermark[2:0],
|
||||
TransmitFIFOReadData[7:0], TransmitFIFOWriteFull, TransmitFIFOReadEmpty, TransmitWriteMark, TransmitReadMark);
|
||||
SynchFIFO #(3,8) rxFIFO(PCLK, SCLKenable, 1'b1, PRESETn, ReceiveShiftFullDelay, ReceiveFIFOReadIncrement, ReceiveShiftRegEndian, ReceiveWatermark[2:0], ReceiveReadWatermarkLevel,
|
||||
ReceiveData[7:0], ReceiveFIFOWriteFull, ReceiveFIFOReadEmpty, RecieveWriteMark, RecieveReadMark);
|
||||
|
||||
always_ff @(posedge PCLK, negedge PRESETn)
|
||||
if (~PRESETn) TransmitFIFOReadEmptyDelay <= 1;
|
||||
else if (SCLKenable) TransmitFIFOReadEmptyDelay <= TransmitFIFOReadEmpty;
|
||||
|
||||
|
||||
always_ff @(posedge PCLK, negedge PRESETn)
|
||||
if (~PRESETn) ReceiveShiftFullDelay <= 0;
|
||||
else if (SCLKenable) ReceiveShiftFullDelay <= ReceiveShiftFull;
|
||||
@ -266,16 +247,16 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
|
||||
|
||||
assign TransmitShiftRegLoad = ~TransmitShiftEmpty & ~Active | (((ChipSelectMode == 2'b10) & ~|(Delay1[15:8])) & ((ReceiveShiftFullDelay | ReceiveShiftFull) & ~SampleEdge & ~TransmitFIFOReadEmpty));
|
||||
|
||||
//Main FSM which controls SPI transmission
|
||||
// Main FSM which controls SPI transmission
|
||||
typedef enum logic [2:0] {CS_INACTIVE, DELAY_0, ACTIVE_0, ACTIVE_1, DELAY_1,INTER_CS, INTER_XFR} statetype;
|
||||
statetype state;
|
||||
|
||||
always_ff @(posedge PCLK, negedge PRESETn)
|
||||
if (~PRESETn) begin state <= CS_INACTIVE;
|
||||
if (~PRESETn) begin
|
||||
state <= CS_INACTIVE;
|
||||
FrameCount <= 4'b0;
|
||||
|
||||
/* verilator lint_off CASEINCOMPLETE */
|
||||
end else if (SCLKenable) begin
|
||||
/* verilator lint_off CASEINCOMPLETE */
|
||||
case (state)
|
||||
CS_INACTIVE: begin
|
||||
CS_SCKCount <= 9'b1;
|
||||
@ -288,7 +269,7 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
|
||||
end
|
||||
DELAY_0: begin
|
||||
CS_SCKCount <= CS_SCKCount + 9'b1;
|
||||
if (CS_SCKCompare) state <= ACTIVE_0;
|
||||
if (CS_SCKCount >= (({Delay0[7:0], 1'b0}) + ImplicitDelay1)) state <= ACTIVE_0;
|
||||
end
|
||||
ACTIVE_0: begin
|
||||
FrameCount <= FrameCount + 4'b1;
|
||||
@ -296,7 +277,7 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
|
||||
end
|
||||
ACTIVE_1: begin
|
||||
InterXFRCount <= 9'b1;
|
||||
if (FrameCompare) state <= ACTIVE_0;
|
||||
if (FrameCount < Format[4:1]) state <= ACTIVE_0;
|
||||
else if ((ChipSelectMode[1:0] == 2'b10) & ~|(Delay1[15:8]) & (~TransmitFIFOReadEmpty)) begin
|
||||
state <= ACTIVE_0;
|
||||
CS_SCKCount <= 9'b1;
|
||||
@ -310,11 +291,11 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
|
||||
end
|
||||
DELAY_1: begin
|
||||
SCK_CSCount <= SCK_CSCount + 9'b1;
|
||||
if (SCK_CSCompare) state <= INTER_CS;
|
||||
if (SCK_CSCount >= (({Delay0[15:8], 1'b0}) + ImplicitDelay2)) state <= INTER_CS;
|
||||
end
|
||||
INTER_CS: begin
|
||||
InterCSCount <= InterCSCount + 9'b1;
|
||||
if (InterCSCompare ) state <= CS_INACTIVE;
|
||||
if (InterCSCount >= ({Delay1[7:0],1'b0})) state <= CS_INACTIVE;
|
||||
end
|
||||
INTER_XFR: begin
|
||||
CS_SCKCount <= 9'b1;
|
||||
@ -322,13 +303,14 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
|
||||
FrameCount <= 4'b0;
|
||||
InterCSCount <= 9'b10;
|
||||
InterXFRCount <= InterXFRCount + 9'b1;
