mirror of
https://github.com/openhwgroup/cvw
synced 2025-02-11 06:05:49 +00:00
FMA cleanup
This commit is contained in:
parent
b5d6c4fb46
commit
7607adc951
@ -142,7 +142,7 @@ assign ansnan = FmtE ? &ans[`FLEN-2:`NF] && |ans[`NF-1:0] : &ans[30:23] && |ans[
|
|||||||
.BiasE, .XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
|
.BiasE, .XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
|
||||||
.FOpCtrlE, .FmtE, .SumE, .NegSumE, .InvZE, .NormCntE, .ZSgnEffE, .PSgnE,
|
.FOpCtrlE, .FmtE, .SumE, .NegSumE, .InvZE, .NormCntE, .ZSgnEffE, .PSgnE,
|
||||||
.ProdExpE, .AddendStickyE, .KillProdE);
|
.ProdExpE, .AddendStickyE, .KillProdE);
|
||||||
fma2 UUT2(.XSgnM(XSgnE), .YSgnM(YSgnE), .ZSgnM(ZSgnE), .XExpM(XExpE), .YExpM(YExpE), .ZExpM(ZExpE), .XManM({XAssumed1E,XFracE}), .YManM({YAssumed1E,YFracE}), .ZManM({ZAssumed1E,ZFracE}), .XNaNM(XNaNE), .YNaNM(YNaNE), .ZNaNM(ZNaNE), .XZeroM(XZeroE), .YZeroM(YZeroE), .ZZeroM(ZZeroE), .XInfM(XInfE), .YInfM(YInfE), .ZInfM(ZInfE), .XSNaNM(XSNaNE), .YSNaNM(YSNaNE), .ZSNaNM(ZSNaNE),
|
fma2 UUT2(.XSgnM(XSgnE), .YSgnM(YSgnE), .XExpM(XExpE), .YExpM(YExpE), .ZExpM(ZExpE), .XManM({XAssumed1E,XFracE}), .YManM({YAssumed1E,YFracE}), .ZManM({ZAssumed1E,ZFracE}), .XNaNM(XNaNE), .YNaNM(YNaNE), .ZNaNM(ZNaNE), .XZeroM(XZeroE), .YZeroM(YZeroE), .ZZeroM(ZZeroE), .XInfM(XInfE), .YInfM(YInfE), .ZInfM(ZInfE), .XSNaNM(XSNaNE), .YSNaNM(YSNaNE), .ZSNaNM(ZSNaNE),
|
||||||
// .FSrcXE, .FSrcYE, .FSrcZE, .FSrcXM, .FSrcYM, .FSrcZM,
|
// .FSrcXE, .FSrcYE, .FSrcZE, .FSrcXM, .FSrcYM, .FSrcZM,
|
||||||
.FOpCtrlM(FOpCtrlE[2:0]), .KillProdM(KillProdE), .AddendStickyM(AddendStickyE), .ProdExpM(ProdExpE), .SumM(SumE), .NegSumM(NegSumE), .InvZM(InvZE), .NormCntM(NormCntE), .ZSgnEffM(ZSgnEffE), .PSgnM(PSgnE),
|
.FOpCtrlM(FOpCtrlE[2:0]), .KillProdM(KillProdE), .AddendStickyM(AddendStickyE), .ProdExpM(ProdExpE), .SumM(SumE), .NegSumM(NegSumE), .InvZM(InvZE), .NormCntM(NormCntE), .ZSgnEffM(ZSgnEffE), .PSgnM(PSgnE),
|
||||||
.FmtM(FmtE), .FrmM(FrmE), .FMAFlgM, .FMAResM);
|
.FmtM(FmtE), .FrmM(FrmE), .FMAFlgM, .FMAResM);
|
||||||
|
@ -31,7 +31,7 @@ module fma(
|
|||||||
input logic FlushM, // flush the memory stage
|
input logic FlushM, // flush the memory stage
|
||||||
input logic StallM, // stall memory stage
|
input logic StallM, // stall memory stage
|
||||||
input logic FmtE, FmtM, // precision 1 = double 0 = single
|
input logic FmtE, FmtM, // precision 1 = double 0 = single
|
||||||
input logic [2:0] FOpCtrlM, FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
|
input logic [2:0] FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
|
||||||
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
|
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
|
||||||
input logic XSgnE, YSgnE, ZSgnE, // input signs - execute stage
|
input logic XSgnE, YSgnE, ZSgnE, // input signs - execute stage
|
||||||
input logic [`NE-1:0] XExpE, YExpE, ZExpE, // input exponents - execute stage
|
input logic [`NE-1:0] XExpE, YExpE, ZExpE, // input exponents - execute stage
|
||||||
@ -45,21 +45,20 @@ module fma(
|
|||||||
input logic XSNaNM, YSNaNM, ZSNaNM, // is signaling NaN
|
input logic XSNaNM, YSNaNM, ZSNaNM, // is signaling NaN
|
||||||
input logic XZeroM, YZeroM, ZZeroM, // is zero - memory stage
|
input logic XZeroM, YZeroM, ZZeroM, // is zero - memory stage
|
||||||
input logic XInfM, YInfM, ZInfM, // is infinity
|
input logic XInfM, YInfM, ZInfM, // is infinity
|
||||||
input logic [10:0] BiasE, // bias - depends on precison (max exponent/2)
|
input logic [10:0] BiasE, // bias (max exponent/2) ***parameterize in unpacking unit
|
||||||
output logic [`FLEN-1:0] FMAResM, // FMA result
|
output logic [`FLEN-1:0] FMAResM, // FMA result
|
||||||
output logic [4:0] FMAFlgM); // FMA flags
|
output logic [4:0] FMAFlgM); // FMA flags
|
||||||
|
|
||||||
//fma/mult
|
//fma/mult/add
|
||||||
// fmadd = ?000
|
// fmadd = 000
|
||||||
// fmsub = ?001
|
// fmsub = 001
|
||||||
// fnmsub = ?010 -(a*b)+c
|
// fnmsub = 010 -(a*b)+c
|
||||||
// fnmadd = ?011 -(a*b)-c
|
// fnmadd = 011 -(a*b)-c
|
||||||
// fmul = ?100
|
// fmul = 100
|
||||||
// {?, is mul, negate product, negate addend}
|
// fadd = 110
|
||||||
|
// fsub = 111
|
||||||
|
|
||||||
// signals transfered between pipeline stages
|
// signals transfered between pipeline stages
|
||||||
// logic [2*`NF+1:0] ProdManE, ProdManM;
|
|
||||||
// logic [3*`NF+5:0] AlignedAddendE, AlignedAddendM;
|
|
||||||
logic [3*`NF+5:0] SumE, SumM;
|
logic [3*`NF+5:0] SumE, SumM;
|
||||||
logic [`NE+1:0] ProdExpE, ProdExpM;
|
logic [`NE+1:0] ProdExpE, ProdExpM;
|
||||||
logic AddendStickyE, AddendStickyM;
|
logic AddendStickyE, AddendStickyM;
|
||||||
@ -76,7 +75,6 @@ module fma(
|
|||||||
.ProdExpE, .AddendStickyE, .KillProdE);
|
.ProdExpE, .AddendStickyE, .KillProdE);
|
||||||
|
|
||||||
// E/M pipeline registers
|
// E/M pipeline registers
|
||||||
// flopenrc #(106) EMRegFma1(clk, reset, FlushM, ~StallM, ProdManE, ProdManM);
|
|
||||||
flopenrc #(3*`NF+6) EMRegFma2(clk, reset, FlushM, ~StallM, SumE, SumM);
|
flopenrc #(3*`NF+6) EMRegFma2(clk, reset, FlushM, ~StallM, SumE, SumM);
|
||||||
flopenrc #(13) EMRegFma3(clk, reset, FlushM, ~StallM, ProdExpE, ProdExpM);
|
flopenrc #(13) EMRegFma3(clk, reset, FlushM, ~StallM, ProdExpE, ProdExpM);
|
||||||
flopenrc #(15) EMRegFma4(clk, reset, FlushM, ~StallM,
|
flopenrc #(15) EMRegFma4(clk, reset, FlushM, ~StallM,
|
||||||
@ -84,7 +82,7 @@ module fma(
|
|||||||
{AddendStickyM, KillProdM, InvZM, NormCntM, NegSumM, ZSgnEffM, PSgnM});
|
{AddendStickyM, KillProdM, InvZM, NormCntM, NegSumM, ZSgnEffM, PSgnM});
|
||||||
|
|
||||||
fma2 fma2(.XSgnM, .YSgnM, .XExpM, .YExpM, .ZExpM, .XManM, .YManM, .ZManM,
|
fma2 fma2(.XSgnM, .YSgnM, .XExpM, .YExpM, .ZExpM, .XManM, .YManM, .ZManM,
|
||||||
.FOpCtrlM, .FrmM, .FmtM, .ProdExpM, .AddendStickyM, .KillProdM, .SumM, .NegSumM, .InvZM, .NormCntM, .ZSgnEffM, .PSgnM,
|
.FrmM, .FmtM, .ProdExpM, .AddendStickyM, .KillProdM, .SumM, .NegSumM, .InvZM, .NormCntM, .ZSgnEffM, .PSgnM,
|
||||||
.XZeroM, .YZeroM, .ZZeroM, .XInfM, .YInfM, .ZInfM, .XNaNM, .YNaNM, .ZNaNM, .XSNaNM, .YSNaNM, .ZSNaNM,
|
.XZeroM, .YZeroM, .ZZeroM, .XInfM, .YInfM, .ZInfM, .XNaNM, .YNaNM, .ZNaNM, .XSNaNM, .YSNaNM, .ZSNaNM,
|
||||||
.FMAResM, .FMAFlgM);
|
.FMAResM, .FMAFlgM);
|
||||||
|
|
||||||
@ -93,29 +91,27 @@ endmodule
|
|||||||
|
|
||||||
|
|
||||||
module fma1(
|
module fma1(
|
||||||
input logic XSgnE, YSgnE, ZSgnE,
|
input logic XSgnE, YSgnE, ZSgnE, // input's signs
|
||||||
input logic [`NE-1:0] XExpE, YExpE, ZExpE, // biased exponents in B(NE.0) format
|
input logic [`NE-1:0] XExpE, YExpE, ZExpE, // biased exponents in B(NE.0) format
|
||||||
input logic [`NF:0] XManE, YManE, ZManE, // fractions in U(0.NF) format]
|
input logic [`NF:0] XManE, YManE, ZManE, // fractions in U(0.NF) format
|
||||||
input logic XDenormE, YDenormE, ZDenormE, // is the input denormal
|
input logic XDenormE, YDenormE, ZDenormE, // is the input denormal
|
||||||
input logic XZeroE, YZeroE, ZZeroE, // is the input zero
|
input logic XZeroE, YZeroE, ZZeroE, // is the input zero
|
||||||
input logic [`NE-1:0] BiasE,
|
input logic [`NE-1:0] BiasE, // bias (max exponent/2)
|
||||||
input logic [2:0] FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
|
input logic [2:0] FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
|
||||||
input logic FmtE, // precision 1 = double 0 = single
|
input logic FmtE, // precision 1 = double 0 = single
|
||||||
// output logic [2*`NF+1:0] ProdManE, // 1.X frac * 1.Y frac in U(2.2Nf) format
|
|
||||||
// output logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
|
|
||||||
