mirror of
				https://github.com/openhwgroup/cvw
				synced 2025-02-11 06:05:49 +00:00 
			
		
		
		
	XMerge branch 'main' of https://github.com/davidharrishmc/riscv-wally into main
This commit is contained in:
		
						commit
						4f7d9eee95
					
				
							
								
								
									
										80
									
								
								pipelined/src/cache/cachefsm.sv
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										80
									
								
								pipelined/src/cache/cachefsm.sv
									
									
									
									
										vendored
									
									
								
							@ -81,13 +81,13 @@ module cachefsm
 | 
			
		||||
    
 | 
			
		||||
  typedef enum logic [3:0]		  {STATE_READY, // hit states
 | 
			
		||||
                                   // miss states
 | 
			
		||||
					               STATE_MISS_FETCH_WDV,
 | 
			
		||||
					               STATE_MISS_EVICT_DIRTY,
 | 
			
		||||
					               STATE_MISS_WRITE_CACHE_LINE,
 | 
			
		||||
                                   STATE_MISS_READ_DELAY,  // required for back to back reads. structural hazard on writting SRAM
 | 
			
		||||
					               STATE_FETCH,
 | 
			
		||||
					               STATE_WRITEBACK,
 | 
			
		||||
					               STATE_WRITE_LINE,
 | 
			
		||||
                                   STATE_READ_HOLD,  // required for back to back reads. structural hazard on writting SRAM
 | 
			
		||||
                                   // flush cache 
 | 
			
		||||
					               STATE_FLUSH,
 | 
			
		||||
					               STATE_FLUSH_WRITE_BACK} statetype;
 | 
			
		||||
					               STATE_FLUSH_WRITEBACK} statetype;
 | 
			
		||||
 | 
			
		||||
  (* mark_debug = "true" *) statetype CurrState, NextState;
 | 
			
		||||
 | 
			
		||||
@ -119,23 +119,23 @@ module cachefsm
 | 
			
		||||
                   else if(FlushCache)                     NextState = STATE_FLUSH;
 | 
			
		||||
      // Delayed LRU update.  Cannot check if victim line is dirty on this cycle.
 | 
			
		||||
      // To optimize do the fetch first, then eviction if necessary.
 | 
			
		||||
                   else if(AnyMiss & ~LineDirty)           NextState = STATE_MISS_FETCH_WDV;
 | 
			
		||||
                   else if(AnyMiss & LineDirty)            NextState = STATE_MISS_EVICT_DIRTY;
 | 
			
		||||
                   else if(AnyMiss & ~LineDirty)           NextState = STATE_FETCH;
 | 
			
		||||
                   else if(AnyMiss & LineDirty)            NextState = STATE_WRITEBACK;
 | 
			
		||||
                   else                                    NextState = STATE_READY;
 | 
			
		||||
      STATE_MISS_FETCH_WDV: if(CacheBusAck)                NextState = STATE_MISS_WRITE_CACHE_LINE;
 | 
			
		||||
                            else                           NextState = STATE_MISS_FETCH_WDV;
 | 
			
		||||
      STATE_MISS_WRITE_CACHE_LINE:                         NextState = STATE_MISS_READ_DELAY;
 | 
			
		||||
      STATE_MISS_READ_DELAY: if(Stall)                     NextState = STATE_MISS_READ_DELAY;
 | 
			
		||||
      STATE_FETCH: if(CacheBusAck)                NextState = STATE_WRITE_LINE;
 | 
			
		||||
                            else                           NextState = STATE_FETCH;
 | 
			
		||||
      STATE_WRITE_LINE:                         NextState = STATE_READ_HOLD;
 | 
			
		||||
      STATE_READ_HOLD: if(Stall)                     NextState = STATE_READ_HOLD;
 | 
			
		||||
                             else                          NextState = STATE_READY;
 | 
			
		||||
      STATE_MISS_EVICT_DIRTY: if(CacheBusAck)              NextState = STATE_MISS_FETCH_WDV;
 | 
			
		||||
                              else                         NextState = STATE_MISS_EVICT_DIRTY;
 | 
			
		||||
      STATE_WRITEBACK: if(CacheBusAck)              NextState = STATE_FETCH;
 | 
			
		||||
                              else                         NextState = STATE_WRITEBACK;
 | 
			
		||||
      // eviction needs a delay as the bus fsm does not correctly handle sending the write command at the same time as getting back the bus ack.
 | 
			
		||||
      STATE_FLUSH: if(LineDirty)                           NextState = STATE_FLUSH_WRITE_BACK;
 | 
			
		||||
	               else if (FlushFlag)                     NextState = STATE_MISS_READ_DELAY;
 | 
			