|
||||
if (InterXFRCompare & ~TransmitFIFOReadEmptyDelay) state <= ACTIVE_0;
|
||||
if ((InterXFRCount >= ({Delay1[15:8], 1'b0})) & ~TransmitFIFOReadEmptyDelay) state <= ACTIVE_0;
|
||||
else if (~|ChipSelectMode[1:0]) state <= CS_INACTIVE;
|
||||
end
|
||||
endcase
|
||||
/* verilator lint_off CASEINCOMPLETE */
|
||||
end
|
||||
|
||||
/* verilator lint_off CASEINCOMPLETE */
|
||||
|
||||
|
||||
assign DelayMode = SckMode[0] ? (state == DELAY_1) : (state == ACTIVE_1 & ReceiveShiftFull);
|
||||
assign ChipSelectInternal = (state == CS_INACTIVE | state == INTER_CS | DelayMode & ~|(Delay0[15:8])) ? ChipSelectDef : ~ChipSelectDef;
|
||||
@ -339,7 +321,7 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
|
||||
assign TransmitInactive = ((state == INTER_CS) | (state == CS_INACTIVE) | (state == INTER_XFR) | (ReceiveShiftFullDelayPCLK & ZeroDelayHoldMode));
|
||||
assign Active0 = (state == ACTIVE_0);
|
||||
|
||||
//Signal tracks which edge of sck to shift data
|
||||
// Signal tracks which edge of sck to shift data
|
||||
always_comb
|
||||
case(SckMode[1:0])
|
||||
2'b00: ShiftEdge = ~sck & SCLKenable;
|
||||
@ -349,36 +331,36 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
|
||||
default: ShiftEdge = sck & SCLKenable;
|
||||
endcase
|
||||
|
||||
//Transmit shift register
|
||||
assign TransmitDataEndian = Format[0] ? {TransmitFIFOReadData[0], TransmitFIFOReadData[1], TransmitFIFOReadData[2], TransmitFIFOReadData[3], TransmitFIFOReadData[4], TransmitFIFOReadData[5], TransmitFIFOReadData[6], TransmitFIFOReadData[7]} : TransmitFIFOReadData[7:0];
|
||||
// Transmit shift register
|
||||
assign TransmitDataEndian = Format[0] ? {TransmitFIFOReadData[0], TransmitFIFOReadData[1], TransmitFIFOReadData[2], TransmitFIFOReadData[3], TransmitFIFOReadData[4], TransmitFIFOReadData[5], TransmitFIFOReadData[6], TransmitFIFOReadData[7]} : TransmitFIFOReadData[7:0];
|
||||
always_ff @(posedge PCLK, negedge PRESETn)
|
||||
if(~PRESETn) TransmitShiftReg <= 8'b0;
|
||||
else if (TransmitShiftRegLoad) TransmitShiftReg <= TransmitDataEndian;
|
||||
else if (ShiftEdge & Active) TransmitShiftReg <= {TransmitShiftReg[6:0], 1'b0};
|
||||
else if (ShiftEdge & Active) TransmitShiftReg <= {TransmitShiftReg[6:0], 1'b0};
|
||||
|
||||
assign SPIOut = TransmitShiftReg[7];
|
||||
|
||||
//If in loopback mode, receive shift register is connected directly to module's output pins. Else, connected to SPIIn
|
||||
//There are no setup/hold time issues because transmit shift register and receive shift register always shift/sample on opposite edges
|
||||
// If in loopback mode, receive shift register is connected directly to module's output pins. Else, connected to SPIIn
|
||||
// There are no setup/hold time issues because transmit shift register and receive shift register always shift/sample on opposite edges
|
||||
assign ShiftIn = P.SPI_LOOPBACK_TEST ? SPIOut : SPIIn;
|
||||
|
||||
//Receive shift register
|
||||
// Receive shift register
|
||||
always_ff @(posedge PCLK, negedge PRESETn)
|
||||
if(~PRESETn) ReceiveShiftReg <= 8'b0;
|
||||
else if (SampleEdge & SCLKenable) begin
|
||||
if (~Active) ReceiveShiftReg <= 8'b0;
|
||||
else ReceiveShiftReg <= {ReceiveShiftReg[6:0], ShiftIn};