output logic [`NE+1:0] ProdExpE, // X exponent + Y exponent - bias in B(NE+2.0) format; adds 2 bits to allow for size of number and negative sign
|
output logic [`NE+1:0] ProdExpE, // X exponent + Y exponent - bias in B(NE+2.0) format; adds 2 bits to allow for size of number and negative sign
|
||||||
output logic AddendStickyE, // sticky bit that is calculated during alignment
|
output logic AddendStickyE, // sticky bit that is calculated during alignment
|
||||||
output logic KillProdE, // set the product to zero before addition if the product is too small to matter
|
output logic KillProdE, // set the product to zero before addition if the product is too small to matter
|
||||||
output logic [3*`NF+5:0] SumE,
|
output logic [3*`NF+5:0] SumE, // the positive sum
|
||||||
output logic NegSumE,
|
output logic NegSumE, // was the sum negitive
|
||||||
output logic InvZE,
|
output logic InvZE, // intert Z
|
||||||
output logic ZSgnEffE,
|
output logic ZSgnEffE, // the modified Z sign
|
||||||
output logic PSgnE,
|
output logic PSgnE, // the product's sign
|
||||||
output logic [8:0] NormCntE
|
output logic [8:0] NormCntE // normalization shift cnt
|
||||||
);
|
);
|
||||||
logic [`NE-1:0] Denorm;
|
|
||||||
logic [`NE-1:0] DenormXExp, DenormYExp; // Denormalized input value
|
|
||||||
|
|
||||||
|
logic [`NE-1:0] Denorm; // value of a denormaized number based on precision
|
||||||
|
logic [`NE-1:0] XExpVal, YExpVal; // Exponent value after taking into account denormals
|
||||||
logic [2*`NF+1:0] ProdManE; // 1.X frac * 1.Y frac in U(2.2Nf) format
|
logic [2*`NF+1:0] ProdManE; // 1.X frac * 1.Y frac in U(2.2Nf) format
|
||||||
logic [3*`NF+5:0] AlignedAddendE; // Z aligned for addition in U(NF+5.2NF+1)
|
logic [3*`NF+5:0] AlignedAddendE; // Z aligned for addition in U(NF+5.2NF+1)
|
||||||
|
|
||||||
@ -123,82 +119,24 @@ module fma1(
|
|||||||
// Calculate the product
|
// Calculate the product
|
||||||
// - When multipliying two fp numbers, add the exponents
|
// - When multipliying two fp numbers, add the exponents
|
||||||
// - Subtract the bias (XExp + YExp has two biases, one from each exponent)
|
// - Subtract the bias (XExp + YExp has two biases, one from each exponent)
|
||||||
// - Denormal numbers have an an exponent value of 1, however they are
|
// - If the product is zero then kill the exponent - this is a problem
|
||||||
// represented with an exponent of 0. add one if there is a denormal number
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
// denormalized numbers have diffrent values depending on which precison it is.
|
// denormalized numbers have diffrent values depending on which precison it is.
|
||||||
|
// double - 1
|
||||||
|
// single - 1024-128+1 = 897
|
||||||
assign Denorm = FmtE ? 1 : 897;
|
assign Denorm = FmtE ? 1 : 897;
|
||||||
assign DenormXExp = XDenormE ? Denorm : XExpE;
|
assign XExpVal = XDenormE ? Denorm : XExpE;
|
||||||
assign DenormYExp = YDenormE ? Denorm : YExpE;
|
assign YExpVal = YDenormE ? Denorm : YExpE;
|
||||||
assign ProdExpE = (DenormXExp + DenormYExp - BiasE)&{`NE+2{~(XZeroE|YZeroE)}};
|
// take into account if the product is zero, the product's exponent does not compute properly if X or Y is zero
|
||||||
|
assign ProdExpE = (XExpVal + YExpVal - BiasE)&{`NE+2{~(XZeroE|YZeroE)}};
|
||||||
|
|
||||||
// Calculate the product's mantissa
|
// multiplication of the mantissa's
|
||||||
// - Mantissa includes the assumed one. If the number is denormalized or zero, it does not have an assumed one.
|
|
||||||
// assign ProdManE = XManE * YManE;
|
|
||||||
mult mult(.XManE, .YManE, .ProdManE);
|
mult mult(.XManE, .YManE, .ProdManE);
|
||||||
|
|
||||||
// ///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
// // Alignment shifter
|
// Alignment shifter
|
||||||
// ///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
// // determine the shift count for alignment
|
|
||||||
// // - negitive means Z is larger, so shift Z left
|
|
||||||
// // - positive means the product is larger, so shift Z right
|
|
||||||
// // - Denormal numbers have an an exponent value of 1, however they are
|
|
||||||
// // represented with an exponent of 0. add one to the exponent if it is a denormal number
|
|
||||||
// assign AlignCnt = ProdExpE - (ZExpE + ({`NE-1{ZDenormE}}&Denorm));
|
|
||||||
|
|
||||||
// // Defualt Addition without shifting
|
|
||||||
// // | 54'b0 | 106'b(product) | 2'b0 |
|
|
||||||
// // |1'b0| addnend |
|
|
||||||
|
|
||||||
// // the 1'b0 before the added is because the product's mantissa has two bits before the binary point (xx.xxxxxxxxxx...)
|
|
||||||
// assign ZManPreShifted = {(`NF+3)'(0), ZManE, /*106*/(2*`NF+2)'(0)};
|
|
||||||
// always_comb
|
|
||||||
// begin
|
|
||||||
|
|
||||||
// // If the product is too small to effect the sum, kill the product
|
|
||||||
|
|
||||||
// // | 54'b0 | 106'b(product) | 2'b0 |
|
|
||||||
// // | addnend |
|
|
||||||
// if ($signed(AlignCnt) <= $signed(-(`NF+4))) begin
|
|
||||||
// KillProdE = 1;
|
|
||||||
// ZManShifted = ZManPreShifted;//{107'b0, XManE, 54'b0};
|
|
||||||
// AddendStickyE = ~(XZeroE|YZeroE);
|
|
||||||
|
|
||||||
// // If the Addend is shifted left (negitive AlignCnt)
|
|
||||||
|
|
||||||
// // | 54'b0 | 106'b(product) | 2'b0 |
|
|
||||||
// // | addnend |
|
|
||||||
// end else if($signed(AlignCnt) <= $signed(0)) begin
|
|
||||||
// KillProdE = 0;
|
|
||||||
// ZManShifted = ZManPreShifted << -AlignCnt;
|
|
||||||
// AddendStickyE = |(ZManShifted[`NF-1:0]);
|
|
||||||
|
|
||||||
// // If the Addend is shifted right (positive AlignCnt)
|
|
||||||
|
|
||||||
// // | 54'b0 | 106'b(product) | 2'b0 |
|
|
||||||
// // | addnend |
|
|
||||||
// end else if ($signed(AlignCnt)<=$signed(2*`NF+1)) begin
|
|
||||||
// KillProdE = 0;
|
|
||||||
// ZManShifted = ZManPreShifted >> AlignCnt;
|
|
||||||
// AddendStickyE = |(ZManShifted[`NF-1:0]);
|
|
||||||
|
|
||||||
// // If the addend is too small to effect the addition
|
|
||||||
// // - The addend has to shift two past the end of the addend to be considered too small
|
|
||||||
// // - The 2 extra bits are needed for rounding
|
|
||||||
|
|
||||||
// // | 54'b0 | 106'b(product) | 2'b0 |
|
|
||||||
// // | addnend |
|
|
||||||
// end else begin
|
|
||||||
// KillProdE = 0;
|
|
||||||
// ZManShifted = 0;
|
|
||||||
// AddendStickyE = ~ZZeroE;
|
|
||||||
|
|
||||||
// end
|
|
||||||
// end
|
|
||||||
// assign AlignedAddendE = ZManShifted[4*`NF+5:`NF];
|
|
||||||
|
|
||||||
alignshift alignshift(.ZExpE, .ZManE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .Denorm,
|
alignshift alignshift(.ZExpE, .ZManE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .Denorm,
|
||||||
.AlignedAddendE, .AddendStickyE, .KillProdE);
|
.AlignedAddendE, .AddendStickyE, .KillProdE);
|
||||||
@ -209,22 +147,39 @@ module fma1(
|
|||||||
|
|
||||||
assign PSgnE = XSgnE ^ YSgnE ^ (FOpCtrlE[1]&~FOpCtrlE[2]);
|
assign PSgnE = XSgnE ^ YSgnE ^ (FOpCtrlE[1]&~FOpCtrlE[2]);
|
||||||
assign ZSgnEffE = ZSgnE^FOpCtrlE[0]; // Swap sign of Z for subtract
|
assign ZSgnEffE = ZSgnE^FOpCtrlE[0]; // Swap sign of Z for subtract
|
||||||
|
|
||||||
|
|
||||||
|
// ///////////////////////////////////////////////////////////////////////////////
|
||||||
|
// // Addition/LZA
|
||||||
|
// ///////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
fmaadd fmaadd(.AlignedAddendE, .ProdManE, .PSgnE, .ZSgnEffE, .KillProdE, .SumE, .NegSumE, .InvZE, .NormCntE, .XZeroE, .YZeroE);
|
fmaadd fmaadd(.AlignedAddendE, .ProdManE, .PSgnE, .ZSgnEffE, .KillProdE, .SumE, .NegSumE, .InvZE, .NormCntE, .XZeroE, .YZeroE);
|
||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
