diff --git a/wally-pipelined/config/rv64icfd/wally-config.vh b/wally-pipelined/config/rv64icfd/wally-config.vh index 4fda9e151..136fb264c 100644 --- a/wally-pipelined/config/rv64icfd/wally-config.vh +++ b/wally-pipelined/config/rv64icfd/wally-config.vh @@ -26,7 +26,7 @@ // include shared configuration `include "wally-shared.vh" -// `include "../../../config/shared/wally-shared.vh" + // `include "../shared/wally-shared.vh" `define QEMU 0 `define BUILDROOT 0 diff --git a/wally-pipelined/fpu-testfloat/FMA/tbgen/test_gen.sh b/wally-pipelined/fpu-testfloat/FMA/tbgen/test_gen.sh index 0741e9d6d..199d9bbd8 100755 --- a/wally-pipelined/fpu-testfloat/FMA/tbgen/test_gen.sh +++ b/wally-pipelined/fpu-testfloat/FMA/tbgen/test_gen.sh @@ -1,3 +1,3 @@ -testfloat_gen f64_mulAdd -tininessafter -n 6133248 -rnear_even -seed 113355 -level 1 > testFloat +testfloat_gen f32_add -tininessafter -n 6133248 -rnear_even -seed 113355 -level 1 > testFloat tr -d ' ' < testFloat > testFloatNoSpace diff --git a/wally-pipelined/src/fpu/cvtfp.sv b/wally-pipelined/src/fpu/cvtfp.sv new file mode 100644 index 000000000..0925e23a3 --- /dev/null +++ b/wally-pipelined/src/fpu/cvtfp.sv @@ -0,0 +1,120 @@ + +// `include "wally-config.vh" +module cvtfp ( + input logic [10:0] XExpE, + input logic [52:0] XManE, + input logic XSgnE, + input logic XZeroE, + input logic XDenormE, + input logic XInfE, + input logic XNaNE, + input logic XSNaNE, + input logic [2:0] FrmE, + input logic FmtE, + output logic [63:0] CvtFpResE, + output logic [4:0] CvtFpFlgE); + + logic [7:0] DExp; + logic [51:0] Frac; + logic Denorm; + + + logic [8:0] i,NormCnt; + always_comb begin + i = 0; + while (~XManE[52-i] && i <= 52) i = i+1; // search for leading one + NormCnt = i; + end + + + + + + + + + logic [12:0] DExpCalc; + // logic Overflow, Underflow; + assign DExpCalc = (XExpE-1023+127)&{13{~XZeroE}}; + assign Denorm = $signed(DExpCalc) <= 0 & $signed(DExpCalc) > $signed(-23); + + logic [12:0] ShiftCnt; + logic [51:0] SFrac; + logic [25:0] DFrac; + logic [77:0] DFracTmp,tmp, tmp2; + //assign ShiftCnt = FmtE ? -DExpCalc&{13{Denorm}} : NormCnt; + assign SFrac = XManE[51:0] << NormCnt; +logic Shift; +assign tmp = (-DExpCalc+1)&{13{Shift}}; +assign tmp2 = {XManE, 23'b0}; +assign Shift = {13{Denorm|(($signed(DExpCalc) > $signed(-25)) & DExpCalc[12])}}; + assign DFracTmp = {XManE, 25'b0} >> ((-DExpCalc+1)&{13{Shift}}); +assign DFrac = DFracTmp[76:51]; + + logic Sticky, UfSticky, Guard, Round, LSBFrac, UfGuard, UfRound, UfLSBFrac; + logic CalcPlus1, UfCalcPlus1; + logic Plus1, UfPlus1; + // used to determine underflow flag + assign UfSticky = |DFracTmp[50:0]; + assign UfGuard = DFrac[1]; + assign UfRound = DFrac[0]; + assign UfLSBFrac = DFrac[2]; + + + assign Sticky = UfSticky | UfRound; + assign Guard = DFrac[2]; + assign Round = DFrac[1]; + assign LSBFrac = DFrac[3]; + + + always_comb begin + // Determine if you add 1 + case (FrmE) + 3'b000: CalcPlus1 = Guard & (Round | (Sticky) | (~Round&~Sticky&LSBFrac));//round to nearest even + 3'b001: CalcPlus1 = 0;//round to zero + 3'b010: CalcPlus1 = XSgnE;//round down + 3'b011: CalcPlus1 = ~XSgnE;//round up + 3'b100: CalcPlus1 = (Guard & (Round | (Sticky) | (~Round&~Sticky)));//round to nearest max magnitude + default: CalcPlus1 = 1'bx; + endcase + // Determine if you add 1 (for underflow flag) + case (FrmE) + 3'b000: UfCalcPlus1 = UfGuard & (UfRound | UfSticky | (~UfRound&~UfSticky&UfLSBFrac));//round to nearest even + 3'b001: UfCalcPlus1 = 0;//round to zero + 3'b010: UfCalcPlus1 = XSgnE;//round down + 3'b011: UfCalcPlus1 = ~XSgnE;//round up + 3'b100: UfCalcPlus1 = (UfGuard & (UfRound | UfSticky | (~UfRound&~UfSticky)));//round to nearest max magnitude + default: UfCalcPlus1 = 1'bx; + endcase + + end + + // If an answer is exact don't round + assign Plus1 = CalcPlus1 & (Sticky | UfGuard | Guard | Round); + assign UfPlus1 = UfCalcPlus1 & (Sticky | UfGuard); + logic [12:0] DExpFull; +logic [22:0] DResFrac; +logic [7:0] DResExp; + assign {DExpFull, DResFrac} = {DExpCalc&{13{~Denorm}}, DFrac[25:3]} + Plus1; + assign DResExp = DExpFull[7:0]; + + logic [10:0] SExp; + assign SExp = XExpE-(NormCnt&{8{~XZeroE}})+({11{XDenormE}}&1024-127); + + logic Overflow, Underflow, Inexact; + assign Overflow = $signed(DExpFull) >= $signed({1'b0, {8{1'b1}}}) & ~(XNaNE|XInfE); + assign Underflow = (($signed(DExpFull) <= 0) & ((Sticky|Guard|Round) | (XManE[52]&~|DFrac) | (|DFrac&~Denorm)) | ((DExpFull == 1) & Denorm & ~(UfPlus1&UfLSBFrac))) & ~(XNaNE|XInfE); + assign Inexact = (Sticky|Guard|Round|Underflow|Overflow) &~(XNaNE); + +logic [31:0] DRes; + assign DRes = XNaNE ? {XSgnE, XExpE, 1'b1, XManE[50:29]} : + Underflow & ~Denorm ? {XSgnE, 30'b0, CalcPlus1&(|FrmE[1:0]|Shift)} : + Overflow | XInfE ? ((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~XSgnE) | (FrmE[1:0]==2'b11&XSgnE)) & ~XInfE ? {XSgnE, 8'hfe, {23{1'b1}}} : + {XSgnE, 8'hff, 23'b0} : + {XSgnE, DResExp, DResFrac}; + assign CvtFpResE = FmtE ? {{32{1'b1}},DRes} : {XSgnE, SExp, SFrac[51]|XNaNE, SFrac[50:0]}; + assign CvtFpFlgE = FmtE ? {XSNaNE, 1'b0, Overflow, Underflow, Inexact} : {XSNaNE, 4'b0}; + +endmodule // fpadd + + diff --git a/wally-pipelined/src/fpu/faddcvt.sv b/wally-pipelined/src/fpu/faddcvt.sv index e09deae6d..5737b463d 100755 --- a/wally-pipelined/src/fpu/faddcvt.sv +++ b/wally-pipelined/src/fpu/faddcvt.sv @@ -117,8 +117,8 @@ module fpuaddcvt1 ( output logic AddSwapE ); - wire [5:0] ZP_mantissaA; - wire [5:0] ZP_mantissaB; + logic [5:0] ZP_mantissaA; + logic [5:0] ZP_mantissaB; wire ZV_mantissaA; wire ZV_mantissaB; @@ -181,8 +181,20 @@ module fpuaddcvt1 ( // normalization. If sum_corrected is all zeros, the exp_valid is // zero; otherwise, it is one. // modified to 52 bits to detect leading zeroes on denormalized mantissas - lz52 lz_norm_1 (ZP_mantissaA, ZV_mantissaA, mantissaA); - lz52 lz_norm_2 (ZP_mantissaB, ZV_mantissaB, mantissaB); + // lz52 lz_norm_1 (ZP_mantissaA, ZV_mantissaA, mantissaA); + // lz52 lz_norm_2 (ZP_mantissaB, ZV_mantissaB, mantissaB); + logic [8:0] i; + logic [8:0] j; + always_comb begin + i = 0; + while (~mantissaA[52-i] && $unsigned(i) <= $unsigned(52)) i = i+1; // search for leading one + ZP_mantissaA = i; + end + always_comb begin + j = 0; + while (~mantissaB[52-j] && $unsigned(j) <= $unsigned(52)) j = j+1; // search for leading one + ZP_mantissaB = j; + end // Denormalized exponents created by subtracting the leading zeroes from the original exponents assign AddExp1DenormE = AddSwapE ? (exp1 - {6'b0, ZP_mantissaB}) : (exp1 - {6'b0, ZP_mantissaA}); //KEP extended ZP_mantissa diff --git a/wally-pipelined/src/fpu/fctrl.sv b/wally-pipelined/src/fpu/fctrl.sv index 61a4af0ab..6bdb4a816 100755 --- a/wally-pipelined/src/fpu/fctrl.sv +++ b/wally-pipelined/src/fpu/fctrl.sv @@ -38,8 +38,8 @@ module fctrl ( 7'b1001011: ControlsD = `FCTRLW'b1_0_001_010_00_00_0_0; // fnmsub 7'b1001111: ControlsD = `FCTRLW'b1_0_001_011_00_00_0_0; // fnmadd 7'b1010011: casez(Funct7D) - 7'b00000??: ControlsD = `FCTRLW'b1_0_010_000_00_00_0_0; // fadd - 7'b00001??: ControlsD = `FCTRLW'b1_0_010_001_00_00_0_0; // fsub + 7'b00000??: ControlsD = `FCTRLW'b1_0_001_110_00_00_0_0; // fadd + 7'b00001??: ControlsD = `FCTRLW'b1_0_001_111_00_00_0_0; // fsub 7'b00010??: ControlsD = `FCTRLW'b1_0_001_100_00_00_0_0; // fmul 7'b00011??: ControlsD = `FCTRLW'b1_0_011_000_00_00_1_0; // fdiv 7'b01011??: ControlsD = `FCTRLW'b1_0_011_001_00_00_1_0; // fsqrt