		||||
      STATE_FLUSH: if(LineDirty)                           NextState = STATE_FLUSH_WRITEBACK;
 | 
			
		||||
	               else if (FlushFlag)                     NextState = STATE_READ_HOLD;
 | 
			
		||||
	               else                                    NextState = STATE_FLUSH;
 | 
			
		||||
	  STATE_FLUSH_WRITE_BACK: if(CacheBusAck & ~FlushFlag) NextState = STATE_FLUSH;
 | 
			
		||||
	                          else if(CacheBusAck)         NextState = STATE_MISS_READ_DELAY;
 | 
			
		||||
	                          else                         NextState = STATE_FLUSH_WRITE_BACK;
 | 
			
		||||
	  STATE_FLUSH_WRITEBACK: if(CacheBusAck & ~FlushFlag) NextState = STATE_FLUSH;
 | 
			
		||||
	                          else if(CacheBusAck)         NextState = STATE_READ_HOLD;
 | 
			
		||||
	                          else                         NextState = STATE_FLUSH_WRITEBACK;
 | 
			
		||||
      default:                                             NextState = STATE_READY;
 | 
			
		||||
    endcase
 | 
			
		||||
  end
 | 
			
		||||
@ -143,48 +143,48 @@ module cachefsm
 | 
			
		||||
  // com back to CPU
 | 
			
		||||
  assign CacheCommitted = CurrState != STATE_READY;
 | 
			
		||||
  assign CacheStall = (CurrState == STATE_READY & (FlushCache | AnyMiss)) | 
 | 
			
		||||
                      (CurrState == STATE_MISS_FETCH_WDV) |
 | 
			
		||||
                      (CurrState == STATE_MISS_EVICT_DIRTY) |
 | 
			
		||||
                      (CurrState == STATE_MISS_WRITE_CACHE_LINE & ~(StoreAMO)) |  // this cycle writes the sram, must keep stalling so the next cycle can read the next hit/miss unless its a write.
 | 
			
		||||
                      (CurrState == STATE_FETCH) |
 | 
			
		||||
                      (CurrState == STATE_WRITEBACK) |
 | 
			
		||||
                      (CurrState == STATE_WRITE_LINE & ~(StoreAMO)) |  // this cycle writes the sram, must keep stalling so the next cycle can read the next hit/miss unless its a write.
 | 
			
		||||
                      (CurrState == STATE_FLUSH) |
 | 
			
		||||
                      (CurrState == STATE_FLUSH_WRITE_BACK);
 | 
			
		||||
                      (CurrState == STATE_FLUSH_WRITEBACK);
 | 
			
		||||
  // write enables internal to cache
 | 
			
		||||
  assign SetValid = CurrState == STATE_MISS_WRITE_CACHE_LINE;
 | 
			
		||||
  assign SetValid = CurrState == STATE_WRITE_LINE;
 | 
			
		||||
  assign SetDirty = (CurrState == STATE_READY & AnyUpdateHit) |
 | 
			
		||||
                    (CurrState == STATE_MISS_WRITE_CACHE_LINE & (StoreAMO));
 | 
			
		||||
                    (CurrState == STATE_WRITE_LINE & (StoreAMO));
 | 
			
		||||
  assign ClearValid = '0;
 | 
			
		||||
  assign ClearDirty = (CurrState == STATE_MISS_WRITE_CACHE_LINE & ~(StoreAMO)) |
 | 
			
		||||
  assign ClearDirty = (CurrState == STATE_WRITE_LINE & ~(StoreAMO)) |
 | 
			
		||||
                      (CurrState == STATE_FLUSH & LineDirty); // This is wrong in a multicore snoop cache protocal.  Dirty must be cleared concurrently and atomically with writeback.  For single core cannot clear after writeback on bus ack and change flushadr.  Clears the wrong set.
 | 
			
		||||
  assign LRUWriteEn = (CurrState == STATE_READY & AnyHit) |
 | 
			
		||||
                      (CurrState == STATE_MISS_WRITE_CACHE_LINE);
 | 
			
		||||
                      (CurrState == STATE_WRITE_LINE);
 | 
			
		||||
  // Flush and eviction controls
 | 
			
		||||
  assign SelWriteback = (CurrState == STATE_MISS_EVICT_DIRTY & ~CacheBusAck) |
 | 
			
		||||
  assign SelWriteback = (CurrState == STATE_WRITEBACK & ~CacheBusAck) |
 | 
			
		||||
                    (CurrState == STATE_READY & AnyMiss & LineDirty);
 | 
			
		||||
 | 
			
		||||
  assign SelFlush = (CurrState == STATE_READY & FlushCache) |
 | 
			
		||||
					(CurrState == STATE_FLUSH) | 
 | 
			
		||||
					(CurrState == STATE_FLUSH_WRITE_BACK);
 | 
			
		||||
  assign FlushAdrCntEn = (CurrState == STATE_FLUSH_WRITE_BACK & FlushWayFlag & CacheBusAck) |
 | 
			