module fma2(
|
module fma2(
|
||||||
|
|
||||||
input logic XSgnM, YSgnM,
|
input logic XSgnM, YSgnM, // input signs
|
||||||
input logic [`NE-1:0] XExpM, YExpM, ZExpM,
|
input logic [`NE-1:0] XExpM, YExpM, ZExpM, // input exponents
|
||||||
input logic [`NF:0] XManM, YManM, ZManM,
|
input logic [`NF:0] XManM, YManM, ZManM, // input mantissas
|
||||||
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
|
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
|
||||||
input logic [2:0] FOpCtrlM, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
|
|
||||||
input logic FmtM, // precision 1 = double 0 = single
|
input logic FmtM, // precision 1 = double 0 = single
|
||||||
// input logic [2*`NF+1:0] ProdManM, // 1.X frac * 1.Y frac
|
|
||||||
// input logic [3*`NF+5:0] AlignedAddendM, // Z aligned for addition
|
|
||||||
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
|
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
|
||||||
input logic AddendStickyM, // sticky bit that is calculated during alignment
|
input logic AddendStickyM, // sticky bit that is calculated during alignment
|
||||||
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
|
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
|
||||||
@ -232,12 +187,12 @@ module fma2(
|
|||||||
input logic XInfM, YInfM, ZInfM, // inputs are infinity
|
input logic XInfM, YInfM, ZInfM, // inputs are infinity
|
||||||
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
|
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
|
||||||
input logic XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs
|
input logic XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs
|
||||||
input logic [3*`NF+5:0] SumM,
|
input logic [3*`NF+5:0] SumM, // the positive sum
|
||||||
input logic NegSumM,
|
input logic NegSumM, // was the sum negitive
|
||||||
input logic InvZM,
|
input logic InvZM, // do you invert Z
|
||||||
input logic ZSgnEffM,
|
input logic ZSgnEffM, // the modified Z sign - depends on instruction
|
||||||
input logic PSgnM,
|
input logic PSgnM, // the product's sign
|
||||||
input logic [8:0] NormCntM,
|
input logic [8:0] NormCntM, // the normalization shift count
|
||||||
output logic [`FLEN-1:0] FMAResM, // FMA final result
|
output logic [`FLEN-1:0] FMAResM, // FMA final result
|
||||||
output logic [4:0] FMAFlgM); // FMA flags {invalid, divide by zero, overflow, underflow, inexact}
|
output logic [4:0] FMAFlgM); // FMA flags {invalid, divide by zero, overflow, underflow, inexact}
|
||||||
|
|
||||||
@ -246,199 +201,45 @@ module fma2(
|
|||||||
logic [`NF-1:0] ResultFrac; // Result fraction
|
logic [`NF-1:0] ResultFrac; // Result fraction
|
||||||
logic [`NE-1:0] ResultExp; // Result exponent
|
logic [`NE-1:0] ResultExp; // Result exponent
|
||||||
logic ResultSgn; // Result sign
|
logic ResultSgn; // Result sign
|
||||||
// logic PSgn; // product sign
|
|
||||||
// logic [2*`NF+1:0] ProdMan2; // product being added
|
|
||||||
// logic [3*`NF+6:0] AlignedAddend2; // possibly inverted aligned Z
|
|
||||||
// logic [3*`NF+5:0] Sum; // positive sum
|
|
||||||
// logic [3*`NF+6:0] PreSum; // possibly negitive sum
|
|
||||||
logic [`NE+1:0] SumExp; // exponent of the normalized sum
|
logic [`NE+1:0] SumExp; // exponent of the normalized sum
|
||||||
// logic [`NE+1:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results
|
|
||||||
// logic [`NE+1:0] SumExpTmpMinus1; // SumExpTmp-1
|
|
||||||
logic [`NE+1:0] FullResultExp; // ResultExp with bits to determine sign and overflow
|
logic [`NE+1:0] FullResultExp; // ResultExp with bits to determine sign and overflow
|
||||||
logic [`NF+2:0] NormSum; // normalized sum
|
logic [`NF+2:0] NormSum; // normalized sum
|
||||||
// logic [3*`NF+5:0] SumShifted; // sum shifted for normalization
|
|
||||||
// logic [8:0] NormCnt; // output of the leading zero detector //***change this later
|
|
||||||
logic NormSumSticky; // sticky bit calulated from the normalized sum
|
logic NormSumSticky; // sticky bit calulated from the normalized sum
|
||||||
logic SumZero; // is the sum zero
|
logic SumZero; // is the sum zero
|
||||||
// logic NegSum; // is the sum negitive
|
|
||||||
// logic InvZ; // invert Z if there is a subtraction (-product + Z or product - Z)
|
|
||||||
logic ResultDenorm; // is the result denormalized
|
logic ResultDenorm; // is the result denormalized
|
||||||
logic Sticky, UfSticky; // Sticky bit
|
logic Sticky, UfSticky; // Sticky bit
|
||||||
logic Plus1, Minus1, CalcPlus1, CalcMinus1; // do you add or subtract one for rounding
|
logic Plus1, Minus1, CalcPlus1; // do you add or subtract one for rounding
|
||||||
logic UfPlus1, UfCalcPlus1; // do you add one (for determining underflow flag)
|
logic UfPlus1; // do you add one (for determining underflow flag)
|
||||||
logic Invalid,Underflow,Overflow,Inexact; // flags
|
logic Invalid,Underflow,Overflow; // flags
|
||||||
// logic [8:0] DenormShift; // right shift if the result is denormalized //***change this later
|
|
||||||
// logic SubBySmallNum; // was there supposed to be a subtraction by a small number
|
|
||||||
logic [`FLEN-1:0] Addend; // value to add (Z or zero)
|
|
||||||
logic ZeroSgn; // the result's sign if the sum is zero
|
logic ZeroSgn; // the result's sign if the sum is zero
|
||||||
logic ResultSgnTmp; // the result's sign assuming the result is not zero
|
logic ResultSgnTmp; // the result's sign assuming the result is not zero
|
||||||
logic Guard, Round, LSBNormSum; // bits needed to determine rounding
|
logic Guard, Round; // bits needed to determine rounding
|
||||||
logic UfGuard, UfRound, UfLSBNormSum; // bits needed to determine rounding for underflow flag
|
logic UfRound, UfLSBNormSum; // bits needed to determine rounding for underflow flag
|
||||||
// logic [`NE+1:0] MaxExp; // maximum value of the exponent
|
|
||||||
// logic [`NE+1:0] FracLen; // length of the fraction
|
|
||||||
logic SigNaN; // is an input a signaling NaN
|
|
||||||
logic UnderflowFlag; // Underflow singal used in FMAFlgM (used to avoid a circular depencency)
|
|
||||||
logic [`FLEN-1:0] XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
|
logic [`FLEN-1:0] XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
|
||||||
//logic ZSgnEffM;
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// ///////////////////////////////////////////////////////////////////////////////
|
|
||||||
// // Addition
|
|
||||||
// ///////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
// // Negate Z when doing one of the following opperations:
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
// // -prod + Z
|
// Normalization
|
||||||
// // prod - Z
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
// assign ZSgnEffM = ZSgnM^FOpCtrlM[0]; // Swap sign of Z for subtract
|
|
||||||
// assign InvZ = ZSgnEffM ^ PSgn;
|
|
||||||
|
|
||||||
// // Choose an inverted or non-inverted addend - the one is added later
|
|
||||||
// assign AlignedAddend2 = InvZ ? ~{1'b0, AlignedAddendM} : {1'b0, AlignedAddendM};
|
|
||||||
// // Kill the product if the product is too small to effect the addition (determined in fma1.sv)
|
|
||||||
// assign ProdMan2 = KillProdM ? 0 : ProdManM;
|
|
||||||
|
|
||||||
// // Do the addition
|
|
||||||
// // - add one to negate if the added was inverted
|
|
||||||
// // - the 2 extra bits at the begining and end are needed for rounding
|
|
||||||
// assign PreSum = AlignedAddend2 + {ProdMan2, 2'b0} + InvZ;
|
|
||||||
|
|
||||||
// // Is the sum negitive
|
|
||||||
// assign NegSum = PreSum[3*`NF+6];
|
|
||||||
// // If the sum is negitive, negate the sum.
