mirror of
https://github.com/openhwgroup/cvw
synced 2025-02-11 06:05:49 +00:00
radix-4 divider passing tests
This commit is contained in:
parent
254ebf478e
commit
5d5f79eb8f
1048
pipelined/srt/qsel4.sv
Normal file
1048
pipelined/srt/qsel4.sv
Normal file
File diff suppressed because it is too large
Load Diff
2
pipelined/srt/sim-srt4
Executable file
2
pipelined/srt/sim-srt4
Executable file
@ -0,0 +1,2 @@
|
||||
vsim -do "do srt-radix4.do"
|
||||
|
1
pipelined/srt/sim-srt4-batch
Executable file
1
pipelined/srt/sim-srt4-batch
Executable file
@ -0,0 +1 @@
|
||||
vsim -c -do "do srt-radix4.do"
|
31
pipelined/srt/srt-radix4.do
Normal file
31
pipelined/srt/srt-radix4.do
Normal file
@ -0,0 +1,31 @@
|
||||
# srt.do
|
||||
#
|
||||
# David_Harris@hmc.edu 19 October 2021
|
||||
|
||||
# Use this wally-pipelined.do file to run this example.
|
||||
# Either bring up ModelSim and type the following at the "ModelSim>" prompt:
|
||||
# do wally-pipelined.do
|
||||
# or, to run from a shell, type the following at the shell prompt:
|
||||
# vsim -do wally-pipelined.do -c
|
||||
# (omit the "-c" to see the GUI while running from the shell)
|
||||
|
||||
onbreak {resume}
|
||||
|
||||
# create library
|
||||
if [file exists work] {
|
||||
vdel -all
|
||||
}
|
||||
vlib work
|
||||
|
||||
vlog +incdir+../config/rv64gc +incdir+../config/shared srt-radix4.sv testbench-radix4.sv qsel4.sv ../src/generic/flop/flop*.sv ../src/generic/mux.sv ../src/generic/lzc.sv
|
||||
vopt +acc work.testbenchradix4 -o workopt
|
||||
vsim workopt
|
||||
|
||||
-- display input and output signals as hexidecimal values
|
||||
add wave /testbenchradix4/*
|
||||
add wave /testbenchradix4/srtradix4/*
|
||||
add wave /testbenchradix4/srtradix4/qsel4/*
|
||||
add wave /testbenchradix4/srtradix4/otfc4/*
|
||||
|
||||
-- Run the Simulation
|
||||
run -all
|
323
pipelined/srt/srt-radix4.sv
Normal file
323
pipelined/srt/srt-radix4.sv
Normal file
@ -0,0 +1,323 @@
|
||||
///////////////////////////////////////////
|
||||
// srt.sv
|
||||
//
|
||||
// Written: David_Harris@hmc.edu 13 January 2022
|
||||
// Modified:
|
||||
//
|
||||
// Purpose: Combined Divide and Square Root Floating Point and Integer Unit
|
||||
//
|
||||
// A component of the Wally configurable RISC-V project.