		||||
					(CurrState == STATE_FLUSH_WRITEBACK);
 | 
			
		||||
  assign FlushAdrCntEn = (CurrState == STATE_FLUSH_WRITEBACK & FlushWayFlag & CacheBusAck) |
 | 
			
		||||
						 (CurrState == STATE_FLUSH & FlushWayFlag & ~LineDirty);
 | 
			
		||||
  assign FlushWayCntEn = (CurrState == STATE_FLUSH & ~LineDirty) |
 | 
			
		||||
						 (CurrState == STATE_FLUSH_WRITE_BACK & CacheBusAck);
 | 
			
		||||
						 (CurrState == STATE_FLUSH_WRITEBACK & CacheBusAck);
 | 
			
		||||
  assign FlushCntRst = (CurrState == STATE_FLUSH & FlushFlag & ~LineDirty) |
 | 
			
		||||
						  (CurrState == STATE_FLUSH_WRITE_BACK & FlushFlag & CacheBusAck);
 | 
			
		||||
						  (CurrState == STATE_FLUSH_WRITEBACK & FlushFlag & CacheBusAck);
 | 
			
		||||
  // Bus interface controls
 | 
			
		||||
  assign CacheBusRW[1] = (CurrState == STATE_READY & AnyMiss & ~LineDirty) | 
 | 
			
		||||
                         (CurrState == STATE_MISS_FETCH_WDV & ~CacheBusAck) | 
 | 
			
		||||
                         (CurrState == STATE_MISS_EVICT_DIRTY & CacheBusAck);
 | 
			
		||||
                         (CurrState == STATE_FETCH & ~CacheBusAck) | 
 | 
			
		||||
                         (CurrState == STATE_WRITEBACK & CacheBusAck);
 | 
			
		||||
  assign CacheBusRW[0] = (CurrState == STATE_READY & AnyMiss & LineDirty) |
 | 
			
		||||
                          (CurrState == STATE_MISS_EVICT_DIRTY & ~CacheBusAck) |
 | 
			
		||||
                     (CurrState == STATE_FLUSH_WRITE_BACK & ~CacheBusAck);
 | 
			
		||||
                          (CurrState == STATE_WRITEBACK & ~CacheBusAck) |
 | 
			
		||||
                     (CurrState == STATE_FLUSH_WRITEBACK & ~CacheBusAck);
 | 
			
		||||
  // **** can this be simplified?
 | 
			
		||||
  assign SelAdr = (CurrState == STATE_READY & (StoreAMO | AnyMiss)) | // changes if store delay hazard removed
 | 
			
		||||
                  (CurrState == STATE_MISS_FETCH_WDV) |
 | 
			
		||||
                  (CurrState == STATE_MISS_EVICT_DIRTY) |
 | 
			
		||||
                  (CurrState == STATE_MISS_WRITE_CACHE_LINE) |
 | 
			
		||||
                  (CurrState == STATE_FETCH) |
 | 
			
		||||
                  (CurrState == STATE_WRITEBACK) |
 | 
			
		||||
                  (CurrState == STATE_WRITE_LINE) |
 | 
			
		||||
                  resetDelay;
 | 
			
		||||
 | 
			
		||||
  assign SelFetchBuffer = CurrState == STATE_MISS_WRITE_CACHE_LINE | CurrState == STATE_MISS_READ_DELAY;
 | 
			
		||||
  assign CacheEn = (CurrState == STATE_READY & ~Stall | CacheStall) | (CurrState != STATE_READY) | reset;
 | 
			
		||||
  assign SelFetchBuffer = CurrState == STATE_WRITE_LINE | CurrState == STATE_READ_HOLD;
 | 
			
		||||
  assign CacheEn = (CurrState == STATE_READY  & (~Stall | FlushCache | AnyMiss)) | (CurrState != STATE_READY) | reset;
 | 
			