|
|
||||||
// assign Sum = NegSum ? -PreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// ///////////////////////////////////////////////////////////////////////////////
|
|
||||||
// // Normalization
|
|
||||||
// ///////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
// // Determine if the sum is zero
|
|
||||||
// assign SumZero = ~(|Sum);
|
|
||||||
|
|
||||||
// // determine the length of the fraction based on precision
|
|
||||||
// assign FracLen = FmtM ? `NF : 13'd23;
|
|
||||||
// //assign FracLen = `NF;
|
|
||||||
|
|
||||||
// // Determine if the result is denormal
|
|
||||||
// logic [`NE+1:0] SumExpTmpTmp;
|
|
||||||
// assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCnt} - (`NF+4));
|
|
||||||
// assign SumExpTmp = FmtM ? SumExpTmpTmp : (SumExpTmpTmp-1023+127)&{`NE+2{|SumExpTmpTmp}};
|
|
||||||
|
|
||||||
// assign ResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero;
|
|
||||||
|
|
||||||
// // Determine the shift needed for denormal results
|
|
||||||
// assign SumExpTmpMinus1 = SumExpTmp-1;
|
|
||||||
// assign DenormShift = ResultDenorm ? SumExpTmpMinus1[8:0] : 0; //*** change this when changing the size of DenormShift also change to an and opperation
|
|
||||||
|
|
||||||
// // Normalize the sum
|
|
||||||
// assign SumShifted = SumZero ? 0 : Sum << NormCnt+DenormShift; //*** fix mux's with constants in them
|
|
||||||
// assign NormSum = SumShifted[3*`NF+5:2*`NF+3];
|
|
||||||
// // Calculate the sticky bit
|
|
||||||
// assign NormSumSticky = FmtM ? (|SumShifted[2*`NF+3:0]) : (|SumShifted[136:0]);
|
|
||||||
// assign Sticky = AddendStickyM | NormSumSticky;
|
|
||||||
|
|
||||||
// // Determine sum's exponent
|
|
||||||
// assign SumExp = SumZero ? 0 : //***again fix mux
|
|
||||||
// ResultDenorm ? 0 :
|
|
||||||
// SumExpTmp;
|
|
||||||
normalize normalize(.SumM, .ZExpM, .ProdExpM, .NormCntM, .FmtM, .KillProdM, .AddendStickyM, .NormSum,
|
normalize normalize(.SumM, .ZExpM, .ProdExpM, .NormCntM, .FmtM, .KillProdM, .AddendStickyM, .NormSum,
|
||||||
.SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm);
|
.SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// ///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
// // Rounding
|
// Rounding
|
||||||
// ///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
// // round to nearest even
|
// round to nearest even
|
||||||
// // {Guard, Round, Sticky}
|
// round to zero
|
||||||
// // 0xx - do nothing
|
// round to -infinity
|
||||||
// // 100 - tie - Plus1 if result is odd (LSBNormSum = 1)
|
// round to infinity
|
||||||
// // - don't add 1 if a small number was supposed to be subtracted
|
// round to nearest max magnitude
|
||||||
// // 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number)
|
|
||||||
// // 110/111 - Plus1
|
|
||||||
|
|
||||||
// // round to zero - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0
|
|
||||||
|
|
||||||
// // round to -infinity
|
|
||||||
// // - Plus1 if negative unless a small number was supposed to be subtracted from a result with guard and round bits of 0
|
|
||||||
// // - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0
|
|
||||||
|
|
||||||
// // round to infinity
|
|
||||||
// // - Plus1 if positive unless a small number was supposed to be subtracted from a result with guard and round bits of 0
|
|
||||||
// // - subtract 1 if a small number was supposed to be subtracted from a negative result with guard and round bits of 0
|
|
||||||
|
|
||||||
// // round to nearest max magnitude
|
|
||||||
// // {Guard, Round, Sticky}
|
|
||||||
// // 0xx - do nothing
|
|
||||||
// // 100 - tie - Plus1
|
|
||||||
// // - don't add 1 if a small number was supposed to be subtracted
|
|
||||||
// // 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number)
|
|
||||||
// // 110/111 - Plus1
|
|
||||||
|
|
||||||
// // determine guard, round, and least significant bit of the result
|
|
||||||
// assign Guard = FmtM ? NormSum[2] : NormSum[31];
|
|
||||||
// assign Round = FmtM ? NormSum[1] : NormSum[30];
|
|
||||||
// assign LSBNormSum = FmtM ? NormSum[3] : NormSum[32];
|
|
||||||
|
|
||||||
// // used to determine underflow flag
|
|
||||||
// assign UfGuard = FmtM ? NormSum[1] : NormSum[30];
|
|
||||||
// assign UfRound = FmtM ? NormSum[0] : NormSum[29];
|
|
||||||
// assign UfLSBNormSum = FmtM ? NormSum[2] : NormSum[31];
|
|
||||||
|
|
||||||
// // Deterimine if a small number was supposed to be subtrated
|
|
||||||
// assign SubBySmallNum = AddendStickyM & InvZ & ~(NormSumSticky) & ~ZZeroM;
|
|
||||||
|
|
||||||
// always_comb begin
|
|
||||||
// // Determine if you add 1
|
|
||||||
// case (FrmM)
|
|
||||||
// 3'b000: CalcPlus1 = Guard & (Round | ((Sticky|UfRound)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky|UfRound)&LSBNormSum&~SubBySmallNum));//round to nearest even
|
|
||||||
// 3'b001: CalcPlus1 = 0;//round to zero
|
|
||||||
// 3'b010: CalcPlus1 = ResultSgn & ~(SubBySmallNum & ~Guard & ~Round);//round down
|
|
||||||
// 3'b011: CalcPlus1 = ~ResultSgn & ~(SubBySmallNum & ~Guard & ~Round);//round up
|
|
||||||
// 3'b100: CalcPlus1 = (Guard & (Round | ((Sticky|UfRound)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky|UfRound)&~SubBySmallNum)));//round to nearest max magnitude
|
|
||||||
// default: CalcPlus1 = 1'bx;
|
|
||||||
// endcase
|
|
||||||
// // Determine if you add 1 (for underflow flag)
|
|
||||||
// case (FrmM)
|
|
||||||
// 3'b000: UfCalcPlus1 = UfGuard & (UfRound | (Sticky&~(~UfRound&SubBySmallNum)) | (~UfRound&~Sticky&UfLSBNormSum&~SubBySmallNum));//round to nearest even
|
|
||||||
// 3'b001: UfCalcPlus1 = 0;//round to zero
|
|
||||||
// 3'b010: UfCalcPlus1 = ResultSgn & ~(SubBySmallNum & ~UfGuard & ~UfRound);//round down
|
|
||||||
// 3'b011: UfCalcPlus1 = ~ResultSgn & ~(SubBySmallNum & ~UfGuard & ~UfRound);//round up
|
|
||||||
// 3'b100: UfCalcPlus1 = (UfGuard & (UfRound | (Sticky&~(~UfRound&SubBySmallNum)) | (~UfRound&~Sticky&~SubBySmallNum)));//round to nearest max magnitude
|
|
||||||
// default: UfCalcPlus1 = 1'bx;
|
|
||||||
// endcase
|
|
||||||
// // Determine if you subtract 1
|
|
||||||
// case (FrmM)
|
|
||||||
// 3'b000: CalcMinus1 = 0;//round to nearest even
|
|
||||||
// 3'b001: CalcMinus1 = SubBySmallNum & ~Guard & ~Round;//round to zero
|
|
||||||
// 3'b010: CalcMinus1 = ~ResultSgn & ~Guard & ~Round & SubBySmallNum;//round down
|
|
||||||
// 3'b011: CalcMinus1 = ResultSgn & ~Guard & ~Round & SubBySmallNum;//round up
|
|
||||||
// 3'b100: CalcMinus1 = 0;//round to nearest max magnitude
|
|
||||||
// default: CalcMinus1 = 1'bx;
|
|
||||||
// endcase
|
|
||||||
|
|
||||||
// end
|
|
||||||
|
|
||||||
// // If an answer is exact don't round
|
|
||||||
// assign Plus1 = CalcPlus1 & (Sticky | UfGuard | Guard | Round);
|
|
||||||
// assign UfPlus1 = UfCalcPlus1 & (Sticky | UfGuard | UfRound);
|
|
||||||
// assign Minus1 = CalcMinus1 & (Sticky | UfGuard | Guard | Round);
|
|
||||||
|
|
||||||
// // Compute rounded result
|
|
||||||
// logic [`FLEN:0] RoundAdd; //*** move this up
|
|
||||||
// logic [`NF-1:0] NormSumTruncated;
|
|
||||||
// assign RoundAdd = FmtM ? Minus1 ? {`FLEN+1{1'b1}} : {{{`FLEN{1'b0}}}, Plus1} :
|
|
||||||
// Minus1 ? {{36{1'b1}}, 29'b0} : {35'b0, Plus1, 29'b0};
|
|
||||||
// assign NormSumTruncated = FmtM ? NormSum[`NF+2:3] : {NormSum[54:32], 29'b0};
|
|
||||||
|
|
||||||
// assign {FullResultExp, ResultFrac} = {SumExp, NormSumTruncated} + RoundAdd;
|
|
||||||
// assign ResultExp = FullResultExp[`NE-1:0];
|
|
||||||
|
|
||||||
fmaround fmaround(.FmtM, .FrmM, .Sticky, .UfSticky, .NormSum, .AddendStickyM, .NormSumSticky, .ZZeroM, .InvZM, .ResultSgn, .SumExp,
|
fmaround fmaround(.FmtM, .FrmM, .Sticky, .UfSticky, .NormSum, .AddendStickyM, .NormSumSticky, .ZZeroM, .InvZM, .ResultSgn, .SumExp,