|
||||
//
|
||||
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
|
||||
//
|
||||
// MIT LICENSE
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
|
||||
// software and associated documentation files (the "Software"), to deal in the Software
|
||||
// without restriction, including without limitation the rights to use, copy, modify, merge,
|
||||
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
|
||||
// to whom the Software is furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in all copies or
|
||||
// substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
|
||||
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
||||
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||||
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
|
||||
// OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
`include "wally-config.vh"
|
||||
|
||||
`define DIVLEN ((`NF<(`XLEN)) ? (`XLEN) : `NF)
|
||||
|
||||
module srtradix4 (
|
||||
input logic clk,
|
||||
input logic Start,
|
||||
input logic Stall, // *** multiple pipe stages
|
||||
input logic Flush, // *** multiple pipe stages
|
||||
// Floating Point Inputs
|
||||
// later add exponents, signs, special cases
|
||||
input logic XSign, YSign,
|
||||
input logic [`NE-1:0] XExp, YExp,
|
||||
input logic [`NF-1:0] XFrac, YFrac,
|
||||
input logic [`XLEN-1:0] SrcA, SrcB,
|
||||
input logic [1:0] Fmt, // Floats: 00 = 16 bit, 01 = 32 bit, 10 = 64 bit, 11 = 128 bit
|
||||
input logic W64, // 32-bit ints on XLEN=64
|
||||
input logic Signed, // Interpret integers as signed 2's complement
|
||||
input logic Int, // Choose integer inputs
|
||||
input logic Sqrt, // perform square root, not divide
|
||||
output logic rsign,
|
||||
output logic [`DIVLEN-1:0] Quot, Rem, // *** later handle integers
|
||||
output logic [`NE-1:0] rExp,
|
||||
output logic [3:0] Flags
|
||||
);
|
||||
|
||||
// logic qp, qz, qm; // quotient is +1, 0, or -1
|
||||
logic [3:0] q;
|
||||
logic [`NE-1:0] calcExp;
|
||||
logic calcSign;
|
||||
logic [`DIVLEN-1:0] X, Dpreproc;
|
||||
logic [`DIVLEN+3:0] WS, WSA, WSN;
|
||||
logic [`DIVLEN+3:0] WC, WCA, WCN;
|
||||
logic [`DIVLEN+3:0] D, DBar, D2, DBar2, Dsel;
|
||||
logic [$clog2(`XLEN+1)-1:0] intExp;
|
||||
logic intSign;
|
||||
|
||||
srtpreproc preproc(SrcA, SrcB, XFrac, YFrac, Fmt, W64, Signed, Int, Sqrt, X, Dpreproc, intExp, intSign);
|
||||
|
||||
// Top Muxes and Registers
|
||||
// When start is asserted, the inputs are loaded into the divider.
|
||||
// Otherwise, the divisor is retained and the partial remainder
|
||||
// is fed back for the next iteration.
|
||||
// - assumed one is added here since all numbers are normlaized
|
||||
// *** wait what about zero? is that specal case? can the divider handle it?
|
||||
// - when the start signal is asserted X and 0 are loaded into WS and WC
|
||||
// - otherwise load WSA into the flipflop
|
||||
// *** what does N and A stand for?
|
||||
// *** change shift amount for radix4
|
||||
mux2 #(`DIVLEN+4) wsmux({WSA[`DIVLEN+1:0], 2'b0}, {4'b0001, X}, Start, WSN);
|
||||
flop #(`DIVLEN+4) wsflop(clk, WSN, WS);
|
||||
mux2 #(`DIVLEN+4) wcmux({WCA[`DIVLEN+1:0], 2'b0}, {`DIVLEN+4{1'b0}}, Start, WCN);
|
||||
flop #(`DIVLEN+4) wcflop(clk, WCN, WC);
|
||||
flopen #(`DIVLEN+4) dflop(clk, Start, {4'b0001, Dpreproc}, D);
|
||||
|
||||
// Quotient Selection logic
|
||||
// Given partial remainder, select quotient of +1, 0, or -1 (qp, qz, pm)
|
||||
// *** change this for radix 4 - generate w/ stine code
|
||||
// q encoding:
|
||||
// 1000 = +2
