Simplifying fround

This commit is contained in:
David Harris 2024-06-10 06:11:55 -07:00
parent 9bd5bd837b
commit 5094122048
2 changed files with 7 additions and 9 deletions

View File

@ -281,7 +281,7 @@ module fpu import cvw::*; #(parameter cvw_t P) (
// fround
fround #(P) fround(.X(XE), .Xs(XsE), .Xe(XeE), .Xm(XmE),
.XNaN(XNaNE), .XSNaN(XSNaNE), .XZero(XZeroE), .Fmt(FmtE), .Frm(FrmE), .Nf(NfE),
.XNaN(XNaNE), .XSNaN(XSNaNE), .Fmt(FmtE), .Frm(FrmE), .Nf(NfE),
.ZfaFRoundNX(ZfaFRoundNXE),
.FRound(FRoundE), .FRoundNV(FRoundNVE), .FRoundNX(FRoundNXE));

View File

@ -34,7 +34,6 @@ module fround import cvw::*; #(parameter cvw_t P) (
input logic [P.NF:0] Xm, // input's fraction with leading integer bit (U1.NF)
input logic XNaN, // X is NaN
input logic XSNaN, // X is Signalling NaN
input logic XZero, // X is Zero
input logic [P.FMTBITS-1:0] Fmt, // the input's precision (11=quad 01=double 00=single 10=half)
input logic [2:0] Frm, // rounding mode
input logic [P.LOGFLEN-1:0] Nf, // Number of fractional bits in selected format
@ -47,7 +46,7 @@ module fround import cvw::*; #(parameter cvw_t P) (
logic [P.NE-1:0] E, Xep1, EminusNf;
logic [P.NF:0] IMask, Tmasknonneg, Tmaskneg, Tmask, HotE, HotEP1, Trunc, Rnd;
logic [P.FLEN-1:0] W, PackedW;
logic Elt0, Eeqm1, Lnonneg, Lp, Rnonneg, Rp, Tp, RoundUp, Two, EgeNf, Exact;
logic Elt0, Eeqm1, Lnonneg, Lp, Rnonneg, Rp, Tp, RoundUp, Two, EgeNf;
// Unbiased exponent
assign E = Xe - P.BIAS[P.NE-1:0];
@ -78,7 +77,7 @@ module fround import cvw::*; #(parameter cvw_t P) (
assign Eeqm1 = ($signed(E) == -1);
// Logic for nonnegative mask and rounding bits
assign IMask = {1'b1, {P.NF{1'b0}}} >>> E;
assign IMask = {1'b1, {P.NF{1'b0}}} >>> E; /// if E > Nf, this produces all 0s instead of all 1s. Hence exact handling is needed below.
assign Tmasknonneg = ~IMask >>> 1'b1;
assign HotE = IMask & ~(IMask << 1'b1);
assign HotEP1 = HotE >> 1'b1;
@ -121,7 +120,6 @@ module fround import cvw::*; #(parameter cvw_t P) (
assign EminusNf = E - Nf;
/* verilator lint_on WIDTH */
assign EgeNf = ~EminusNf[P.NE-1] & (~E[P.NE-1] | E[P.NE-2:0] == '0); // E >= Nf if MSB of E-Nf is 0 and E was positive
assign Exact = (EgeNf | XZero) & ~XNaN; // result will be exact; no need to round
// Rounding logic: determine whether to round up in magnitude
always_comb begin
@ -136,7 +134,8 @@ module fround import cvw::*; #(parameter cvw_t P) (
// If result is not exact, select output in unpacked FLEN format initially
if (XNaN) W = {1'b0, {P.NE{1'b1}}, 1'b1, {(P.NF-1){1'b0}}}; // Canonical NaN
else if (Elt0) // 0 <= |X| < 1 rounds to 0 or 1
else if (EgeNf) W = {Xs, Xe, Xm[P.NF-1:0]}; // Exact, no rounding needed
else if (Elt0) // 0 <= |X| < 1 rounds to 0 or 1
if (RoundUp) W = {Xs, P.BIAS[P.NE-1:0], {P.NF{1'b0}}}; // round to +/- 1
else W = {Xs, {(P.FLEN-1){1'b0}}}; // round to +/- 0
else begin // |X| >= 1 rounds to an integer
@ -146,11 +145,10 @@ module fround import cvw::*; #(parameter cvw_t P) (
end
end
packoutput #(P) packoutput(W, Fmt, PackedW); // pack and NaN-box based on selected format.
mux2 #(P.FLEN) resultmux(PackedW, X, Exact, FRound);
packoutput #(P) packoutput(W, Fmt, FRound); // pack and NaN-box based on selected format.
// Flags
assign FRoundNV = XSNaN; // invalid if input is signaling NaN
assign FRoundNX = ZfaFRoundNX & ~(XNaN | Exact) & (Rp | Tp); // Inexact if Round or Sticky bit set for FRoundNX instruction
assign FRoundNX = ZfaFRoundNX & ~(XNaN | EgeNf) & (Rp | Tp); // Inexact if Round or Sticky bit set for FRoundNX instruction
endmodule