|
||||
if (~Active) ReceiveShiftReg <= 8'b0;
|
||||
else ReceiveShiftReg <= {ReceiveShiftReg[6:0], ShiftIn};
|
||||
end
|
||||
|
||||
//Aligns received data and reverses if little-endian
|
||||
// Aligns received data and reverses if little-endian
|
||||
assign LeftShiftAmount = 4'h8 - Format[4:1];
|
||||
assign ASR = ReceiveShiftReg << LeftShiftAmount[2:0];
|
||||
assign ReceiveShiftRegEndian = Format[0] ? {ASR[0], ASR[1], ASR[2], ASR[3], ASR[4], ASR[5], ASR[6], ASR[7]} : ASR[7:0];
|
||||
|
||||
//Interrupt logic: raise interrupt if any enabled interrupts are pending
|
||||
// Interrupt logic: raise interrupt if any enabled interrupts are pending
|
||||
assign SPIIntr = |(InterruptPending & InterruptEnable);
|
||||
|
||||
//Chip select logic
|
||||
// Chip select logic
|
||||
always_comb
|
||||
case(ChipSelectID[1:0])
|
||||
2'b00: ChipSelectAuto = {ChipSelectDef[3], ChipSelectDef[2], ChipSelectDef[1], ChipSelectInternal[0]};
|
||||
@ -390,14 +372,14 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
|
||||
assign SPICS = ChipSelectMode[0] ? ChipSelectDef : ChipSelectAuto;
|
||||
endmodule
|
||||
|
||||
module SynchFIFO #(parameter M =3 , N= 8)(
|
||||
input logic PCLK, wen, ren, PRESETn,
|
||||
input logic winc,rinc,
|
||||
input logic [N-1:0] wdata,
|
||||
input logic [M-1:0] wwatermarklevel, rwatermarklevel,
|
||||
module SynchFIFO #(parameter M=3, N=8)( // 2^M entries of N bits each
|
||||
input logic PCLK, wen, ren, PRESETn,
|
||||
input logic winc, rinc,
|
||||
input logic [N-1:0] wdata,
|
||||
input logic [M-1:0] wwatermarklevel, rwatermarklevel,
|
||||
output logic [N-1:0] rdata,
|
||||
output logic wfull, rempty,
|
||||
output logic wwatermark, rwatermark);
|
||||
output logic wfull, rempty,
|
||||
output logic wwatermark, rwatermark);
|
||||
|
||||
/* Pointer FIFO using design elements from "Simulation and Synthesis Techniques
|
||||
for Asynchronous FIFO Design" by Clifford E. Cummings. Namely, M bit read and write pointers
|
||||
@ -409,8 +391,6 @@ module SynchFIFO #(parameter M =3 , N= 8)(
|
||||
logic [N-1:0] mem[2**M];
|
||||
logic [M:0] rptr, wptr;
|
||||
logic [M:0] rptrnext, wptrnext;
|
||||
logic rempty_val;
|
||||
logic wfull_val;
|
||||
logic [M-1:0] raddr;
|
||||
logic [M-1:0] waddr;
|
||||
|
||||
@ -428,53 +408,43 @@ module SynchFIFO #(parameter M =3 , N= 8)(
|
||||
end
|
||||
else begin
|
||||
if (wen) begin
|
||||
wfull <= wfull_val;
|
||||
wfull <= ({~wptrnext[M], wptrnext[M-1:0]} == rptr);
|
||||
wptr <= wptrnext;
|
||||
end
|
||||
if (ren) begin
|
||||
rptr <= rptrnext;
|
||||
rempty <= rempty_val;
|
||||
rempty <= (wptr == rptrnext);
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
assign raddr = rptr[M-1:0];
|
||||
assign rptrnext = rptr + {3'b0, (rinc & ~rempty)};
|
||||
assign rempty_val = (wptr == rptrnext);
|
||||
assign rptrnext = rptr + {{(M){1'b0}}, (rinc & ~rempty)};
|
||||
assign rwatermark = ((waddr - raddr) < rwatermarklevel) & ~wfull;
|
||||
assign waddr = wptr[M-1:0];
|
||||
assign wwatermark = ((waddr - raddr) > wwatermarklevel) | wfull;
|
||||
assign wptrnext = wptr + {3'b0, (winc & ~wfull)};
|
||||
assign wfull_val = ({~wptrnext[M], wptrnext[M-1:0]} == rptr);
|
||||