|
||||
// 0100 = +1
|
||||
// 0000 = 0
|
||||
// 0010 = -1
|
||||
// 0001 = -2
|
||||
qsel4 qsel4(.D, .WS, .WC, .q);
|
||||
|
||||
// Store the expoenent and sign until division is done
|
||||
flopen #(`NE) expflop(clk, Start, calcExp, rExp);
|
||||
flopen #(1) signflop(clk, Start, calcSign, rsign);
|
||||
|
||||
// Divisor Selection logic
|
||||
// *** radix 4 change to choose -2 to 2
|
||||
// - choose the negitive version of what's being selected
|
||||
assign DBar = ~D;
|
||||
assign DBar2 = {~D[`DIVLEN+2:0], 1'b1};
|
||||
assign D2 = {D[`DIVLEN+2:0], 1'b0};
|
||||
|
||||
always_comb
|
||||
case (q)
|
||||
4'b1000: Dsel = DBar2;
|
||||
4'b0100: Dsel = DBar;
|
||||
4'b0000: Dsel = {(`DIVLEN+4){1'b0}};
|
||||
4'b0010: Dsel = D;
|
||||
4'b0001: Dsel = D2;
|
||||
default: Dsel = {`DIVLEN+4{1'bx}};
|
||||
endcase
|
||||
|
||||
// Partial Product Generation
|
||||
// WSA, WCA = WS + WC - qD
|
||||
csa #(`DIVLEN+4) csa(WS, WC, Dsel, |q[3:2], WSA, WCA);
|
||||
|
||||
//*** change for radix 4
|
||||
otfc4 #(`DIVLEN) otfc4(clk, Start, q, Quot);
|
||||
|
||||
expcalc expcalc(.XExp, .YExp, .calcExp);
|
||||
|
||||
signcalc signcalc(.XSign, .YSign, .calcSign);
|
||||
|
||||
endmodule
|
||||
|
||||
////////////////
|
||||
// Submodules //
|
||||
////////////////
|
||||
|
||||
///////////////////
|
||||
// Preprocessing //
|
||||
///////////////////
|
||||
module srtpreproc (
|
||||
input logic [`XLEN-1:0] SrcA, SrcB,
|
||||
input logic [`NF-1:0] XFrac, YFrac,
|
||||
input logic [1:0] Fmt, // Floats: 00 = 16 bit, 01 = 32 bit, 10 = 64 bit, 11 = 128 bit
|
||||
input logic W64, // 32-bit ints on XLEN=64
|
||||
input logic Signed, // Interpret integers as signed 2's complement
|
||||
input logic Int, // Choose integer inputs
|
||||
input logic Sqrt, // perform square root, not divide
|
||||
output logic [`DIVLEN-1:0] X, D,
|
||||
output logic [$clog2(`XLEN+1)-1:0] intExp, // Quotient integer exponent
|
||||
output logic intSign // Quotient integer sign
|
||||
);
|
||||
|
||||
logic [$clog2(`XLEN+1)-1:0] zeroCntA, zeroCntB;
|
||||
logic [`XLEN-1:0] PosA, PosB;
|
||||
logic [`DIVLEN-1:0] ExtraA, ExtraB, PreprocA, PreprocB, PreprocX, PreprocY;
|
||||
|
||||
assign PosA = (Signed & SrcA[`XLEN - 1]) ? -SrcA : SrcA;
|
||||
assign PosB = (Signed & SrcB[`XLEN - 1]) ? -SrcB : SrcB;
|
||||
|
||||
lzc #(`XLEN) lzcA (PosA, zeroCntA);
|
||||
lzc #(`XLEN) lzcB (PosB, zeroCntB);
|
||||
|
||||
assign ExtraA = {PosA, {`DIVLEN-`XLEN{1'b0}}};
|
||||
assign ExtraB = {PosB, {`DIVLEN-`XLEN{1'b0}}};
|
||||
|
||||
assign PreprocA = ExtraA << zeroCntA;
|
||||
assign PreprocB = ExtraB << (zeroCntB + 1);
|
||||
assign PreprocX = {XFrac, {`DIVLEN-`NF{1'b0}}};
|
||||
assign PreprocY = {YFrac, {`DIVLEN-`NF{1'b0}}};
|
||||
|
||||
|
||||
assign X = Int ? PreprocA : PreprocX;
|
||||
assign D = Int ? PreprocB : PreprocY;
|
||||
assign intExp = zeroCntB - zeroCntA + 1;
|
||||
assign intSign = Signed & (SrcA[`XLEN - 1] ^ SrcB[`XLEN - 1]);
|
||||
endmodule
|
||||
|
||||
/////////////////////////////////
|
||||
// Quotient Selection, Radix 2 //
|
||||
/////////////////////////////////
|
||||
module qsel2 ( // *** eventually just change to 4 bits
|
||||
input logic [`DIVLEN+3:`DIVLEN] ps, pc,
|
||||
output logic qp, qz, qm
|
||||
);
|
||||
|
||||
logic [`DIVLEN+3:`DIVLEN] p, g;
|
||||
logic magnitude, sign, cout;
|
||||
|
||||
// The quotient selection logic is presented for simplicity, not
|
||||
// for efficiency. You can probably optimize your logic to
|
||||
// select the proper divisor with less delay.