diff --git a/wally-pipelined/src/fpu/fma.sv b/wally-pipelined/src/fpu/fma.sv index f651d2376..55fdd4fe9 100644 --- a/wally-pipelined/src/fpu/fma.sv +++ b/wally-pipelined/src/fpu/fma.sv @@ -23,7 +23,7 @@ /////////////////////////////////////////// `include "wally-config.vh" -// `include "../../../config/rv64icfd/wally-config.vh" + // `include "../../../config/rv64icfd/wally-config.vh" module fma( input logic clk, @@ -102,11 +102,8 @@ module fma1( output logic AddendStickyE, // sticky bit that is calculated during alignment output logic KillProdE // set the product to zero before addition if the product is too small to matter ); - - logic [`NE+1:0] AlignCnt; // how far to shift the addend to align with the product in Q(NE+2.0) format - logic [4*`NF+5:0] ZManShifted; // output of the alignment shifter including sticky bits U(NF+5.3NF+1) - logic [4*`NF+5:0] ZManPreShifted; // input to the alignment shifter U(NF+5.3NF+1) - logic [`NE-2:0] Denorm; // Denormalized input value + logic [`NE-1:0] Denorm; + logic [`NE-1:0] DenormXExp, DenormYExp; // Denormalized input value /////////////////////////////////////////////////////////////////////////////// // Calculate the product @@ -116,80 +113,86 @@ module fma1( // represented with an exponent of 0. add one if there is a denormal number /////////////////////////////////////////////////////////////////////////////// - // verilator lint_off WIDTH - assign Denorm = FmtE ? 1 : -126+1023; + // denormalized numbers have diffrent values depending on which precison it is. + assign Denorm = FmtE ? 1 : 897; + assign DenormXExp = XDenormE ? Denorm : XExpE; + assign DenormYExp = YDenormE ? Denorm : YExpE; assign ProdExpE = (XZeroE|YZeroE) ? 0 : - XExpE + YExpE - BiasE + ({`NE-1{XDenormE}}&Denorm) + ({`NE-1{YDenormE}}&Denorm); - // verilator lint_on WIDTH + DenormXExp + DenormYExp - BiasE; // Calculate the product's mantissa // - Mantissa includes the assumed one. If the number is denormalized or zero, it does not have an assumed one. - assign ProdManE = XManE * YManE; + // assign ProdManE = XManE * YManE; + mult mult(.XManE, .YManE, .ProdManE); - /////////////////////////////////////////////////////////////////////////////// - // Alignment shifter - /////////////////////////////////////////////////////////////////////////////// + // /////////////////////////////////////////////////////////////////////////////// + // // Alignment shifter + // /////////////////////////////////////////////////////////////////////////////// - // determine the shift count for alignment - // - negitive means Z is larger, so shift Z left - // - positive means the product is larger, so shift Z right - // - Denormal numbers have an an exponent value of 1, however they are - // represented with an exponent of 0. add one to the exponent if it is a denormal number - assign AlignCnt = ProdExpE - (ZExpE + ({`NE-1{ZDenormE}}&Denorm)); + // // determine the shift count for alignment + // // - negitive means Z is larger, so shift Z left + // // - positive means the product is larger, so shift Z right + // // - Denormal numbers have an an exponent value of 1, however they are + // // represented with an exponent of 0. add one to the exponent if it is a denormal number + // assign AlignCnt = ProdExpE - (ZExpE + ({`NE-1{ZDenormE}}&Denorm)); - // Defualt Addition without shifting - // | 54'b0 | 106'b(product) | 2'b0 | - // |1'b0| addnend | + // // Defualt Addition without shifting + // // | 54'b0 | 106'b(product) | 2'b0 | + // // |1'b0| addnend | - // the 1'b0 before the added is because the product's mantissa has two bits before the binary point (xx.xxxxxxxxxx...) - assign ZManPreShifted = {(`NF+3)'(0), ZManE, /*106*/(2*`NF+2)'(0)}; - always_comb - begin - - // If the product is too small to effect the sum, kill the product + // // the 1'b0 before the added is because the product's mantissa has two bits before the binary point (xx.xxxxxxxxxx...) + // assign ZManPreShifted = {(`NF+3)'(0), ZManE, /*106*/(2*`NF+2)'(0)}; + // always_comb + // begin + + // // If the product is too small to effect the sum, kill the product - // | 54'b0 | 106'b(product) | 2'b0 | - // | addnend | - if ($signed(AlignCnt) <= $signed(-(`NF+4))) begin - KillProdE = 1; - ZManShifted = ZManPreShifted;//{107'b0, XManE, 54'b0}; - AddendStickyE = ~(XZeroE|YZeroE); + // // | 54'b0 | 106'b(product) | 2'b0 | + // // | addnend | + // if ($signed(AlignCnt) <= $signed(-(`NF+4))) begin + // KillProdE = 1; + // ZManShifted = ZManPreShifted;//{107'b0, XManE, 54'b0}; + // AddendStickyE = ~(XZeroE|YZeroE); - // If the Addend is shifted left (negitive AlignCnt) + // // If the Addend is shifted left (negitive AlignCnt) - // | 54'b0 | 106'b(product) | 2'b0 | - // | addnend | - end else if($signed(AlignCnt) <= $signed(0)) begin - KillProdE = 0; - ZManShifted = ZManPreShifted << -AlignCnt; - AddendStickyE = |(ZManShifted[`NF-1:0]); + // // | 54'b0 | 106'b(product) | 2'b0 | + // // | addnend | + // end else if($signed(AlignCnt) <= $signed(0)) begin + // KillProdE = 0; + // ZManShifted = ZManPreShifted << -AlignCnt; + // AddendStickyE = |(ZManShifted[`NF-1:0]); - // If the Addend is shifted right (positive AlignCnt) + // // If the Addend is shifted right (positive AlignCnt) - // | 54'b0 | 106'b(product) | 2'b0 | - // | addnend | - end else if ($signed(AlignCnt)<=$signed(2*`NF+1)) begin - KillProdE = 0; - ZManShifted = ZManPreShifted >> AlignCnt; - AddendStickyE = |(ZManShifted[`NF-1:0]); + // // | 54'b0 | 106'b(product) | 2'b0 | + // // | addnend | + // end else if ($signed(AlignCnt)<=$signed(2*`NF+1)) begin + // KillProdE = 0; + // ZManShifted = ZManPreShifted >> AlignCnt; + // AddendStickyE = |(ZManShifted[`NF-1:0]); - // If the addend is too small to effect the addition - // - The addend has to shift two past the end of the addend to be considered too small - // - The 2 extra bits are needed for rounding + // // If the addend is too small to effect the addition + // // - The addend has to shift two past the end of the addend to be considered too small + // // - The 2 extra bits are needed for rounding - // | 54'b0 | 106'b(product) | 2'b0 | - // | addnend | - end else begin - KillProdE = 0; - ZManShifted = 0; - AddendStickyE = ~ZZeroE; + // // | 54'b0 | 106'b(product) | 2'b0 | + // // | addnend | + // end else begin + // KillProdE = 0; + // ZManShifted = 0; + // AddendStickyE = ~ZZeroE; - end - end - assign AlignedAddendE = ZManShifted[4*`NF+5:`NF]; + // end + // end + // assign AlignedAddendE = ZManShifted[4*`NF+5:`NF]; + + alignshift alignshift(.ZExpE, .ZManE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .Denorm, + .AlignedAddendE, .AddendStickyE, .KillProdE); endmodule + module fma2( input logic XSgnM, YSgnM, ZSgnM, @@ -216,35 +219,35 @@ module fma2( logic [`NE-1:0] ResultExp; // Result exponent logic ResultSgn; // Result sign logic PSgn; // product sign - logic [2*`NF+1:0] ProdMan2; // product being added - logic [3*`NF+6:0] AlignedAddend2; // possibly inverted aligned Z + // logic [2*`NF+1:0] ProdMan2; // product being added + // logic [3*`NF+6:0] AlignedAddend2; // possibly inverted aligned Z logic [3*`NF+5:0] Sum; // positive sum - logic [3*`NF+6:0] PreSum; // possibly negitive sum + // logic [3*`NF+6:0] PreSum; // possibly negitive sum logic [`NE+1:0] SumExp; // exponent of the normalized sum - logic [`NE+1:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results - logic [`NE+1:0] SumExpTmpMinus1; // SumExpTmp-1 + // logic [`NE+1:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results + // logic [`NE+1:0] SumExpTmpMinus1; // SumExpTmp-1 logic [`NE+1:0] FullResultExp; // ResultExp with bits to determine sign and overflow logic [`NF+2:0] NormSum; // normalized sum - logic [3*`NF+5:0] SumShifted; // sum shifted for normalization - logic [8:0] NormCnt; // output of the leading zero detector //***change this later + // logic [3*`NF+5:0] SumShifted; // sum shifted for normalization + logic [8:0] NormCnt, NormCntCheck; // output of the leading zero detector //***change this later logic NormSumSticky; // sticky bit calulated from the normalized sum logic SumZero; // is the sum zero logic NegSum; // is the sum negitive logic InvZ; // invert Z if there is a subtraction (-product + Z or product - Z) logic ResultDenorm; // is the result denormalized - logic Sticky; // Sticky bit + logic Sticky, UfSticky; // Sticky bit logic Plus1, Minus1, CalcPlus1, CalcMinus1; // do you add or subtract one for rounding logic UfPlus1, UfCalcPlus1; // do you add one (for determining underflow flag) logic Invalid,Underflow,Overflow,Inexact; // flags - logic [8:0] DenormShift; // right shift if the result is denormalized //***change this later - logic SubBySmallNum; // was there supposed to be a subtraction by a small number + // logic [8:0] DenormShift; // right shift if the result is denormalized //***change this later + // logic SubBySmallNum; // was there supposed to be a subtraction by a small number logic [`FLEN-1:0] Addend; // value to add (Z or zero) logic ZeroSgn; // the result's sign if the sum is zero logic ResultSgnTmp; // the result's sign assuming the result is not zero logic Guard, Round, LSBNormSum; // bits needed to determine rounding logic UfGuard, UfRound, UfLSBNormSum; // bits needed to determine rounding for underflow flag - logic [`NE+1:0] MaxExp; // maximum value of the exponent - logic [`NE+1:0] FracLen; // length of the fraction + // logic [`NE+1:0] MaxExp; // maximum value of the exponent + // logic [`NE+1:0] FracLen; // length of the fraction logic SigNaN; // is an input a signaling NaN logic UnderflowFlag; // Underflow singal used in FMAFlgM (used to avoid a circular depencency) logic [`FLEN-1:0] XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results @@ -254,10 +257,391 @@ module fma2( // Calculate the product's sign // Negate product's sign if FNMADD or FNMSUB - assign PSgn = XSgnM ^ YSgnM ^ FOpCtrlM[1]; + assign PSgn = XSgnM ^ YSgnM ^ (FOpCtrlM[1]&~FOpCtrlM[2]); + assign ZSgnEffM = ZSgnM^FOpCtrlM[0]; // Swap sign of Z for subtract + // /////////////////////////////////////////////////////////////////////////////// + // // Addition + // /////////////////////////////////////////////////////////////////////////////// + + // // Negate Z when doing one of the following opperations: + // // -prod + Z + // // prod - Z + // assign ZSgnEffM = ZSgnM^FOpCtrlM[0]; // Swap sign of Z for subtract + // assign InvZ = ZSgnEffM ^ PSgn; + + // // Choose an inverted or non-inverted addend - the one is added later + // assign AlignedAddend2 = InvZ ? ~{1'b0, AlignedAddendM} : {1'b0, AlignedAddendM}; + // // Kill the product if the product is too small to effect the addition (determined in fma1.sv) + // assign ProdMan2 = KillProdM ? 0 : ProdManM; + + // // Do the addition + // // - add one to negate if the added was inverted + // // - the 2 extra bits at the begining and end are needed for rounding + // assign PreSum = AlignedAddend2 + {ProdMan2, 2'b0} + InvZ; + + // // Is the sum negitive + // assign NegSum = PreSum[3*`NF+6]; + // // If the sum is negitive, negate the sum. + // assign Sum = NegSum ? -PreSum[3*`NF+5:0] : PreSum[3*`NF+5:0]; + + fmaadd fmaadd(.AlignedAddendM, .ProdManM, .PSgn, .ZSgnEffM, .KillProdM, .Sum, .NegSum, .InvZ, .NormCnt); + + + + + // /////////////////////////////////////////////////////////////////////////////// + // // Leading zero counter + // /////////////////////////////////////////////////////////////////////////////// + + // //*** replace with non-behavoral code + // logic [8:0] i; + // always_comb begin + // i = 0; + // while (~Sum[3*`NF+5-i] && $unsigned(i) <= $unsigned(3*`NF+5)) i = i+1; // search for leading one + // NormCnt = i+1; // compute shift count + // end + + fmalzc fmalzc(.Sum, .NormCntCheck); + + + + + + + + + + // /////////////////////////////////////////////////////////////////////////////// + // // Normalization + // /////////////////////////////////////////////////////////////////////////////// + + // // Determine if the sum is zero + // assign SumZero = ~(|Sum); + + // // determine the length of the fraction based on precision + // assign FracLen = FmtM ? `NF : 13'd23; + // //assign FracLen = `NF; + + // // Determine if the result is denormal + // logic [`NE+1:0] SumExpTmpTmp; + // assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCnt} - (`NF+4)); + // assign SumExpTmp = FmtM ? SumExpTmpTmp : (SumExpTmpTmp-1023+127)&{`NE+2{|SumExpTmpTmp}}; + + // assign ResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero; + + // // Determine the shift needed for denormal results + // assign SumExpTmpMinus1 = SumExpTmp-1; + // assign DenormShift = ResultDenorm ? SumExpTmpMinus1[8:0] : 0; //*** change this when changing the size of DenormShift also change to an and opperation + + // // Normalize the sum + // assign SumShifted = SumZero ? 0 : Sum << NormCnt+DenormShift; //*** fix mux's with constants in them + // assign NormSum = SumShifted[3*`NF+5:2*`NF+3]; + // // Calculate the sticky bit + // assign NormSumSticky = FmtM ? (|SumShifted[2*`NF+3:0]) : (|SumShifted[136:0]); + // assign Sticky = AddendStickyM | NormSumSticky; + + // // Determine sum's exponent + // assign SumExp = SumZero ? 0 : //***again fix mux + // ResultDenorm ? 0 : + // SumExpTmp; + normalize normalize(.Sum, .ZExpM, .ProdExpM, .NormCnt, .FmtM, .KillProdM, .AddendStickyM, .NormSum, + .SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm); + + + + + // /////////////////////////////////////////////////////////////////////////////// + // // Rounding + // /////////////////////////////////////////////////////////////////////////////// + + // // round to nearest even + // // {Guard, Round, Sticky} + // // 0xx - do nothing + // // 100 - tie - Plus1 if result is odd (LSBNormSum = 1) + // // - don't add 1 if a small number was supposed to be subtracted + // // 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number) + // // 110/111 - Plus1 + + // // round to zero - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0 + + // // round to -infinity + // // - Plus1 if negative unless a small number was supposed to be subtracted from a result with guard and round bits of 0 + // // - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0 + + // // round to infinity + // // - Plus1 if positive unless a small number was supposed to be subtracted from a result with guard and round bits of 0 + // // - subtract 1 if a small number was supposed to be subtracted from a negative result with guard and round bits of 0 + + // // round to nearest max magnitude + // // {Guard, Round, Sticky} + // // 0xx - do nothing + // // 100 - tie - Plus1 + // // - don't add 1 if a small number was supposed to be subtracted + // // 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number) + // // 110/111 - Plus1 + + // // determine guard, round, and least significant bit of the result + // assign Guard = FmtM ? NormSum[2] : NormSum[31]; + // assign Round = FmtM ? NormSum[1] : NormSum[30]; + // assign LSBNormSum = FmtM ? NormSum[3] : NormSum[32]; + + // // used to determine underflow flag + // assign UfGuard = FmtM ? NormSum[1] : NormSum[30]; + // assign UfRound = FmtM ? NormSum[0] : NormSum[29]; + // assign UfLSBNormSum = FmtM ? NormSum[2] : NormSum[31]; + + // // Deterimine if a small number was supposed to be subtrated + // assign SubBySmallNum = AddendStickyM & InvZ & ~(NormSumSticky) & ~ZZeroM; + + // always_comb begin + // // Determine if you add 1 + // case (FrmM) + // 3'b000: CalcPlus1 = Guard & (Round | ((Sticky|UfRound)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky|UfRound)&LSBNormSum&~SubBySmallNum));//round to nearest even + // 3'b001: CalcPlus1 = 0;//round to zero + // 3'b010: CalcPlus1 = ResultSgn & ~(SubBySmallNum & ~Guard & ~Round);//round down + // 3'b011: CalcPlus1 = ~ResultSgn & ~(SubBySmallNum & ~Guard & ~Round);//round up + // 3'b100: CalcPlus1 = (Guard & (Round | ((Sticky|UfRound)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky|UfRound)&~SubBySmallNum)));//round to nearest max magnitude + // default: CalcPlus1 = 1'bx; + // endcase + // // Determine if you add 1 (for underflow flag) + // case (FrmM) + // 3'b000: UfCalcPlus1 = UfGuard & (UfRound | (Sticky&~(~UfRound&SubBySmallNum)) | (~UfRound&~Sticky&UfLSBNormSum&~SubBySmallNum));//round to nearest even + // 3'b001: UfCalcPlus1 = 0;//round to zero + // 3'b010: UfCalcPlus1 = ResultSgn & ~(SubBySmallNum & ~UfGuard & ~UfRound);//round down + // 3'b011: UfCalcPlus1 = ~ResultSgn & ~(SubBySmallNum & ~UfGuard & ~UfRound);//round up + // 3'b100: UfCalcPlus1 = (UfGuard & (UfRound | (Sticky&~(~UfRound&SubBySmallNum)) | (~UfRound&~Sticky&~SubBySmallNum)));//round to nearest max magnitude + // default: UfCalcPlus1 = 1'bx; + // endcase + // // Determine if you subtract 1 + // case (FrmM) + // 3'b000: CalcMinus1 = 0;//round to nearest even + // 3'b001: CalcMinus1 = SubBySmallNum & ~Guard & ~Round;//round to zero + // 3'b010: CalcMinus1 = ~ResultSgn & ~Guard & ~Round & SubBySmallNum;//round down + // 3'b011: CalcMinus1 = ResultSgn & ~Guard & ~Round & SubBySmallNum;//round up + // 3'b100: CalcMinus1 = 0;//round to nearest max magnitude + // default: CalcMinus1 = 1'bx; + // endcase + + // end + + // // If an answer is exact don't round + // assign Plus1 = CalcPlus1 & (Sticky | UfGuard | Guard | Round); + // assign UfPlus1 = UfCalcPlus1 & (Sticky | UfGuard | UfRound); + // assign Minus1 = CalcMinus1 & (Sticky | UfGuard | Guard | Round); + + // // Compute rounded result + // logic [`FLEN:0] RoundAdd; //*** move this up + // logic [`NF-1:0] NormSumTruncated; + // assign RoundAdd = FmtM ? Minus1 ? {`FLEN+1{1'b1}} : {{{`FLEN{1'b0}}}, Plus1} : + // Minus1 ? {{36{1'b1}}, 29'b0} : {35'b0, Plus1, 29'b0}; + // assign NormSumTruncated = FmtM ? NormSum[`NF+2:3] : {NormSum[54:32], 29'b0}; + + // assign {FullResultExp, ResultFrac} = {SumExp, NormSumTruncated} + RoundAdd; + // assign ResultExp = FullResultExp[`NE-1:0]; + + fmaround fmaround(.FmtM, .FrmM, .Sticky, .UfSticky, .NormSum, .AddendStickyM, .NormSumSticky, .ZZeroM, .InvZ, .ResultSgn, .SumExp, + .CalcPlus1, .Plus1, .UfPlus1, .Minus1, .FullResultExp, .ResultFrac, .ResultExp, .Round, .Guard, .UfRound, .UfLSBNormSum); + + + + + + /////////////////////////////////////////////////////////////////////////////// + // Sign calculation + /////////////////////////////////////////////////////////////////////////////// + + // Determine the sign if the sum is zero + // if cancelation then 0 unless round to -infinity + // otherwise psign + assign ZeroSgn = (PSgn^ZSgnEffM)&~Underflow ? FrmM == 3'b010 : PSgn; + + // is the result negitive + // if p - z is the Sum negitive + // if -p + z is the Sum positive + // if -p - z then the Sum is negitive + assign ResultSgnTmp = InvZ&(ZSgnEffM)&NegSum | InvZ&PSgn&~NegSum | ((ZSgnEffM)&PSgn); + assign ResultSgn = SumZero ? ZeroSgn : ResultSgnTmp; + + + + + + // /////////////////////////////////////////////////////////////////////////////// + // // Flags + // /////////////////////////////////////////////////////////////////////////////// + + + + // // Set Invalid flag for following cases: + // // 1) any input is a signaling NaN + // // 2) Inf - Inf (unless x or y is NaN) + // // 3) 0 * Inf + + // assign MaxExp = FmtM ? {`NE{1'b1}} : {8{1'b1}}; + // assign SigNaN = XSNaNM | YSNaNM | ZSNaNM; + // assign Invalid = SigNaN | ((XInfM || YInfM) & ZInfM & (PSgn ^ ZSgnEffM) & ~XNaNM & ~YNaNM) | (XZeroM & YInfM) | (YZeroM & XInfM); + + // // Set Overflow flag if the number is too big to be represented + // // - Don't set the overflow flag if an overflowed result isn't outputed + // assign Overflow = FullResultExp >= {MaxExp} & ~FullResultExp[`NE+1]&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM); + + // // Set Underflow flag if the number is too small to be represented in normal numbers + // // - Don't set the underflow flag if the result is exact + + // assign Underflow = (SumExp[`NE+1] | ((SumExp == 0) & (Round|Guard|Sticky|UfRound)))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM); + // assign UnderflowFlag = (FullResultExp[`NE+1] | ((FullResultExp == 0) | ((FullResultExp == 1) & (SumExp == 0) & ~(UfPlus1&UfLSBNormSum)))&(Round|Guard|Sticky))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM); + // // Set Inexact flag if the result is diffrent from what would be outputed given infinite precision + // // - Don't set the underflow flag if an underflowed result isn't outputed + // assign Inexact = (Sticky|UfRound|Overflow|Guard|Round|Underflow)&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM); + + // // Combine flags + // // - FMA can't set the Divide by zero flag + // // - Don't set the underflow flag if the result was rounded up to a normal number + // assign FMAFlgM = {Invalid, 1'b0, Overflow, UnderflowFlag, Inexact}; + + fmaflags fmaflags(.XSNaNM, .YSNaNM, .ZSNaNM, .XInfM, .YInfM, .ZInfM, .XZeroM, .YZeroM, + .XNaNM, .YNaNM, .ZNaNM, .FullResultExp, .SumExp, .ZSgnEffM, .PSgn, .Round, .Guard, .UfRound, .UfLSBNormSum, .Sticky, .UfPlus1, + .FmtM, .Invalid, .Overflow, .Underflow, .FMAFlgM); + + + + + /////////////////////////////////////////////////////////////////////////////// + // Select the result + /////////////////////////////////////////////////////////////////////////////// + assign XNaNResult = FmtM ? {XSgnM, XExpM, 1'b1, XManM[`NF-2:0]} : {{32{1'b1}}, XSgnM, XExpM[7:0], 1'b1, XManM[50:29]}; + assign YNaNResult = FmtM ? {YSgnM, YExpM, 1'b1, YManM[`NF-2:0]} : {{32{1'b1}}, YSgnM, YExpM[7:0], 1'b1, YManM[50:29]}; + assign ZNaNResult = FmtM ? {ZSgnEffM, ZExpM, 1'b1, ZManM[`NF-2:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], 1'b1, ZManM[50:29]}; + assign OverflowResult = FmtM ? ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} : + {ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}} : + ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{32{1'b1}}, ResultSgn, 8'hfe, {23{1'b1}}} : + {{32{1'b1}}, ResultSgn, 8'hff, 23'b0}; + assign InvalidResult = FmtM ? {ResultSgn, {`NE{1'b1}}, 1'b1, {`NF-1{1'b0}}} : {{32{1'b1}}, ResultSgn, 8'hff, 1'b1, 22'b0}; + assign KillProdResult = FmtM ? {ResultSgn, {ZExpM, ZManM[`NF-1:0]} - (Minus1&AddendStickyM) + (Plus1&AddendStickyM)} : {{32{1'b1}}, ResultSgn, {ZExpM[`NE-1],ZExpM[6:0], ZManM[51:29]} - {30'b0, (Minus1&AddendStickyM)} + {30'b0, (Plus1&AddendStickyM)}}; + assign UnderflowResult = FmtM ? {ResultSgn, {`FLEN-1{1'b0}}} + (CalcPlus1&(AddendStickyM|FrmM[1])) : {{32{1'b1}}, {ResultSgn, 31'b0} + {31'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))}}; + assign FMAResM = XNaNM ? XNaNResult : + YNaNM ? YNaNResult : + ZNaNM ? ZNaNResult : + Invalid ? InvalidResult : // has to be before inf + XInfM ? FmtM ? {PSgn, XExpM, XManM[`NF-1:0]} : {{32{1'b1}}, PSgn, XExpM[7:0], XManM[51:29]} : + YInfM ? FmtM ? {PSgn, YExpM, YManM[`NF-1:0]} : {{32{1'b1}}, PSgn, YExpM[7:0], YManM[51:29]} : + ZInfM ? FmtM ? {ZSgnEffM, ZExpM, ZManM[`NF-1:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], ZManM[51:29]} : + KillProdM ? KillProdResult : + Overflow ? OverflowResult : + Underflow & ~ResultDenorm & (ResultExp!=1) ? UnderflowResult : + FmtM ? {ResultSgn, ResultExp, ResultFrac} : + {{32{1'b1}}, ResultSgn, ResultExp[7:0], ResultFrac[51:29]}; + +// *** use NF where needed + +endmodule + +module mult( + input logic [`NF:0] XManE, YManE, + output logic [2*`NF+1:0] ProdManE +); + assign ProdManE = XManE * YManE; +endmodule + +module alignshift( + input logic [`NE-1:0] ZExpE, // biased exponents in B(NE.0) format + input logic [`NF:0] ZManE, // fractions in U(0.NF) format] + input logic ZDenormE, // is the input denormal + input logic XZeroE, YZeroE, ZZeroE, // is the input zero + input logic [`NE+1:0] ProdExpE, + input logic [`NE-1:0] Denorm, + output logic [3*`NF+5:0] AlignedAddendE, + output logic AddendStickyE, + output logic KillProdE +); + + logic [`NE+1:0] AlignCnt; // how far to shift the addend to align with the product in Q(NE+2.0) format + logic [4*`NF+5:0] ZManShifted; // output of the alignment shifter including sticky bits U(NF+5.3NF+1) + logic [4*`NF+5:0] ZManPreShifted; // input to the alignment shifter U(NF+5.3NF+1) + logic [`NE-1:0] DenormZExp; + + /////////////////////////////////////////////////////////////////////////////// + // Alignment shifter + /////////////////////////////////////////////////////////////////////////////// + + // determine the shift count for alignment + // - negitive means Z is larger, so shift Z left + // - positive means the product is larger, so shift Z right + // - Denormal numbers have an an exponent value of 1, however they are + // represented with an exponent of 0. add one to the exponent if it is a denormal number + assign DenormZExp = ZDenormE ? Denorm : ZExpE; + assign AlignCnt = ProdExpE - DenormZExp + (`NF+3); + + // Defualt Addition without shifting + // | 54'b0 | 106'b(product) | 2'b0 | + // |1'b0| addnend | + + // the 1'b0 before the added is because the product's mantissa has two bits before the binary point (xx.xxxxxxxxxx...) + assign ZManPreShifted = {ZManE,(3*`NF+5)'(0)}; + always_comb + begin + + // If the product is too small to effect the sum, kill the product + + // | 54'b0 | 106'b(product) | 2'b0 | + // | addnend | + if ($signed(AlignCnt) < $signed(0)) begin + KillProdE = 1; + ZManShifted = ZManPreShifted;//{107'b0, XManE, 54'b0}; + AddendStickyE = ~(XZeroE|YZeroE); + + // // If the Addend is shifted left (negitive AlignCnt) + + // // | 54'b0 | 106'b(product) | 2'b0 | + // // | addnend | + // end else if($signed(AlignCnt) <= $signed(0)) begin + // KillProdE = 0; + // ZManShifted = ZManPreShifted << -AlignCnt; + // AddendStickyE = |(ZManShifted[`NF-1:0]); + + // If the Addend is shifted right (positive AlignCnt) + + // | 54'b0 | 106'b(product) | 2'b0 | + // | addnend | + end else if ($signed(AlignCnt)<=$signed(3*`NF+4)) begin + KillProdE = 0; + ZManShifted = ZManPreShifted >> AlignCnt; + AddendStickyE = |(ZManShifted[`NF-1:0]); + + // If the addend is too small to effect the addition + // - The addend has to shift two past the end of the addend to be considered too small + // - The 2 extra bits are needed for rounding + + // | 54'b0 | 106'b(product) | 2'b0 | + // | addnend | + end else begin + KillProdE = 0; + ZManShifted = 0; + AddendStickyE = ~ZZeroE; + + end + end + assign AlignedAddendE = ZManShifted[4*`NF+5:`NF]; +endmodule + +module fmaadd( + input logic [3*`NF+5:0] AlignedAddendM, // Z aligned for addition + input logic [2*`NF+1:0] ProdManM, + input logic PSgn, ZSgnEffM, + input logic KillProdM, + output logic [3*`NF+5:0] Sum, + output logic NegSum, + output logic InvZ, + output logic [8:0] NormCnt +); + logic [3*`NF+6:0] PreSum, NegPreSum; // possibly negitive sum + logic [2*`NF+1:0] ProdMan2; // product being added + logic [3*`NF+6:0] AlignedAddend2; // possibly inverted aligned Z + logic [8:0] PNormCnt, NNormCnt; + /////////////////////////////////////////////////////////////////////////////// // Addition /////////////////////////////////////////////////////////////////////////////// @@ -265,28 +649,33 @@ module fma2( // Negate Z when doing one of the following opperations: // -prod + Z // prod - Z - assign ZSgnEffM = ZSgnM^FOpCtrlM[0]; // Swap sign of Z for subtract assign InvZ = ZSgnEffM ^ PSgn; // Choose an inverted or non-inverted addend - the one is added later - assign AlignedAddend2 = InvZ ? ~{1'b0, AlignedAddendM} : {1'b0, AlignedAddendM}; + assign AlignedAddend2 = InvZ ? -{1'b0, AlignedAddendM} : {1'b0, AlignedAddendM}; // Kill the product if the product is too small to effect the addition (determined in fma1.sv) assign ProdMan2 = KillProdM ? 0 : ProdManM; - + poslza poslza(AlignedAddend2, ProdMan2, PNormCnt); + neglza neglza({1'b0,AlignedAddendM}, -{{`NF+3{1'b0}}, ProdMan2, 2'b0}, NNormCnt); // Do the addition // - add one to negate if the added was inverted // - the 2 extra bits at the begining and end are needed for rounding - assign PreSum = AlignedAddend2 + {ProdMan2, 2'b0} + InvZ; + assign PreSum = AlignedAddend2 + {ProdMan2, 2'b0}; + assign NegPreSum = AlignedAddendM - {ProdMan2, 2'b0}; // Is the sum negitive assign NegSum = PreSum[3*`NF+6]; // If the sum is negitive, negate the sum. - assign Sum = NegSum ? -PreSum[3*`NF+5:0] : PreSum[3*`NF+5:0]; - - - + assign Sum = NegSum ? NegPreSum[3*`NF+5:0] : PreSum[3*`NF+5:0]; + assign NormCnt = NegSum ? NNormCnt : PNormCnt; +// set to PNormCnt if the product is zero (there may be an additional bit of error from the negation) +endmodule +module fmalzc( + input logic [3*`NF+5:0] Sum, + output logic [8:0] NormCntCheck +); /////////////////////////////////////////////////////////////////////////////// // Leading one detector @@ -297,18 +686,124 @@ module fma2( always_comb begin i = 0; while (~Sum[3*`NF+5-i] && $unsigned(i) <= $unsigned(3*`NF+5)) i = i+1; // search for leading one - NormCnt = i+1; // compute shift count + NormCntCheck = i; end +endmodule +//////////////////////////////////////////////////////////////////////////////////// +// Filename: lza.v +// Author: Katherine Parry +// Date: 2021/02/07 +// +// Description: Leading Zero Anticipator +// This a the Kershaw Leading Zero Anticipator(LZA) using the algorithm described in +// "Leading Zero Anticipation and Dectection - A Comparison of Methods" (2001) +// Schmookler and Nowka. +// After swapping, alignment and inversion of A & B, the following functions are +// applied to all 'i' bits. +// -- T[i] = A[i] XOR B[i]; // Propagation that will occur +// -- G[i] = A[i] AND B[i]; // The value Generated +// -- Z[i] = ~(A[i] OR B[i]): // Fill functions +// The leading Zero is determined by the first occurance