assign wptrnext = wptr + {{(M){1'b0}}, (winc & ~wfull)};
|
||||
endmodule
|
||||
|
||||
module TransmitShiftFSM(
|
||||
input logic PCLK, PRESETn,
|
||||
input logic TransmitFIFOReadEmpty, ReceivePenultimateFrameBoolean, Active0,
|
||||
input logic PCLK, PRESETn,
|
||||
input logic TransmitFIFOReadEmpty, ReceivePenultimateFrame, Active0,
|
||||
output logic TransmitShiftEmpty);
|
||||
|
||||
typedef enum logic [1:0] {TransmitShiftEmptyState, TransmitShiftHoldState, TransmitShiftNotEmptyState} statetype;
|
||||
statetype TransmitState, TransmitNextState;
|
||||
always_ff @(posedge PCLK, negedge PRESETn)
|
||||
if (~PRESETn) TransmitState <= TransmitShiftEmptyState;
|
||||
else TransmitState <= TransmitNextState;
|
||||
if (~PRESETn) TransmitShiftEmpty <= 1;
|
||||
else if (TransmitShiftEmpty) begin
|
||||
if (TransmitFIFOReadEmpty | (~TransmitFIFOReadEmpty & (ReceivePenultimateFrame & Active0))) TransmitShiftEmpty <= 1;
|
||||
else if (~TransmitFIFOReadEmpty) TransmitShiftEmpty <= 0;
|
||||
end else begin
|
||||
if (ReceivePenultimateFrame & Active0) TransmitShiftEmpty <= 1;
|
||||
else TransmitShiftEmpty <= 0;
|
||||
end
|
||||
|
||||
always_comb
|
||||
case(TransmitState)
|
||||
TransmitShiftEmptyState: begin
|
||||
if (TransmitFIFOReadEmpty | (~TransmitFIFOReadEmpty & (ReceivePenultimateFrameBoolean & Active0))) TransmitNextState = TransmitShiftEmptyState;
|
||||
else if (~TransmitFIFOReadEmpty) TransmitNextState = TransmitShiftNotEmptyState;
|
||||
end
|
||||
TransmitShiftNotEmptyState: begin
|
||||
if (ReceivePenultimateFrameBoolean & Active0) TransmitNextState = TransmitShiftEmptyState;
|
||||
else TransmitNextState = TransmitShiftNotEmptyState;
|
||||
end
|
||||
endcase
|
||||
assign TransmitShiftEmpty = (TransmitNextState == TransmitShiftEmptyState);
|
||||
endmodule
|
||||
|
||||
module ReceiveShiftFSM(
|
||||
input logic PCLK, PRESETn, SCLKenable,
|
||||
input logic ReceivePenultimateFrameBoolean, SampleEdge, SckMode,
|
||||
input logic PCLK, PRESETn, SCLKenable,
|
||||
input logic ReceivePenultimateFrame, SampleEdge, SckMode,
|
||||
output logic ReceiveShiftFull
|
||||
);
|
||||
typedef enum logic [1:0] {ReceiveShiftFullState, ReceiveShiftNotFullState, ReceiveShiftDelayState} statetype;
|
||||
@ -484,17 +454,12 @@ module ReceiveShiftFSM(
|
||||
else if (SCLKenable) begin
|
||||
case (ReceiveState)
|
||||
ReceiveShiftFullState: ReceiveState <= ReceiveShiftNotFullState;
|
||||
ReceiveShiftNotFullState: if (ReceivePenultimateFrameBoolean & (SampleEdge)) ReceiveState <= ReceiveShiftDelayState;
|
||||
ReceiveShiftNotFullState: if (ReceivePenultimateFrame & (SampleEdge)) ReceiveState <= ReceiveShiftDelayState;
|
||||
else ReceiveState <= ReceiveShiftNotFullState;
|
||||
ReceiveShiftDelayState: ReceiveState <= ReceiveShiftFullState;
|
||||
ReceiveShiftDelayState: ReceiveState <= ReceiveShiftFullState;
|
||||
endcase
|
||||
end
|
||||
|
||||
assign ReceiveShiftFull = SckMode ? (ReceiveState == ReceiveShiftFullState) : (ReceiveState == ReceiveShiftDelayState);
|
||||
assign ReceiveShiftFull = SckMode ? (ReceiveState == ReceiveShiftFullState) : (ReceiveState == ReceiveShiftDelayState);
|
||||
endmodule
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user