|
||||||
.CalcPlus1, .Plus1, .UfPlus1, .Minus1, .FullResultExp, .ResultFrac, .ResultExp, .Round, .Guard, .UfRound, .UfLSBNormSum);
|
.CalcPlus1, .Plus1, .UfPlus1, .Minus1, .FullResultExp, .ResultFrac, .ResultExp, .Round, .Guard, .UfRound, .UfLSBNormSum);
|
||||||
@ -467,38 +268,9 @@ module fma2(
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
// ///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
// // Flags
|
// Flags
|
||||||
// ///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// // Set Invalid flag for following cases:
|
|
||||||
// // 1) any input is a signaling NaN
|
|
||||||
// // 2) Inf - Inf (unless x or y is NaN)
|
|
||||||
// // 3) 0 * Inf
|
|
||||||
|
|
||||||
// assign MaxExp = FmtM ? {`NE{1'b1}} : {8{1'b1}};
|
|
||||||
// assign SigNaN = XSNaNM | YSNaNM | ZSNaNM;
|
|
||||||
// assign Invalid = SigNaN | ((XInfM || YInfM) & ZInfM & (PSgn ^ ZSgnEffM) & ~XNaNM & ~YNaNM) | (XZeroM & YInfM) | (YZeroM & XInfM);
|
|
||||||
|
|
||||||
// // Set Overflow flag if the number is too big to be represented
|
|
||||||
// // - Don't set the overflow flag if an overflowed result isn't outputed
|
|
||||||
// assign Overflow = FullResultExp >= {MaxExp} & ~FullResultExp[`NE+1]&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
|
|
||||||
|
|
||||||
// // Set Underflow flag if the number is too small to be represented in normal numbers
|
|
||||||
// // - Don't set the underflow flag if the result is exact
|
|
||||||
|
|
||||||
// assign Underflow = (SumExp[`NE+1] | ((SumExp == 0) & (Round|Guard|Sticky|UfRound)))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
|
|
||||||
// assign UnderflowFlag = (FullResultExp[`NE+1] | ((FullResultExp == 0) | ((FullResultExp == 1) & (SumExp == 0) & ~(UfPlus1&UfLSBNormSum)))&(Round|Guard|Sticky))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
|
|
||||||
// // Set Inexact flag if the result is diffrent from what would be outputed given infinite precision
|
|
||||||
// // - Don't set the underflow flag if an underflowed result isn't outputed
|
|
||||||
// assign Inexact = (Sticky|UfRound|Overflow|Guard|Round|Underflow)&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
|
|
||||||
|
|
||||||
// // Combine flags
|
|
||||||
// // - FMA can't set the Divide by zero flag
|
|
||||||
// // - Don't set the underflow flag if the result was rounded up to a normal number
|
|
||||||
// assign FMAFlgM = {Invalid, 1'b0, Overflow, UnderflowFlag, Inexact};
|
|
||||||
|
|
||||||
fmaflags fmaflags(.XSNaNM, .YSNaNM, .ZSNaNM, .XInfM, .YInfM, .ZInfM, .XZeroM, .YZeroM,
|
fmaflags fmaflags(.XSNaNM, .YSNaNM, .ZSNaNM, .XInfM, .YInfM, .ZInfM, .XZeroM, .YZeroM,
|
||||||
.XNaNM, .YNaNM, .ZNaNM, .FullResultExp, .SumExp, .ZSgnEffM, .PSgnM, .Round, .Guard, .UfRound, .UfLSBNormSum, .Sticky, .UfPlus1,
|
.XNaNM, .YNaNM, .ZNaNM, .FullResultExp, .SumExp, .ZSgnEffM, .PSgnM, .Round, .Guard, .UfRound, .UfLSBNormSum, .Sticky, .UfPlus1,
|
||||||
@ -523,7 +295,7 @@ module fma2(
|
|||||||
assign FMAResM = XNaNM ? XNaNResult :
|
assign FMAResM = XNaNM ? XNaNResult :
|
||||||
YNaNM ? YNaNResult :
|
YNaNM ? YNaNResult :
|
||||||
ZNaNM ? ZNaNResult :
|
ZNaNM ? ZNaNResult :
|
||||||
Invalid ? InvalidResult : // has to be before inf
|
Invalid ? InvalidResult :
|
||||||
XInfM ? FmtM ? {PSgnM, XExpM, XManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, XExpM[7:0], XManM[51:29]} :
|
XInfM ? FmtM ? {PSgnM, XExpM, XManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, XExpM[7:0], XManM[51:29]} :
|
||||||
YInfM ? FmtM ? {PSgnM, YExpM, YManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, YExpM[7:0], YManM[51:29]} :
|
YInfM ? FmtM ? {PSgnM, YExpM, YManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, YExpM[7:0], YManM[51:29]} :
|
||||||
ZInfM ? FmtM ? {ZSgnEffM, ZExpM, ZManM[`NF-1:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], ZManM[51:29]} :
|
ZInfM ? FmtM ? {ZSgnEffM, ZExpM, ZManM[`NF-1:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], ZManM[51:29]} :
|
||||||
@ -537,6 +309,11 @@ module fma2(
|
|||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
module mult(
|
module mult(
|
||||||
input logic [`NF:0] XManE, YManE,
|
input logic [`NF:0] XManE, YManE,
|
||||||
output logic [2*`NF+1:0] ProdManE
|
output logic [2*`NF+1:0] ProdManE
|
||||||
@ -544,22 +321,26 @@ module mult(
|
|||||||
assign ProdManE = XManE * YManE;
|
assign ProdManE = XManE * YManE;
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
module alignshift(
|
module alignshift(
|
||||||
input logic [`NE-1:0] ZExpE, // biased exponents in B(NE.0) format
|
input logic [`NE-1:0] ZExpE, // biased exponents in B(NE.0) format
|
||||||
input logic [`NF:0] ZManE, // fractions in U(0.NF) format]
|
input logic [`NF:0] ZManE, // fractions in U(0.NF) format]
|
||||||
input logic ZDenormE, // is the input denormal
|
input logic ZDenormE, // is the input denormal
|
||||||
input logic XZeroE, YZeroE, ZZeroE, // is the input zero
|
input logic XZeroE, YZeroE, ZZeroE, // is the input zero
|
||||||
input logic [`NE+1:0] ProdExpE,
|
input logic [`NE+1:0] ProdExpE, // the product's exponent
|
||||||
input logic [`NE-1:0] Denorm,
|
input logic [`NE-1:0] Denorm, // the biased value of a denormalized number
|
||||||
output logic [3*`NF+5:0] AlignedAddendE,
|
output logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
|
||||||
output logic AddendStickyE,
|
output logic AddendStickyE, // Sticky bit calculated from the aliged addend
|
||||||
output logic KillProdE
|
output logic KillProdE // should the product be set to zero
|
||||||
);
|
);
|
||||||
|
|
||||||
logic [`NE+1:0] AlignCnt; // how far to shift the addend to align with the product in Q(NE+2.0) format
|
logic [`NE+1:0] AlignCnt; // how far to shift the addend to align with the product in Q(NE+2.0) format
|
||||||
logic [4*`NF+5:0] ZManShifted; // output of the alignment shifter including sticky bits U(NF+5.3NF+1)
|
logic [4*`NF+5:0] ZManShifted; // output of the alignment shifter including sticky bits U(NF+5.3NF+1)
|
||||||
logic [4*`NF+5:0] ZManPreShifted; // input to the alignment shifter U(NF+5.3NF+1)
|
logic [4*`NF+5:0] ZManPreShifted; // input to the alignment shifter U(NF+5.3NF+1)
|
||||||
logic [`NE-1:0] DenormZExp;
|
logic [`NE-1:0] ZExpVal; // Exponent value after taking into account denormals
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
// Alignment shifter
|
// Alignment shifter
|
||||||
@ -568,14 +349,13 @@ module alignshift(
|
|||||||
// determine the shift count for alignment
|
// determine the shift count for alignment
|
||||||
// - negitive means Z is larger, so shift Z left
|
// - negitive means Z is larger, so shift Z left
|
||||||
// - positive means the product is larger, so shift Z right
|
// - positive means the product is larger, so shift Z right
|
||||||
// - Denormal numbers have an an exponent value of 1, however they are
|
// - Denormal numbers have a diffrent exponent value depending on the precision
|
||||||
// represented with an exponent of 0. add one to the exponent if it is a denormal number
|
assign ZExpVal = ZDenormE ? Denorm : ZExpE;
|
||||||
assign DenormZExp = ZDenormE ? Denorm : ZExpE;
|
assign AlignCnt = ProdExpE - ZExpVal + (`NF+3);
|
||||||
assign AlignCnt = ProdExpE - DenormZExp + (`NF+3);
|
|
||||||
|
|
||||||
// Defualt Addition without shifting
|
// Defualt Addition without shifting
|
||||||
// | 54'b0 | 106'b(product) | 2'b0 |
|
// | 54'b0 | 106'b(product) | 2'b0 |
|
||||||
// |1'b0| addnend |
|
// | addnend |
|
||||||
|
|
||||||
// the 1'b0 before the added is because the product's mantissa has two bits before the binary point (xx.xxxxxxxxxx...)
|
// the 1'b0 before the added is because the product's mantissa has two bits before the binary point (xx.xxxxxxxxxx...)