of the pattern T*GGZ*, +// whereas Leading ones are found by the pattern T*ZG* +// To evaluate the pattern we map it to the function that evaluates the three bits +// (current, before, & after): +// f[i] = T[i-1](G[i]~Z[i+1] & ~G[i+1]Z[i]) | ~T[i-1](Z[i]~Z[i+1] & G[i]~G[i+1]) +// +//////////////////////////////////////////////////////////////////////////////////// + +module poslza( + // parameter SIGNIFICANT_SZ=52; + //leading digit anticipator + // localparam sz=SIGNIFICANT_SZ+1; + input logic [3*`NF+6:0] A, + input logic [2*`NF+1:0] P, + output logic [8:0] PCnt + ); + + // Compute Generate, Propageate and Kill for each bit + + logic [3*`NF+6:0] T; + logic [3*`NF+5:0] Z; + // assign T = A^{{`NF+3{1'b0}}, P, 2'b0}; + // assign Z = ~(A|{{`NF+3{1'b0}}, P, 2'b0}); + assign T[3*`NF+6:2*`NF+4] = A[3*`NF+6:2*`NF+4]; + assign Z[3*`NF+5:2*`NF+4] = A[3*`NF+5:2*`NF+4]; + assign T[2*`NF+3:2] = A[2*`NF+3:2]^P; + assign Z[2*`NF+3:2] = A[2*`NF+3:2]|P; + assign T[1:0] = A[1:0]; + assign Z[1:0] = A[1:0]; + + + // Apply function to determine Leading pattern + logic [3*`NF+6:0] pf; + assign pf = T^{Z[3*`NF+5:0], 1'b0}; + // assign pf = T^{~Z[3*`NF+5:0], 1'b0}; + + logic [8:0] i; + always_comb begin + i = 0; + while (~pf[3*`NF+6-i] && $unsigned(i) <= $unsigned(3*`NF+6)) i = i+1; // search for leading one + PCnt = i; + end + +endmodule + +module neglza( + // parameter SIGNIFICANT_SZ=52; + //leading digit anticipator + // localparam sz=SIGNIFICANT_SZ+1; + input logic [3*`NF+6:0] A, + input logic [3*`NF+6:0] P, + output logic [8:0] NCnt + ); + + // Compute Generate, Propageate and Kill for each bit + + logic [3*`NF+6:0] T; + logic [3*`NF+5:0] Z; + assign T = A^P; + assign Z = ~(A[3*`NF+5:0]|P[3*`NF+5:0]); + + + // Apply function to determine Leading pattern + logic [3*`NF+6:0] f; + assign f = T^{~Z, 1'b0}; + + logic [8:0] i; + always_comb begin + i = 0; + while (~f[3*`NF+6-i] && $unsigned(i) <= $unsigned(3*`NF+6)) i = i+1; // search for leading one + NCnt = i; + end + +endmodule - - - - - - +module normalize( + input logic [3*`NF+5:0] Sum, + input logic [`NE-1:0] ZExpM, + input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias + input logic [8:0] NormCnt, + input logic FmtM, // precision 1 = double 0 = single + input logic KillProdM, + input logic AddendStickyM, + output logic [`NF+2:0] NormSum, // normalized sum + output logic SumZero, + output logic NormSumSticky, UfSticky, + output logic [`NE+1:0] SumExp, // exponent of the normalized sum + output logic ResultDenorm +); + logic [`NE+1:0] FracLen; // length of the fraction + logic [`NE+1:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results + logic [`NE+1:0] SumExpTmpMinus1; // SumExpTmp-1 + logic [8:0] DenormShift; // right shift if the result is denormalized //***change this later + logic [3*`NF+5:0] SumShifted; // sum shifted for normalization + logic [3*`NF+7:0] SumShiftedTmp; // sum shifted for normalization + logic [`NE+1:0] SumExpTmpTmp; + logic PreResultDenorm; + logic LZAPlus1; /////////////////////////////////////////////////////////////////////////////// // Normalization @@ -318,35 +813,90 @@ module fma2( assign SumZero = ~(|Sum); // determine the length of the fraction based on precision - assign FracLen = FmtM ? `NF : 13'd23; + assign FracLen = FmtM ? `NF+1 : 13'd24; //assign FracLen = `NF; // Determine if the result is denormal - logic [`NE+1:0] SumExpTmpTmp; - assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCnt} - (`NF+4)); + assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCnt} + 1 - (`NF+4)); assign SumExpTmp = FmtM ? SumExpTmpTmp : (SumExpTmpTmp-1023+127)&{`NE+2{|SumExpTmpTmp}}; - assign ResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero; + assign PreResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero; // Determine the shift needed for denormal results - assign SumExpTmpMinus1 = SumExpTmp-1; - assign DenormShift = ResultDenorm ? SumExpTmpMinus1[8:0] : 0; //*** change this when changing the size of DenormShift also change to an and opperation - + // - if not denorm add 1 to shift out the leading 1 + assign DenormShift = PreResultDenorm ? SumExpTmp[8:0] : 1; //*** change this when changing the size of DenormShift also change to an and opperation // Normalize the sum - assign SumShifted = SumZero ? 0 : Sum << NormCnt+DenormShift; //*** fix mux's with constants in them + assign SumShiftedTmp = SumZero ? 0 : {2'b0, Sum} << NormCnt+DenormShift; //*** fix mux's with constants in them //***NormCnt can be simplified + // LZA correction + assign LZAPlus1 = SumShiftedTmp[3*`NF+7]; + assign SumShifted = LZAPlus1 ? SumShiftedTmp[3*`NF+6:1] : SumShiftedTmp[3*`NF+5:0]; assign NormSum = SumShifted[3*`NF+5:2*`NF+3]; // Calculate the sticky bit - assign NormSumSticky = FmtM ? (|SumShifted[2*`NF+3:0]) : (|SumShifted[136:0]); - assign Sticky = AddendStickyM | NormSumSticky; + assign NormSumSticky = FmtM ? (|SumShifted[2*`NF+2:0]) : (|SumShifted[136:0]); + assign UfSticky = AddendStickyM | NormSumSticky; // Determine sum's exponent assign SumExp = SumZero ? 0 : //***again fix mux ResultDenorm ? 0 : - SumExpTmp; + SumExpTmp+LZAPlus1+(~|SumExpTmp&SumShiftedTmp[3*`NF+6]); +// recalculate if the result is denormalized +assign ResultDenorm = PreResultDenorm&~SumShiftedTmp[3*`NF+6]&~SumShiftedTmp[3*`NF+7]; + + // // Determine if the sum is zero + // assign SumZero = ~(|Sum); + // // determine the length of the fraction based on precision + // assign FracLen = FmtM ? `NF : 13'd23; + // //assign FracLen = `NF; + // // Determine if the result is denormal + // assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCnt} + 1 - (`NF+4)); + // assign SumExpTmp = FmtM ? SumExpTmpTmp : (SumExpTmpTmp-1023+127)&{`NE+2{|SumExpTmpTmp}}; + // assign ResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero; + // // Determine the shift needed for denormal results + // // - if not denorm add 1 to shift out the leading 1 + // assign DenormShift = ResultDenorm ? SumExpTmp[8:0] : 1; //*** change this when changing the size of DenormShift also change to an and opperation + + // // Normalize the sum + // assign SumShifted = SumZero ? 0 : Sum << NormCnt+DenormShift; //*** fix mux's with constants in them + // assign NormSum = SumShifted[3*`NF+5:2*`NF+3]; + // // Calculate the sticky bit + // assign NormSumSticky = FmtM ? (|SumShifted[2*`NF+2:0]) : (|SumShifted[136:0]); + // assign UfSticky = AddendStickyM | NormSumSticky; + + // // Determine sum's exponent + // assign SumExp = SumZero ? 0 : //***again fix mux + // ResultDenorm ? 