|
||||
|
||||
// Quotient equations from EE371 lecture notes 13-20
|
||||
assign p = ps ^ pc;
|
||||
assign g = ps & pc;
|
||||
|
||||
assign #1 magnitude = ~(&p[`DIVLEN+2:`DIVLEN]);
|
||||
assign #1 cout = g[`DIVLEN+2] | (p[`DIVLEN+2] & (g[`DIVLEN+1] | p[`DIVLEN+1] & g[`DIVLEN]));
|
||||
assign #1 sign = p[`DIVLEN+3] ^ cout;
|
||||
/* assign #1 magnitude = ~((ps[54]^pc[54]) & (ps[53]^pc[53]) &
|
||||
(ps[52]^pc[52]));
|
||||
assign #1 sign = (ps[55]^pc[55])^
|
||||
(ps[54] & pc[54] | ((ps[54]^pc[54]) &
|
||||
(ps[53]&pc[53] | ((ps[53]^pc[53]) &
|
||||
(ps[52]&pc[52]))))); */
|
||||
|
||||
// Produce quotient = +1, 0, or -1
|
||||
assign #1 qp = magnitude & ~sign;
|
||||
assign #1 qz = ~magnitude;
|
||||
assign #1 qm = magnitude & sign;
|
||||
endmodule
|
||||
|
||||
|
||||
///////////////////////////////////
|
||||
// On-The-Fly Converter, Radix 2 //
|
||||
///////////////////////////////////
|
||||
module otfc4 #(parameter N=65) (
|
||||
input logic clk,
|
||||
input logic Start,
|
||||
input logic [3:0] q,
|
||||
output logic [N-1:0] r
|
||||
);
|
||||
|
||||
// The on-the-fly converter transfers the quotient
|
||||
// bits to the quotient as they come.
|
||||
//
|
||||
// This code follows the psuedocode presented in the
|
||||
// floating point chapter of the book. Right now,
|
||||
// it is written for Radix-2 division.
|
||||
//
|
||||
// QM is Q-1. It allows us to write negative bits
|
||||
// without using a costly CPA.
|
||||
logic [N+2:0] Q, QM, QNext, QMNext, QMux, QMMux;
|
||||
// QR and QMR are the shifted versions of Q and QM.
|
||||
// They are treated as [N-1:r] size signals, and
|
||||
// discard the r most significant bits of Q and QM.
|
||||
logic [N:0] QR, QMR;
|
||||
// if starting a new divison set Q to 0 and QM to -1
|
||||
mux2 #(N+3) Qmux(QNext, {N+3{1'b0}}, Start, QMux);
|
||||
mux2 #(N+3) QMmux(QMNext, {N+3{1'b1}}, Start, QMMux);
|
||||
flop #(N+3) Qreg(clk, QMux, Q);
|
||||
flop #(N+3) QMreg(clk, QMMux, QM);
|
||||
|
||||
// shift Q (quotent) and QM (quotent-1)
|
||||
// if q = 2 Q = {Q, 10} QM = {Q, 01}
|
||||
// else if q = 1 Q = {Q, 01} QM = {Q, 00}
|
||||
// else if q = 0 Q = {Q, 00} QM = {QM, 11}
|
||||
// else if q = -1 Q = {QM, 11} QM = {QM, 10}
|
||||
// else if q = -2 Q = {QM, 10} QM = {QM, 01}
|
||||
// *** how does the 0 concatination numbers work?