|
||||||
assign ZManPreShifted = {ZManE,(3*`NF+5)'(0)};
|
assign ZManPreShifted = {ZManE,(3*`NF+5)'(0)};
|
||||||
@ -588,20 +368,10 @@ module alignshift(
|
|||||||
// | addnend |
|
// | addnend |
|
||||||
if ($signed(AlignCnt) < $signed(0)) begin
|
if ($signed(AlignCnt) < $signed(0)) begin
|
||||||
KillProdE = 1;
|
KillProdE = 1;
|
||||||
ZManShifted = ZManPreShifted;//{107'b0, XManE, 54'b0};
|
ZManShifted = ZManPreShifted;
|
||||||
AddendStickyE = ~(XZeroE|YZeroE);
|
AddendStickyE = ~(XZeroE|YZeroE);
|
||||||
|
|
||||||
// // If the Addend is shifted left (negitive AlignCnt)
|
// If the Addend is shifted right
|
||||||
|
|
||||||
// // | 54'b0 | 106'b(product) | 2'b0 |
|
|
||||||
// // | addnend |
|
|
||||||
// end else if($signed(AlignCnt) <= $signed(0)) begin
|
|
||||||
// KillProdE = 0;
|
|
||||||
// ZManShifted = ZManPreShifted << -AlignCnt;
|
|
||||||
// AddendStickyE = |(ZManShifted[`NF-1:0]);
|
|
||||||
|
|
||||||
// If the Addend is shifted right (positive AlignCnt)
|
|
||||||
|
|
||||||
// | 54'b0 | 106'b(product) | 2'b0 |
|
// | 54'b0 | 106'b(product) | 2'b0 |
|
||||||
// | addnend |
|
// | addnend |
|
||||||
end else if ($signed(AlignCnt)<=$signed(3*`NF+4)) begin
|
end else if ($signed(AlignCnt)<=$signed(3*`NF+4)) begin
|
||||||
@ -622,25 +392,27 @@ module alignshift(
|
|||||||
|
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
assign AlignedAddendE = ZManShifted[4*`NF+5:`NF];
|
assign AlignedAddendE = ZManShifted[4*`NF+5:`NF];
|
||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
module fmaadd(
|
module fmaadd(
|
||||||
input logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition
|
input logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
|
||||||
input logic [2*`NF+1:0] ProdManE,
|
input logic [2*`NF+1:0] ProdManE, // the product's mantissa
|
||||||
input logic PSgnE, ZSgnEffE,
|
input logic PSgnE, ZSgnEffE,// the product and modified Z signs
|
||||||
input logic KillProdE,
|
input logic KillProdE, // should the product be set to 0
|
||||||
input logic XZeroE, YZeroE,
|
input logic XZeroE, YZeroE, // is the input zero
|
||||||
output logic [3*`NF+5:0] SumE,
|
output logic [3*`NF+5:0] SumE, // the positive sum
|
||||||
output logic NegSumE,
|
output logic NegSumE, // was the sum negitive
|
||||||
output logic InvZE,
|
output logic InvZE, // do you invert Z
|
||||||
output logic [8:0] NormCntE
|
output logic [8:0] NormCntE // normalization shift count
|
||||||
);
|
);
|
||||||
logic [3*`NF+6:0] PreSum, NegPreSum; // possibly negitive sum
|
logic [3*`NF+6:0] PreSum, NegPreSum; // possibly negitive sum
|
||||||
logic [2*`NF+1:0] ProdMan2; // product being added
|
logic [2*`NF+1:0] ProdMan2; // product being added
|
||||||
logic [3*`NF+6:0] AlignedAddend2; // possibly inverted aligned Z
|
logic [3*`NF+6:0] AlignedAddend2; // possibly inverted aligned Z
|
||||||
logic [3*`NF+6:0] NegProdMan2;
|
logic [3*`NF+6:0] NegProdMan2; // a negated ProdMan2
|
||||||
logic [8:0] PNormCnt, NNormCnt;
|
logic [8:0] PNormCnt, NNormCnt; // results from the LZA
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
// Addition
|
// Addition
|
||||||
@ -651,83 +423,46 @@ module fmaadd(
|
|||||||
// prod - Z
|
// prod - Z
|
||||||
assign InvZE = ZSgnEffE ^ PSgnE;
|
assign InvZE = ZSgnEffE ^ PSgnE;
|
||||||
|
|
||||||
// Choose an inverted or non-inverted addend - the one is added later
|
// Choose an inverted or non-inverted addend - the one has to be added now for the LZA
|
||||||
assign AlignedAddend2 = InvZE ? -{1'b0, AlignedAddendE} : {1'b0, AlignedAddendE};
|
assign AlignedAddend2 = InvZE ? -{1'b0, AlignedAddendE} : {1'b0, AlignedAddendE};
|
||||||
// Kill the product if the product is too small to effect the addition (determined in fma1.sv)
|
// Kill the product if the product is too small to effect the addition (determined in fma1.sv)
|
||||||
assign ProdMan2 = ProdManE&{2*`NF+2{~KillProdE}};
|
assign ProdMan2 = ProdManE&{2*`NF+2{~KillProdE}};
|
||||||
|
// Negate ProdMan for LZA and the negitive sum calculation
|
||||||
assign NegProdMan2 = {{`NF+3{~(XZeroE|YZeroE|KillProdE)}}, -ProdMan2, 2'b0};
|
assign NegProdMan2 = {{`NF+3{~(XZeroE|YZeroE|KillProdE)}}, -ProdMan2, 2'b0};
|
||||||
|
|
||||||
|
// LZAs one for the positive result and one for the negitive
|
||||||
|
// - the +1 from inverting causes problems for normalization
|
||||||
poslza poslza(AlignedAddend2, ProdMan2, PNormCnt);
|
poslza poslza(AlignedAddend2, ProdMan2, PNormCnt);
|
||||||
neglza neglza({1'b0,AlignedAddendE}, NegProdMan2, NNormCnt);
|
neglza neglza({1'b0,AlignedAddendE}, NegProdMan2, NNormCnt);
|
||||||
|
|
||||||
|
|
||||||
// Do the addition
|
// Do the addition
|
||||||
// - add one to negate if the added was inverted
|
// - calculate a positive and negitive sum in parallel
|
||||||
// - the 2 extra bits at the begining and end are needed for rounding
|
|
||||||
assign PreSum = AlignedAddend2 + {ProdMan2, 2'b0};
|
assign PreSum = AlignedAddend2 + {ProdMan2, 2'b0};
|
||||||
assign NegPreSum = AlignedAddendE + NegProdMan2;
|
assign NegPreSum = AlignedAddendE + NegProdMan2;
|
||||||
|
|
||||||
// Is the sum negitive
|
// Is the sum negitive
|
||||||
assign NegSumE = PreSum[3*`NF+6];
|
assign NegSumE = PreSum[3*`NF+6];
|
||||||
// If the sum is negitive, negate the sum.
|
// Choose the positive sum and accompanying LZA result.
|
||||||
assign SumE = NegSumE ? NegPreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
|
assign SumE = NegSumE ? NegPreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
|
||||||
assign NormCntE = NegSumE ? NNormCnt : PNormCnt;
|
assign NormCntE = NegSumE ? NNormCnt : PNormCnt;
|
||||||
// set to PNormCnt if the product is zero (there may be an additional bit of error from the negation)
|
|
||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
// module fmalzc(
|
|
||||||
// input logic [3*`NF+5:0] Sum,
|
|
||||||
// output logic [8:0] NormCntCheck
|
|
||||||
// );
|
|
||||||
|
|
||||||
// ///////////////////////////////////////////////////////////////////////////////
|
|
||||||
// // Leading one detector
|
|
||||||
// ///////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
// //*** replace with non-behavoral code
|
|
||||||
// logic [8:0] i;
|
|
||||||
// always_comb begin
|
|
||||||
// i = 0;
|
|
||||||
// while (~Sum[3*`NF+5-i] && $unsigned(i) <= $unsigned(3*`NF+5)) i = i+1; // search for leading one
|
|
||||||
// NormCntCheck = i;
|
|
||||||
// end
|
|
||||||
|
|
||||||
// endmodule
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// Filename: lza.v
|
|
||||||
// Author: Katherine Parry
|
|
||||||
// Date: 2021/02/07
|
|
||||||
//
|
|
||||||
// Description: Leading Zero Anticipator
|
|
||||||
// This a the Kershaw Leading Zero Anticipator(LZA) using the algorithm described in
|
|
||||||
// "Leading Zero Anticipation and Dectection - A Comparison of Methods" (2001)
|
|
||||||
// Schmookler and Nowka.
|
|
||||||
// After swapping, alignment and inversion of A & B, the following functions are
|
|
||||||
// applied to all 'i' bits.