0 : + // SumExpTmp; + +endmodule + +module fmaround( + input logic FmtM, // precision 1 = double 0 = single + input logic [2:0] FrmM, + input logic UfSticky, + output logic Sticky, + input logic [`NF+2:0] NormSum, // normalized sum + input logic AddendStickyM, + input logic NormSumSticky, + input logic ZZeroM, + input logic InvZ, + input logic [`NE+1:0] SumExp, // exponent of the normalized sum + input logic ResultSgn, + output logic CalcPlus1, Plus1, UfPlus1, Minus1, + output logic [`NE+1:0] FullResultExp, // ResultExp with bits to determine sign and overflow + output logic [`NF-1:0] ResultFrac, // Result fraction + output logic [`NE-1:0] ResultExp, // Result exponent + output logic Round, Guard, UfRound, UfLSBNormSum +); + logic LSBNormSum; + logic SubBySmallNum, UfSubBySmallNum; // was there supposed to be a subtraction by a small number + logic UfGuard; + logic UfCalcPlus1, CalcMinus1; + logic [`FLEN:0] RoundAdd; //*** move this up + logic [`NF-1:0] NormSumTruncated; /////////////////////////////////////////////////////////////////////////////// // Rounding @@ -388,26 +938,29 @@ module fma2( assign UfRound = FmtM ? NormSum[0] : NormSum[29]; assign UfLSBNormSum = FmtM ? NormSum[2] : NormSum[31]; + // determine sticky + assign Sticky = UfSticky | NormSum[0]; // Deterimine if a small number was supposed to be subtrated - assign SubBySmallNum = AddendStickyM & InvZ & ~(NormSumSticky) & ~ZZeroM; + assign SubBySmallNum = AddendStickyM & InvZ & ~(NormSumSticky|UfRound) & ~ZZeroM; //***here + assign UfSubBySmallNum = AddendStickyM & InvZ & ~(NormSumSticky) & ~ZZeroM; //***here always_comb begin // Determine if you add 1 case (FrmM) - 3'b000: CalcPlus1 = Guard & (Round | ((Sticky|UfGuard)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky|UfGuard)&LSBNormSum&~SubBySmallNum));//round to nearest even + 3'b000: CalcPlus1 = Guard & (Round | ((Sticky)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky)&LSBNormSum&~SubBySmallNum));//round to nearest even 3'b001: CalcPlus1 = 0;//round to zero 3'b010: CalcPlus1 = ResultSgn & ~(SubBySmallNum & ~Guard & ~Round);//round down 3'b011: CalcPlus1 = ~ResultSgn & ~(SubBySmallNum & ~Guard & ~Round);//round up - 3'b100: CalcPlus1 = (Guard & (Round | ((Sticky|UfGuard)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky|UfGuard)&~SubBySmallNum)));//round to nearest max magnitude + 3'b100: CalcPlus1 = (Guard & (Round | ((Sticky)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky)&~SubBySmallNum)));//round to nearest max magnitude default: CalcPlus1 = 1'bx; endcase // Determine if you add 1 (for underflow flag) case (FrmM) - 3'b000: UfCalcPlus1 = UfGuard & (UfRound | (Sticky&~(~UfRound&SubBySmallNum)) | (~UfRound&~Sticky&UfLSBNormSum&~SubBySmallNum));//round to nearest even + 3'b000: UfCalcPlus1 = UfGuard & (UfRound | (UfSticky&UfRound|~UfSubBySmallNum) | (~Sticky&UfLSBNormSum&~UfSubBySmallNum));//round to nearest even 3'b001: UfCalcPlus1 = 0;//round to zero - 3'b010: UfCalcPlus1 = ResultSgn & ~(SubBySmallNum & ~UfGuard & ~UfRound);//round down - 3'b011: UfCalcPlus1 = ~ResultSgn & ~(SubBySmallNum & ~UfGuard & ~UfRound);//round up - 3'b100: UfCalcPlus1 = (UfGuard & (UfRound | (Sticky&~(~UfRound&SubBySmallNum)) | (~UfRound&~Sticky&~SubBySmallNum)));//round to nearest max magnitude + 3'b010: UfCalcPlus1 = ResultSgn & ~(UfSubBySmallNum & ~UfGuard & ~UfRound);//round down + 3'b011: UfCalcPlus1 = ~ResultSgn & ~(UfSubBySmallNum & ~UfGuard & ~UfRound);//round up + 3'b100: UfCalcPlus1 = (UfGuard & (UfRound | (UfSticky&~(~UfRound&UfSubBySmallNum)) | (~Sticky&~UfSubBySmallNum)));//round to nearest max magnitude default: UfCalcPlus1 = 1'bx; endcase // Determine if you subtract 1 @@ -423,13 +976,11 @@ module fma2( end // If an answer is exact don't round - assign Plus1 = CalcPlus1 & (Sticky | UfGuard | Guard | Round); - assign UfPlus1 = UfCalcPlus1 & (Sticky | UfGuard | UfRound); - assign Minus1 = CalcMinus1 & (Sticky | UfGuard | Guard | Round); + assign Plus1 = CalcPlus1 & (Sticky | Guard | Round); + assign UfPlus1 = UfCalcPlus1 & (Sticky | UfGuard);//UfRound is part of sticky + assign Minus1 = CalcMinus1 & (Sticky | Guard | Round); // Compute rounded result - logic [`FLEN:0] RoundAdd; //*** move this up - logic [`NF-1:0] NormSumTruncated; assign RoundAdd = FmtM ? Minus1 ? {`FLEN+1{1'b1}} : {{{`FLEN{1'b0}}}, Plus1} : Minus1 ? {{36{1'b1}}, 29'b0} : {35'b0, Plus1, 29'b0}; assign NormSumTruncated = FmtM ? NormSum[`NF+2:3] : {NormSum[54:32], 29'b0}; @@ -438,30 +989,24 @@ module fma2( assign ResultExp = FullResultExp[`NE-1:0]; +endmodule - - - - - /////////////////////////////////////////////////////////////////////////////// - // Sign calculation - /////////////////////////////////////////////////////////////////////////////// - - // Determine the sign if the sum is zero - // if cancelation then 0 unless round to -infinity - // otherwise psign - assign ZeroSgn = (PSgn^ZSgnEffM)&~Underflow ? FrmM == 3'b010 : PSgn; - - // is the result negitive - // if p - z is the Sum negitive - // if -p + z is the Sum positive - // if -p - z then the Sum is negitive - assign ResultSgnTmp = InvZ&(ZSgnEffM)&NegSum | InvZ&PSgn&~NegSum | ((ZSgnEffM)&PSgn); - assign ResultSgn = SumZero ? ZeroSgn : ResultSgnTmp; - - - - +module fmaflags( + input logic XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs + input logic XInfM, YInfM, ZInfM, // inputs are infinity + input logic XZeroM, YZeroM, // inputs are zero + input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN + input logic [`NE+1:0] FullResultExp, // ResultExp with bits to determine sign and overflow + input logic [`NE+1:0] SumExp, // exponent of the normalized sum + input logic ZSgnEffM, PSgn, + input logic Round, Guard, UfRound, UfLSBNormSum, Sticky, UfPlus1, + input logic FmtM, // precision 1 = double 0 = single + output logic Invalid, Overflow, Underflow, + output logic [4:0] FMAFlgM +); + logic [`NE+1:0] MaxExp; // maximum value of the exponent + logic SigNaN; + logic UnderflowFlag, Inexact; /////////////////////////////////////////////////////////////////////////////// // Flags @@ -474,62 +1019,28 @@ module fma2( // 2) Inf - Inf (unless x or y is NaN) // 3) 0 * Inf - assign MaxExp = FmtM ? {`NE{1'b1}} : {8{1'b1}}; + // assign MaxExp = FmtM ? {`NE{1'b1}} : {8{1'b1}}; assign SigNaN = XSNaNM | YSNaNM | ZSNaNM; assign Invalid = SigNaN | ((XInfM || YInfM) & ZInfM & (PSgn ^ ZSgnEffM) & ~XNaNM & ~YNaNM) | (XZeroM & YInfM) | (YZeroM & XInfM); // Set Overflow flag if the number is too big to be represented // - Don't set the overflow flag if an overflowed result isn't outputed - assign Overflow = FullResultExp >= {MaxExp} & ~FullResultExp[`NE+1]&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM); + logic LtMaxExp; + assign LtMaxExp = FmtM ? &FullResultExp[`NE-1:0] | FullResultExp[`NE] : &FullResultExp[7:0] | FullResultExp[8]; + assign Overflow = LtMaxExp & ~FullResultExp[`NE+1]&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM); // Set Underflow flag if the number is too small to be represented in normal numbers // - Don't set the underflow flag if the result is exact - assign Underflow = (SumExp[`NE+1] | ((SumExp == 0) & (Round|Guard|Sticky|UfGuard)))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM); + assign Underflow = (SumExp[`NE+1] | ((SumExp == 0) & (Round|Guard|Sticky)))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM); assign UnderflowFlag = (FullResultExp[`NE+1] | ((FullResultExp == 0) | ((FullResultExp == 1) & (SumExp == 0) & ~(UfPlus1&UfLSBNormSum)))&(Round|Guard|Sticky))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM); // Set Inexact flag if the result is diffrent from what would be outputed given infinite precision // - Don't set the underflow flag if an underflowed result isn't outputed - assign Inexact = (Sticky|UfGuard|Overflow|Guard|Round|Underflow)&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM); + assign Inexact = (Sticky|Overflow|Guard|Round|Underflow)&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM); // Combine flags // - FMA can't set the Divide by zero flag // - Don't set the underflow flag if the result was rounded up to a normal number assign FMAFlgM = {Invalid, 1'b0, Overflow, UnderflowFlag, Inexact}; -// nf ne fraction and exponent bits -// nf 52 double nf is 11 -// u2.2nf - product unsigned 2 int bits - - - - - - /////////////////////////////////////////////////////////////////////////////// - // Select the result - /////////////////////////////////////////////////////////////////////////////// - assign XNaNResult = FmtM ? {XSgnM, XExpM, 1'b1, XManM[`NF-2:0]} : {{32{1'b1}}, XSgnM, XExpM[7:0], 1'b1, XManM[50:29]}; - assign YNaNResult = FmtM ? {YSgnM, YExpM, 1'b1, YManM[`NF-2:0]} : {{32{1'b1}}, YSgnM, YExpM[7:0], 1'b1, YManM[50:29]}; - assign ZNaNResult = FmtM ? {ZSgnEffM, ZExpM, 1'b1, ZManM[`NF-2:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], 1'b1, ZManM[50:29]}; - assign OverflowResult = FmtM ? ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} : - {ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}} : - ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{32{1'b1}}, ResultSgn, 8'hfe, {23{1'b1}}} : - {{32{1'b1}}, ResultSgn, 8'hff, 23'b0}; - assign InvalidResult = FmtM ? {ResultSgn, {`NE{1'b1}}, 1'b1, {`NF-1{1'b0}}} : {{32{1'b1}}, ResultSgn, 8'hff, 1'b1, 22'b0}; - assign KillProdResult = FmtM ? {ResultSgn, {ZExpM, ZManM[`NF-1:0]} - (Minus1&AddendStickyM) + (Plus1&AddendStickyM)} : {{32{1'b1}}, ResultSgn, {ZExpM[`NE-1],ZExpM[6:0], ZManM[51:29]} - {30'b0, (Minus1&AddendStickyM)} + {30'b0, (Plus1&AddendStickyM)}}; - assign UnderflowResult = FmtM ? {ResultSgn, {`FLEN-1{1'b0}}} + (CalcPlus1&(AddendStickyM|FrmM[1])) : {{32{1'b1}}, {ResultSgn, 31'b0} + {31'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))}}; - assign FMAResM = XNaNM ? XNaNResult : - YNaNM ? YNaNResult : - ZNaNM ? ZNaNResult : - Invalid ? InvalidResult : // has to be before inf - XInfM ? FmtM ? {PSgn, XExpM, XManM[`NF-1:0]} : {{32{1'b1}}, PSgn, XExpM[7:0], XManM[51:29]} : - YInfM ? FmtM ? {PSgn, YExpM, YManM[`NF-1:0]} : {{32{1'b1}}, PSgn, YExpM[7:0], YManM[51:29]} : - ZInfM ? FmtM ? {ZSgnEffM, ZExpM, ZManM[`NF-1:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], ZManM[51:29]} : - Overflow ? OverflowResult : - KillProdM ? KillProdResult : // has to be after Underflow - Underflow & ~ResultDenorm ? UnderflowResult : - FmtM ? {ResultSgn, ResultExp, ResultFrac} : - {{32{1'b1}}, ResultSgn, ResultExp[7:0], ResultFrac[51:29]}; - -// *** use NF where needed - endmodule \ No newline at end of file diff --git a/wally-pipelined/src/fpu/fpu.sv b/wally-pipelined/src/fpu/fpu.sv index 048235804..94b695b0c 100755 --- a/wally-pipelined/src/fpu/fpu.sv +++ b/wally-pipelined/src/fpu/fpu.sv @@ -76,7 +76,7 @@ module fpu ( logic [63:0] FRD1D, FRD2D, FRD3D; // Read Data from FP register - decode stage logic [63:0] FRD1E, FRD2E, FRD3E; // Read Data from FP register - execute stage logic [63:0] FSrcXE, FSrcXM; // Input 1 to the various units (after forwarding) - logic [63:0] FSrcYE; // Input 2 to the various units (after forwarding) + logic [63:0] FPreSrcYE, FSrcYE; // Input 2 to the various units (after forwarding) logic [63:0] FPreSrcZE, FSrcZE; // Input 3 to the various units (after forwarding) // unpacking signals @@ -110,8 +110,8 @@ module fpu ( logic [63:0] ReadResW; // read result (load instruction) - logic [63:0] FAddResM, FAddResW; // add/FP -> FP convert result - logic [4:0] FAddFlgM, FAddFlgW; // add/FP -> FP convert flags + logic [63:0] CvtFpResE, CvtFpResM, CvtFpResW; // add/FP -> FP convert result + logic [4:0] CvtFpFlgE, CvtFpFlgM, CvtFpFlgW; // add/FP -> FP convert flags logic [63:0] CvtResE, CvtResM; // FP <-> int convert result logic [4:0] CvtFlgE, CvtFlgM; // FP <-> int convert flags //*** trim this @@ -196,9 +196,10 @@ module fpu ( // forwarding muxs mux3 #(64) fxemux(FRD1E, FPUResultW, FResM, FForwardXE, FSrcXE); - mux3 #(64) fyemux(FRD2E, FPUResultW, FResM, FForwardYE, FSrcYE); + mux3 #(64) fyemux(FRD2E, FPUResultW, FResM, FForwardYE, FPreSrcYE); mux3 #(64) fzemux(FRD3E, FPUResultW, FResM, FForwardZE, FPreSrcZE); - mux2 #(64) fzmulmux(FPreSrcZE, 64'b0, FOpCtrlE[2], FSrcZE); // Force Z to be 0 for multiply instructions + mux3 #(64) fyaddmux(FPreSrcYE, {{32{1'b1}}, 2'b0, {7{1'b1}}, 23'b0}, {2'b0, {10{1'b1}}, 52'b0}, {FmtE&FOpCtrlE[2]&FOpCtrlE[1]&(FResultSelE==3'b001), ~FmtE&FOpCtrlE[2]&FOpCtrlE[1]&(FResultSelE==3'b001)}, FSrcYE); // Force Z to be 0 for multiply instructions + mux3 #(64) fzmulmux(FPreSrcZE, 64'b0, FPreSrcYE, {FOpCtrlE[2]&FOpCtrlE[1], FOpCtrlE[2]&~FOpCtrlE[1]}, FSrcZE); // Force Z to be 0 for multiply instructions // unpacking unit @@ -261,11 +262,14 @@ module fpu ( // - contains some E/M pipleine registers //*** remove uneeded logic //*** change to use the unpacking unit if possible - faddcvt faddcvt (.clk, .reset, .FlushM, .StallM, .FrmM, .FOpCtrlM, .FmtE, .FmtM, .FSrcXE, .FSrcYE, .FOpCtrlE, - .XSgnM, .YSgnM, .XManM, .YManM, .XExpM, .YExpM, - .XSgnE, .YSgnE, .XManE, .YManE, .XExpE, .YExpE, .XDenormE, .YDenormE, .XNormE, .YNormE, .XNormM, .YNormM, .XZeroE, .YZeroE, .XInfE, .YInfE, .XNaNE, .YNaNE, .XSNaNE, .YSNaNE, - // outputs: - .FAddResM, .FAddFlgM); +// faddcvt faddcvt (.clk, .reset, .FlushM, .StallM, .FrmM, .FOpCtrlM, .FmtE, .FmtM, .FSrcXE, .FSrcYE, .FOpCtrlE, +// .XSgnM, .YSgnM, .XManM, .YManM, .XExpM, .YExpM, +// .XSgnE, .YSgnE, .XManE, .YManE, .XExpE, .YExpE, .XDenormE, .YDenormE, .XNormE, .YNormE, .XNormM, .YNormM, .XZeroE, .YZeroE, .XInfE, .YInfE, .XNaNE, .YNaNE, .XSNaNE, .YSNaNE, +// // outputs: +// .CvtFpResM, .CvtFpFlgM); + + + cvtfp cvtfp (.XExpE, .XManE, .XSgnE, .XZeroE, .XDenormE, .XInfE, .XNaNE, .XSNaNE, .FrmE, .FmtE, .CvtFpResE, .CvtFpFlgE); // compare unit // - computation is done in one stage @@ -322,6 +326,9 @@ module fpu ( flopenrc #(64) EMRegSgnRes(clk, reset, FlushM, ~StallM, SgnResE, SgnResM); flopenrc #(1) EMRegSgnFlg(clk, reset, FlushM, ~StallM, SgnNVE, SgnNVM); + + flopenrc #(64) EMRegCvtFpRes(clk, reset, FlushM, ~StallM, CvtFpResE, CvtFpResM); + flopenrc #(5) EMRegCvtFpFlg(clk, reset, FlushM, ~StallM, CvtFpFlgE, CvtFpFlgM); flopenrc #(64) EMRegCvtRes(clk, reset, FlushM, ~StallM, CvtResE, CvtResM); flopenrc #(5) EMRegCvtFlg(clk, reset, FlushM, ~StallM, CvtFlgE, CvtFlgM); @@ -352,7 +359,7 @@ module fpu ( mux4 #(`XLEN) IntResMux(CmpResM[`XLEN-1:0], FSrcXM[`XLEN-1:0], ClassResM[`XLEN-1:0], CvtResM[`XLEN-1:0], FIntResSelM, FIntResM); // FPU flag selection - to privileged - mux5 #(5) FPUFlgMux(5'b0, FMAFlgM, FAddFlgM, FDivFlgM, FFlgM, FResultSelW, SetFflagsM); + mux5 #(5) FPUFlgMux(5'b0, FMAFlgM, CvtFpFlgM, FDivFlgM, FFlgM, FResultSelW, SetFflagsM); @@ -363,7 +370,7 @@ module fpu ( //////////////////////////////////////////////////////////////////////////////////////// flopenrc #(64) MWRegFma(clk, reset, FlushW, ~StallW, FMAResM, FMAResW); flopenrc #(64) MWRegDiv(clk, reset, FlushW, ~StallW, FDivResM, FDivResW); - flopenrc #(64) MWRegAdd(clk, reset, FlushW, ~StallW, FAddResM, FAddResW); + flopenrc #(64) MWRegAdd(clk, reset, FlushW, ~StallW, CvtFpResM, CvtFpResW); flopenrc #(64) MWRegClass(clk, reset, FlushW, ~StallW, FResM, FResW); flopenrc #(6) MWCtrlReg(clk, reset, FlushW, ~StallW, {FRegWriteM, FResultSelM, FmtM, FWriteIntM}, @@ -382,7 +389,7 @@ module fpu ( mux2 #(64) ReadResMux({{32{1'b1}}, ReadDataW[31:0]}, {{64-`XLEN{1'b1}}, ReadDataW}, FmtW, ReadResW); // select the result to be written to the FP register - mux5 #(64) FPUResultMux(ReadResW, FMAResW, FAddResW, FDivResW, FResW, FResultSelW, FPUResultW); + mux5 #(64) FPUResultMux(ReadResW, FMAResW, CvtFpResW, FDivResW, FResW, FResultSelW, FPUResultW); end else begin // no F_SUPPORTED or D_SUPPORTED; tie outputs low