|
||||
|
||||
|
||||
|
||||
always_comb begin
|
||||
QR = Q[N:0];
|
||||
QMR = QM[N:0]; // Shift Q and QM
|
||||
if (q[3]) begin // +2
|
||||
QNext = {QR, 2'b10};
|
||||
QMNext = {QR, 2'b01};
|
||||
end else if (q[2]) begin // +1
|
||||
QNext = {QR, 2'b01};
|
||||
QMNext = {QR, 2'b00};
|
||||
end else if (q[1]) begin // -1
|
||||
QNext = {QMR, 2'b11};
|
||||
QMNext = {QMR, 2'b10};
|
||||
end else if (q[0]) begin // -2
|
||||
QNext = {QMR, 2'b10};
|
||||
QMNext = {QMR, 2'b01};
|
||||
end else begin // 0
|
||||
QNext = {QR, 2'b00};
|
||||
QMNext = {QMR, 2'b11};
|
||||
end
|
||||
end
|
||||
assign r = Q[N+2] ? Q[N+1:2] : Q[N:1];
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
|
||||
/////////
|
||||
// csa //
|
||||
/////////
|
||||
module csa #(parameter N=69) (
|
||||
input logic [N-1:0] in1, in2, in3,
|
||||
input logic cin,
|
||||
output logic [N-1:0] out1, out2
|
||||
);
|
||||
|
||||
// This block adds in1, in2, in3, and cin to produce
|
||||
// a result out1 / out2 in carry-save redundant form.
|
||||
// cin is just added to the least significant bit and
|
||||
// is required to handle adding a negative divisor.
|
||||
// Fortunately, the carry (out2) is shifted left by one
|
||||
// bit, leaving room in the least significant bit to
|
||||
// insert cin.
|
||||
|
||||
assign #1 out1 = in1 ^ in2 ^ in3;
|
||||
assign #1 out2 = {in1[N-2:0] & (in2[N-2:0] | in3[N-2:0]) |
|
||||
(in2[N-2:0] & in3[N-2:0]), cin};
|
||||
endmodule
|
||||
|
||||
|
||||
//////////////
|
||||
// expcalc //
|
||||
//////////////
|
||||
module expcalc(
|
||||
input logic [`NE-1:0] XExp, YExp,
|
||||
output logic [`NE-1:0] calcExp
|
||||
);
|
||||
|
||||
assign calcExp = XExp - YExp + (`NE)'(`BIAS);
|
||||
|
||||
endmodule
|
||||
|
||||
//////////////
|
||||
// signcalc //
|
||||
//////////////
|
||||
module signcalc(
|
||||
input logic XSign, YSign,
|
||||
output logic calcSign
|
||||
);
|
||||
|
||||
assign calcSign = XSign ^ YSign;
|
||||
|
||||
endmodule
|
148
pipelined/srt/testbench-radix4.sv
Normal file
148
pipelined/srt/testbench-radix4.sv
Normal file
@ -0,0 +1,148 @@
|
||||
|
||||
`include "wally-config.vh"
|
||||
`define DIVLEN ((`NF<`XLEN) ? `XLEN : `NF)
|
||||
|
||||
/////////////
|
||||
// counter //
|
||||
/////////////
|
||||
module counter(input logic clk,
|
||||
input logic req,
|
||||
output logic done);
|
||||
|
||||
logic [5:0] count;
|
||||
|
||||
// This block of control logic sequences the divider
|
||||
// through its iterations. You may modify it if you
|
||||
// build a divider which completes in fewer iterations.
|
||||
// You are not responsible for the (trivial) circuit
|
||||
// design of the block.