|
|
||||||
// -- T[i] = A[i] XOR B[i]; // Propagation that will occur
|
|
||||||
// -- G[i] = A[i] AND B[i]; // The value Generated
|
|
||||||
// -- Z[i] = ~(A[i] OR B[i]): // Fill functions
|
|
||||||
// The leading Zero is determined by the first occurance of the pattern T*GGZ*,
|
|
||||||
// whereas Leading ones are found by the pattern T*ZG*
|
|
||||||
// To evaluate the pattern we map it to the function that evaluates the three bits
|
|
||||||
// (current, before, & after):
|
|
||||||
// f[i] = T[i-1](G[i]~Z[i+1] & ~G[i+1]Z[i]) | ~T[i-1](Z[i]~Z[i+1] & G[i]~G[i+1])
|
|
||||||
//
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
module poslza(
|
module poslza(
|
||||||
// parameter SIGNIFICANT_SZ=52;
|
input logic [3*`NF+6:0] A, // addend
|
||||||
//leading digit anticipator
|
input logic [2*`NF+1:0] P, // product
|
||||||
// localparam sz=SIGNIFICANT_SZ+1;
|
output logic [8:0] PCnt // normalization shift count for the positive result
|
||||||
input logic [3*`NF+6:0] A,
|
|
||||||
input logic [2*`NF+1:0] P,
|
|
||||||
output logic [8:0] PCnt
|
|
||||||
);
|
);
|
||||||
|
|
||||||
// Compute Generate, Propageate and Kill for each bit
|
|
||||||
|
|
||||||
|
// calculate the propagate (T) and kill (Z) bits
|
||||||
logic [3*`NF+6:0] T;
|
logic [3*`NF+6:0] T;
|
||||||
logic [3*`NF+5:0] Z;
|
logic [3*`NF+5:0] Z;
|
||||||
// assign T = A^{{`NF+3{1'b0}}, P, 2'b0};
|
|
||||||
// assign Z = ~(A|{{`NF+3{1'b0}}, P, 2'b0});
|
|
||||||
assign T[3*`NF+6:2*`NF+4] = A[3*`NF+6:2*`NF+4];
|
assign T[3*`NF+6:2*`NF+4] = A[3*`NF+6:2*`NF+4];
|
||||||
assign Z[3*`NF+5:2*`NF+4] = A[3*`NF+5:2*`NF+4];
|
assign Z[3*`NF+5:2*`NF+4] = A[3*`NF+5:2*`NF+4];
|
||||||
assign T[2*`NF+3:2] = A[2*`NF+3:2]^P;
|
assign T[2*`NF+3:2] = A[2*`NF+3:2]^P;
|
||||||
@ -739,7 +474,6 @@ module poslza(
|
|||||||
// Apply function to determine Leading pattern
|
// Apply function to determine Leading pattern
|
||||||
logic [3*`NF+6:0] pf;
|
logic [3*`NF+6:0] pf;
|
||||||
assign pf = T^{Z[3*`NF+5:0], 1'b0};
|
assign pf = T^{Z[3*`NF+5:0], 1'b0};
|
||||||
// assign pf = T^{~Z[3*`NF+5:0], 1'b0};
|
|
||||||
|
|
||||||
logic [8:0] i;
|
logic [8:0] i;
|
||||||
always_comb begin
|
always_comb begin
|
||||||
@ -751,16 +485,12 @@ module poslza(
|
|||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
module neglza(
|
module neglza(
|
||||||
// parameter SIGNIFICANT_SZ=52;
|
input logic [3*`NF+6:0] A, // addend
|
||||||
//leading digit anticipator
|
input logic [3*`NF+6:0] P, // product
|
||||||
// localparam sz=SIGNIFICANT_SZ+1;
|
output logic [8:0] NCnt // normalization shift count for the negitive result
|
||||||
input logic [3*`NF+6:0] A,
|
|
||||||
input logic [3*`NF+6:0] P,
|
|
||||||
output logic [8:0] NCnt
|
|
||||||
);
|
);
|
||||||
|
|
||||||
// Compute Generate, Propageate and Kill for each bit
|
// calculate the propagate (T) and kill (Z) bits
|
||||||
|
|
||||||
logic [3*`NF+6:0] T;
|
logic [3*`NF+6:0] T;
|
||||||
logic [3*`NF+5:0] Z;
|
logic [3*`NF+5:0] Z;
|
||||||
assign T = A^P;
|
assign T = A^P;
|
||||||
@ -783,28 +513,27 @@ endmodule
|
|||||||
|
|
||||||
|
|
||||||
module normalize(
|
module normalize(
|
||||||
input logic [3*`NF+5:0] SumM,
|
input logic [3*`NF+5:0] SumM, // the positive sum
|
||||||
input logic [`NE-1:0] ZExpM,
|
input logic [`NE-1:0] ZExpM, // exponent of Z
|
||||||
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
|
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
|
||||||
input logic [8:0] NormCntM,
|
input logic [8:0] NormCntM, // normalization shift count
|
||||||
input logic FmtM, // precision 1 = double 0 = single
|
input logic FmtM, // precision 1 = double 0 = single
|
||||||
input logic KillProdM,
|
input logic KillProdM, // is the product set to zero
|
||||||
input logic AddendStickyM,
|
input logic AddendStickyM, // the sticky bit caclulated from the aligned addend
|
||||||
output logic [`NF+2:0] NormSum, // normalized sum
|
output logic [`NF+2:0] NormSum, // normalized sum
|
||||||
output logic SumZero,
|
output logic SumZero, // is the sum zero
|
||||||
output logic NormSumSticky, UfSticky,
|
output logic NormSumSticky, UfSticky, // sticky bits
|
||||||
output logic [`NE+1:0] SumExp, // exponent of the normalized sum
|
output logic [`NE+1:0] SumExp, // exponent of the normalized sum
|
||||||
output logic ResultDenorm
|
output logic ResultDenorm // is the result denormalized
|
||||||
);
|
);
|
||||||
logic [`NE+1:0] FracLen; // length of the fraction
|
logic [`NE+1:0] FracLen; // length of the fraction
|
||||||
logic [`NE+1:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results
|
logic [`NE+1:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results
|
||||||
logic [`NE+1:0] SumExpTmpMinus1; // SumExpTmp-1
|
|
||||||
logic [8:0] DenormShift; // right shift if the result is denormalized //***change this later
|
logic [8:0] DenormShift; // right shift if the result is denormalized //***change this later
|
||||||
logic [3*`NF+5:0] SumShifted; // sum shifted for normalization
|
logic [3*`NF+5:0] CorrSumShifted; // the shifted sum after LZA correction
|
||||||
logic [3*`NF+7:0] SumShiftedTmp; // sum shifted for normalization
|
logic [3*`NF+7:0] SumShifted; // the shifted sum before LZA correction
|
||||||
logic [`NE+1:0] SumExpTmpTmp;
|
logic [`NE+1:0] SumExpTmpTmp; // the exponent of the normalized sum with the `FLEN bias
|
||||||
logic PreResultDenorm;
|
logic PreResultDenorm; // is the result denormalized - calculated before LZA corection
|
||||||
logic LZAPlus1;
|
logic LZAPlus1; // add one to the sum's exponent due to LZA correction
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
// Normalization
|
// Normalization
|
||||||
@ -815,87 +544,58 @@ module normalize(
|
|||||||
|
|
||||||
// determine the length of the fraction based on precision
|
// determine the length of the fraction based on precision
|
||||||
assign FracLen = FmtM ? `NF+1 : 13'd24;
|
assign FracLen = FmtM ? `NF+1 : 13'd24;
|
||||||
//assign FracLen = `NF;
|
|
||||||
|
|
||||||
// Determine if the result is denormal
|
// calculate the sum's exponent
|
||||||
assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCntM} + 1 - (`NF+4));
|
assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCntM} + 1 - (`NF+4));
|
||||||
assign SumExpTmp = FmtM ? SumExpTmpTmp : (SumExpTmpTmp-1023+127)&{`NE+2{|SumExpTmpTmp}};
|
assign SumExpTmp = FmtM ? SumExpTmpTmp : (SumExpTmpTmp-1023+127)&{`NE+2{|SumExpTmpTmp}};
|
||||||
|
|
||||||
|
// Determine if the result is denormal
|
||||||
assign PreResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero;
|
assign PreResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero;
|
||||||
|
|
||||||
// Determine the shift needed for denormal results
|
// Determine the shift needed for denormal results
|
||||||
// - if not denorm add 1 to shift out the leading 1
|
// - if not denorm add 1 to shift out the leading 1
|
||||||
assign DenormShift = PreResultDenorm ? SumExpTmp[8:0] : 1; //*** change this when changing the size of DenormShift also change to an and opperation
|
assign DenormShift = PreResultDenorm ? SumExpTmp[8:0] : 1; //*** change this when changing the size of DenormShift also change to an and opperation
|
||||||
// Normalize the sum
|
// Normalize the sum
|
||||||
assign SumShiftedTmp = {2'b0, SumM} << NormCntM+DenormShift; //*** fix mux's with constants in them //***NormCnt can be simplified
|
assign SumShifted = {2'b0, SumM} << NormCntM+DenormShift; //*** fix mux's with constants in them //***NormCnt can be simplified
|
||||||
// LZA correction
|
// LZA correction
|
||||||
assign LZAPlus1 = SumShiftedTmp[3*`NF+7];
|
assign LZAPlus1 = SumShifted[3*`NF+7];
|
||||||
assign SumShifted = LZAPlus1 ? SumShiftedTmp[3*`NF+6:1] : SumShiftedTmp[3*`NF+5:0];
|
assign CorrSumShifted = LZAPlus1 ? SumShifted[3*`NF+6:1] : SumShifted[3*`NF+5:0];
|
||||||
assign NormSum = SumShifted[3*`NF+5:2*`NF+3];
|
assign NormSum = CorrSumShifted[3*`NF+5:2*`NF+3];
|
||||||
// Calculate the sticky bit
|
// Calculate the sticky bit
|
||||||
assign NormSumSticky = (|SumShifted[2*`NF+2:0]) | (|SumShifted[136:2*`NF+3]&~FmtM);
|
assign NormSumSticky = (|CorrSumShifted[2*`NF+2:0]) | (|CorrSumShifted[136:2*`NF+3]&~FmtM);
|
||||||
assign UfSticky = AddendStickyM | NormSumSticky;
|
assign UfSticky = AddendStickyM | NormSumSticky;
|
||||||
|
|
||||||
// Determine sum's exponent
|
// Determine sum's exponent
|
||||||
assign SumExp = (SumExpTmp+LZAPlus1+(~|SumExpTmp&SumShiftedTmp[3*`NF+6])) & {`NE+2{~(SumZero|ResultDenorm)}};
|
assign SumExp = (SumExpTmp+LZAPlus1+(~|SumExpTmp&SumShifted[3*`NF+6])) & {`NE+2{~(SumZero|ResultDenorm)}};
|
||||||
// recalculate if the result is denormalized
|
// recalculate if the result is denormalized
|
||||||
assign ResultDenorm = PreResultDenorm&~SumShiftedTmp[3*`NF+6]&~SumShiftedTmp[3*`NF+7];
|
assign ResultDenorm = PreResultDenorm&~SumShifted[3*`NF+6]&~SumShifted[3*`NF+7];
|
||||||
|
|
||||||
// // Determine if the sum is zero
|
|
||||||
// assign SumZero = ~(|Sum);
|
|
||||||
|
|
||||||
// // determine the length of the fraction based on precision
|
|
||||||
// assign FracLen = FmtM ? `NF : 13'd23;
|
|
||||||
// //assign FracLen = `NF;
|
|
||||||
|
|
||||||
// // Determine if the result is denormal
|
|
||||||
// assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCnt} + 1 - (`NF+4));
|
|
||||||
// assign SumExpTmp = FmtM ? SumExpTmpTmp : (SumExpTmpTmp-1023+127)&{`NE+2{|SumExpTmpTmp}};
|
|
||||||
|
|
||||||
// assign ResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero;
|
|
||||||
|
|
||||||
// // Determine the shift needed for denormal results
|
|
||||||
// // - if not denorm add 1 to shift out the leading 1
|
|
||||||
// assign DenormShift = ResultDenorm ? SumExpTmp[8:0] : 1; //*** change this when changing the size of DenormShift also change to an and opperation
|
|
||||||
|
|
||||||
// // Normalize the sum
|
|
||||||
// assign SumShifted = SumZero ? 0 : Sum << NormCnt+DenormShift; //*** fix mux's with constants in them
|
|
||||||
// assign NormSum = SumShifted[3*`NF+5:2*`NF+3];
|
|
||||||
// // Calculate the sticky bit
|
|
||||||
// assign NormSumSticky = FmtM ? (|SumShifted[2*`NF+2:0]) : (|SumShifted[136:0]);
|
|
||||||
// assign UfSticky = AddendStickyM | NormSumSticky;
|
|
||||||
|
|
||||||
// // Determine sum's exponent
|
|
||||||
// assign SumExp = SumZero ? 0 : //***again fix mux
|
|
||||||
// ResultDenorm ? 0 :
|
|
||||||
// SumExpTmp;
|
|
||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
module fmaround(
|
module fmaround(
|
||||||
input logic FmtM, // precision 1 = double 0 = single
|
input logic FmtM, // precision 1 = double 0 = single
|
||||||
input logic [2:0] FrmM,
|
input logic [2:0] FrmM, // rounding mode
|
||||||
input logic UfSticky,
|
input logic UfSticky, // sticky bit for underlow calculation
|
||||||
output logic Sticky,
|
|
||||||
input logic [`NF+2:0] NormSum, // normalized sum
|
input logic [`NF+2:0] NormSum, // normalized sum
|
||||||
input logic AddendStickyM,
|
input logic AddendStickyM, // addend's sticky bit
|
||||||
input logic NormSumSticky,
|
input logic NormSumSticky, // normalized sum's sticky bit
|
||||||
input logic ZZeroM,
|
input logic ZZeroM, // is Z zero
|
||||||
input logic InvZM,
|
input logic InvZM, // invert Z
|
||||||
input logic [`NE+1:0] SumExp, // exponent of the normalized sum
|
input logic [`NE+1:0] SumExp, // exponent of the normalized sum
|
||||||
input logic ResultSgn,
|
input logic ResultSgn, // the result's sign
|
||||||
output logic CalcPlus1, Plus1, UfPlus1, Minus1,
|
output logic CalcPlus1, Plus1, UfPlus1, Minus1, // do you add or subtract on from the result
|
||||||
output logic [`NE+1:0] FullResultExp, // ResultExp with bits to determine sign and overflow
|
output logic [`NE+1:0] FullResultExp, // ResultExp with bits to determine sign and overflow
|
||||||
output logic [`NF-1:0] ResultFrac, // Result fraction
|
output logic [`NF-1:0] ResultFrac, // Result fraction
|
||||||
output logic [`NE-1:0] ResultExp, // Result exponent
|
output logic [`NE-1:0] ResultExp, // Result exponent
|
||||||
output logic Round, Guard, UfRound, UfLSBNormSum
|
output logic Sticky, // sticky bit
|
||||||
|
output logic Round, Guard, UfRound, UfLSBNormSum // bits needed to calculate rounding
|
||||||
);
|
);
|
||||||
logic LSBNormSum;
|
logic LSBNormSum; // bit used for rounding - least significant bit of the normalized sum
|
||||||
logic SubBySmallNum, UfSubBySmallNum; // was there supposed to be a subtraction by a small number
|
logic SubBySmallNum, UfSubBySmallNum; // was there supposed to be a subtraction by a small number
|
||||||
logic UfGuard;
|
logic UfGuard; // gaurd bit used to caluculate underflow
|
||||||
logic UfCalcPlus1, CalcMinus1;
|
logic UfCalcPlus1, CalcMinus1; // do you add or subtract on from the result
|
||||||
logic [`FLEN:0] RoundAdd; //*** move this up
|
logic [`FLEN:0] RoundAdd; // how much to add to the result
|
||||||
logic [`NF-1:0] NormSumTruncated;
|
logic [`NF-1:0] NormSumTruncated; // the normalized sum trimed to fit the mantissa
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
// Rounding
|
// Rounding
|
||||||
@ -997,15 +697,15 @@ module fmaflags(
|
|||||||
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
|
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
|
||||||
input logic [`NE+1:0] FullResultExp, // ResultExp with bits to determine sign and overflow
|
input logic [`NE+1:0] FullResultExp, // ResultExp with bits to determine sign and overflow
|
||||||
input logic [`NE+1:0] SumExp, // exponent of the normalized sum
|
input logic [`NE+1:0] SumExp, // exponent of the normalized sum
|
||||||
input logic ZSgnEffM, PSgnM,
|
input logic ZSgnEffM, PSgnM, // the product and modified Z signs
|
||||||
input logic Round, Guard, UfRound, UfLSBNormSum, Sticky, UfPlus1,
|
input logic Round, Guard, UfRound, UfLSBNormSum, Sticky, UfPlus1, // bits used to determine rounding
|
||||||
input logic FmtM, // precision 1 = double 0 = single
|
input logic FmtM, // precision 1 = double 0 = single
|
||||||
output logic Invalid, Overflow, Underflow,
|
output logic Invalid, Overflow, Underflow, // flags used to select the result
|
||||||
output logic [4:0] FMAFlgM
|
output logic [4:0] FMAFlgM // FMA flags
|
||||||
);
|
);
|
||||||
logic [`NE+1:0] MaxExp; // maximum value of the exponent
|
logic [`NE+1:0] MaxExp; // maximum value of the exponent
|
||||||
logic SigNaN;
|
logic SigNaN; // is an input a signaling NaN
|
||||||
logic UnderflowFlag, Inexact;
|
logic UnderflowFlag, Inexact; // flags
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
// Flags
|
// Flags
|
||||||
|
@ -225,7 +225,7 @@ module fpu (
|
|||||||
.XSgnM, .YSgnM, .XExpM, .YExpM, .ZExpM, .XManM, .YManM, .ZManM,
|
.XSgnM, .YSgnM, .XExpM, .YExpM, .ZExpM, .XManM, .YManM, .ZManM,
|
||||||
.XNaNM, .YNaNM, .ZNaNM, .XZeroM, .YZeroM, .ZZeroM,
|
.XNaNM, .YNaNM, .ZNaNM, .XZeroM, .YZeroM, .ZZeroM,
|
||||||
.XInfM, .YInfM, .ZInfM, .XSNaNM, .YSNaNM, .ZSNaNM,
|
.XInfM, .YInfM, .ZInfM, .XSNaNM, .YSNaNM, .ZSNaNM,
|
||||||
.FOpCtrlE, .FOpCtrlM,
|
.FOpCtrlE,
|
||||||
.FmtE, .FmtM, .FrmM,
|
.FmtE, .FmtM, .FrmM,
|
||||||
// outputs:
|
// outputs:
|
||||||
.FMAFlgM, .FMAResM);
|
.FMAFlgM, .FMAResM);
|
||||||
@ -257,19 +257,7 @@ module fpu (
|
|||||||
// outputs:
|
// outputs:
|
||||||
.FDivBusyE, .done(FDivSqrtDoneE), .AS_Result(FDivResM), .Flags(FDivFlgM));
|
.FDivBusyE, .done(FDivSqrtDoneE), .AS_Result(FDivResM), .Flags(FDivFlgM));
|
||||||
|
|
||||||
|
// convert from signle to double and vice versa
|
||||||
// add/FP <-> FP convert
|
|
||||||
// - computation is done in two stages
|
|
||||||
// - contains some E/M pipleine registers
|
|
||||||
//*** remove uneeded logic
|
|
||||||
//*** change to use the unpacking unit if possible
|
|
||||||
// faddcvt faddcvt (.clk, .reset, .FlushM, .StallM, .FrmM, .FOpCtrlM, .FmtE, .FmtM, .FSrcXE, .FSrcYE, .FOpCtrlE,
|
|
||||||
// .XSgnM, .YSgnM, .XManM, .YManM, .XExpM, .YExpM,
|
|
||||||
// .XSgnE, .YSgnE, .XManE, .YManE, .XExpE, .YExpE, .XDenormE, .YDenormE, .XNormE, .XNormM, .YNormM, .XZeroE, .YZeroE, .XInfE, .YInfE, .XNaNE, .YNaNE, .XSNaNE, .YSNaNE,
|
|
||||||
// // outputs:
|
|
||||||
// .CvtFpResM, .CvtFpFlgM);
|
|
||||||
|
|
||||||
|
|
||||||
cvtfp cvtfp (.XExpE, .XManE, .XSgnE, .XZeroE, .XDenormE, .XInfE, .XNaNE, .XSNaNE, .FrmE, .FmtE, .CvtFpResE, .CvtFpFlgE);
|
cvtfp cvtfp (.XExpE, .XManE, .XSgnE, .XZeroE, .XDenormE, .XInfE, .XNaNE, .XSNaNE, .FrmE, .FmtE, .CvtFpResE, .CvtFpFlgE);
|
||||||
|
|
||||||
// compare unit
|
// compare unit
|
||||||
|
Loading…
Reference in New Issue
Block a user