|
||||
|
||||
always @(posedge clk)
|
||||
begin
|
||||
if (count == `DIVLEN/2+1) done <= #1 1;
|
||||
else if (done | req) done <= #1 0;
|
||||
if (req) count <= #1 0;
|
||||
else count <= #1 count+1;
|
||||
end
|
||||
endmodule
|
||||
|
||||
///////////
|
||||
// clock //
|
||||
///////////
|
||||
module clock(clk);
|
||||
output clk;
|
||||
|
||||
// Internal clk signal
|
||||
logic clk;
|
||||
|
||||
endmodule
|
||||
|
||||
//////////
|
||||
// testbench //
|
||||
//////////
|
||||
module testbenchradix4;
|
||||
logic clk;
|
||||
logic req;
|
||||
logic done;
|
||||
logic [63:0] a, b;
|
||||
logic [51:0] afrac, bfrac;
|
||||
logic [10:0] aExp, bExp;
|
||||
logic asign, bsign;
|
||||
logic [51:0] r, rOTFC;
|
||||
logic [`DIVLEN-1:0] Quot, QuotOTFC;
|
||||
logic [54:0] rp, rm; // positive quotient digits
|
||||
|
||||
// Test parameters
|
||||
parameter MEM_SIZE = 40000;
|
||||
parameter MEM_WIDTH = 64+64+64;
|
||||
|
||||
`define memr 63:0
|
||||
`define memb 127:64
|
||||
`define mema 191:128
|
||||
|
||||
// Test logicisters
|
||||
logic [MEM_WIDTH-1:0] Tests [0:MEM_SIZE]; // Space for input file
|
||||
logic [MEM_WIDTH-1:0] Vec; // Verilog doesn't allow direct access to a
|
||||
// bit field of an array
|
||||
logic [63:0] correctr, nextr, diffn, diffp;
|
||||
logic [10:0] rExp;
|
||||
logic rsign;
|
||||
integer testnum, errors;
|
||||
|
||||
// Divider
|
||||
srtradix4 srtradix4(.clk, .Start(req),
|
||||
.Stall(1'b0), .Flush(1'b0),
|
||||
.XExp(aExp), .YExp(bExp), .rExp,
|
||||
.XSign(asign), .YSign(bsign), .rsign,
|
||||
.XFrac(afrac), .YFrac(bfrac),
|
||||
.SrcA('0), .SrcB('0), .Fmt(2'b00),
|
||||
.W64(1'b0), .Signed(1'b0), .Int(1'b0), .Sqrt(1'b0),
|
||||
.Quot, .Rem(), .Flags());
|
||||
|
||||
// Counter
|
||||
counter counter(clk, req, done);
|
||||
|
||||
|
||||
initial
|
||||
forever
|
||||
begin
|
||||
clk = 1; #17;
|
||||
clk = 0; #17;
|
||||
end
|
||||
|
||||
|
||||
// Read test vectors from disk
|
||||
initial
|
||||
begin
|
||||
testnum = 0;
|
||||
errors = 0;
|
||||
$readmemh ("testvectors", Tests);
|
||||
Vec = Tests[testnum];
|
||||
a = Vec[`mema];
|
||||
{asign, aExp, afrac} = a;
|
||||
b = Vec[`memb];
|
||||
{bsign, bExp, bfrac} = b;
|
||||
nextr = Vec[`memr];
|
||||
r = Quot[`DIVLEN-1:`DIVLEN - 52];
|
||||
req <= 1;
|
||||
end
|
||||
|
||||
// Apply directed test vectors read from file.
|
||||
|
||||
always @(posedge clk)
|
||||
begin
|
||||
r = Quot[`DIVLEN-1:`DIVLEN - 52];
|
||||
if (done) begin
|
||||
req <= 1;
|
||||
diffp = correctr[51:0] - r;
|
||||
diffn = r - correctr[51:0];
|
||||
if ((rsign !== correctr[63]) | (rExp !== correctr[62:52]) | ($signed(diffn) > 1) | ($signed(diffp) > 1) | (diffn === 64'bx) | (diffp === 64'bx)) // check if accurate to 1 ulp
|
||||
begin
|
||||
errors = errors+1;
|
||||
$display("result was %h_%h, should be %h %h %h\n", rExp, r, correctr, diffn, diffp);
|
||||
$display("failed\n");
|
||||
$stop;
|
||||
end
|
||||
if (afrac === 52'hxxxxxxxxxxxxx)
|
||||
begin
|
||||
$display("%d Tests completed successfully", testnum);
|
||||
$stop;
|
||||
end
|
||||
end
|
||||
if (req)
|
||||
begin
|
||||
req <= 0;
|
||||
correctr = nextr;
|
||||
testnum = testnum+1;
|
||||
Vec = Tests[testnum];
|
||||
$display("a = %h b = %h",a,b);
|
||||
a = Vec[`mema];
|
||||
{asign, aExp, afrac} = a;
|
||||
b = Vec[`memb];
|
||||
{bsign, bExp, bfrac} = b;
|
||||
nextr = Vec[`memr];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
Loading…
Reference in New Issue
Block a user