		||||
                       
 | 
			
		||||
endmodule // cachefsm
 | 
			
		||||
 | 
			
		||||
@ -66,29 +66,29 @@ module fdivsqrt(
 | 
			
		||||
  logic Firstun;
 | 
			
		||||
  logic WZeroM, AZeroM, BZeroM, AZeroE, BZeroE;
 | 
			
		||||
  logic SpecialCaseM;
 | 
			
		||||
  logic [`DIVBLEN:0] n, m;
 | 
			
		||||
  logic OTFCSwap, ALTBM, As;
 | 
			
		||||
  logic [`DIVBLEN:0] nE, nM, mM;
 | 
			
		||||
  logic OTFCSwapE, ALTBM, As;
 | 
			
		||||
  logic DivStartE;
 | 
			
		||||
 | 
			
		||||
  fdivsqrtpreproc fdivsqrtpreproc(
 | 
			
		||||
    .clk, .IFDivStartE, .Xm(XmE), .QeM, .Xe(XeE), .Fmt(FmtE), .Ye(YeE), 
 | 
			
		||||
    .Sqrt(SqrtE), .Ym(YmE), .XZeroE, .X, .DPreproc, 
 | 
			
		||||
    .n, .m, .OTFCSwap, .ALTBM, .AZeroM, .BZeroM, .AZeroE, .BZeroE, .As,
 | 
			
		||||
    .nE, .nM, .mM, .OTFCSwapE, .ALTBM, .AZeroM, .BZeroM, .AZeroE, .BZeroE, .As,
 | 
			
		||||
    .ForwardedSrcAE, .ForwardedSrcBE, .Funct3E, .Funct3M, .MDUE, .W64E);
 | 
			
		||||
  fdivsqrtfsm fdivsqrtfsm(
 | 
			
		||||
    .clk, .reset, .FmtE, .XsE, .SqrtE,
 | 
			
		||||
    .clk, .reset, .FmtE, .XsE, .SqrtE, .nE,
 | 
			
		||||
    .FDivBusyE, .FDivStartE, .IDivStartE, .IFDivStartE, .FDivDoneE, .StallE, .StallM, .FlushE, /*.DivDone, */ 
 | 
			
		||||
    .XZeroE, .YZeroE, .AZeroE, .BZeroE,
 | 
			
		||||
    .XNaNE, .YNaNE, .MDUE, .n,
 | 
			
		||||
    .XNaNE, .YNaNE, .MDUE,
 | 
			
		||||
    .XInfE, .YInfE, .WZeroM, .SpecialCaseM);
 | 
			
		||||
  fdivsqrtiter fdivsqrtiter(
 | 
			
		||||
    .clk, .Firstun, .D, .FirstU, .FirstUM, .FirstC, .MDUE, .SqrtE, // .SqrtM,
 | 
			
		||||
    .X,.DPreproc, .FirstWS(WS), .FirstWC(WC),
 | 
			
		||||
    .IFDivStartE, .Xe(XeE), .Ye(YeE), .XZeroE, .YZeroE, .OTFCSwap,
 | 
			
		||||
    .IFDivStartE, .Xe(XeE), .Ye(YeE), .XZeroE, .YZeroE, .OTFCSwapE,
 | 
			
		||||
    .FDivBusyE);
 | 
			
		||||
  fdivsqrtpostproc fdivsqrtpostproc(
 | 
			
		||||
    .WS, .WC, .D, .FirstU, .FirstUM, .FirstC, .Firstun, 
 | 
			
		||||
    .SqrtM, .SpecialCaseM, .RemOpM(Funct3M[1]), .ForwardedSrcAE,
 | 
			
		||||
    .n, .ALTBM, .m, .BZeroM, .As,
 | 
			
		||||
    .nM, .ALTBM, .mM, .BZeroM, .As,
 | 
			
		||||
    .QmM, .WZeroM, .DivSM, .FPIntDivResultM);
 | 
			
		||||
endmodule
 | 
			
		||||
@ -46,7 +46,7 @@ module fdivsqrtfsm(
 | 
			
		||||
  input  logic FlushE,
 | 
			
		||||
  input  logic WZeroM,
 | 
			
		||||
  input  logic MDUE,
 | 
			
		||||
  input  logic [`DIVBLEN:0] n,
 | 
			
		||||
  input  logic [`DIVBLEN:0] nE,
 | 
			
		||||
  output logic IFDivStartE,
 | 
			
		||||
  output logic FDivBusyE, FDivDoneE,
 | 
			
		||||
  output logic SpecialCaseM
 | 
			
		||||
@ -104,7 +104,7 @@ module fdivsqrtfsm(
 | 
			
		||||
  always_comb begin 
 | 
			
		||||
    if (SqrtE) fbits = Nf + 2 + 2; // Nf + two fractional bits for round/guard + 2 for right shift by up to 2
 | 
			
		||||
    else       fbits = Nf + 2 + `LOGR; // Nf + two fractional bits for round/guard + integer bits - try this when placing results in msbs
 | 
			
		||||
    cycles =  MDUE ? n : (fbits + (`LOGR*`DIVCOPIES)-1)/(`LOGR*`DIVCOPIES);
 | 
			
		||||
    cycles =  MDUE ? nE : (fbits + (`LOGR*`DIVCOPIES)-1)/(`LOGR*`DIVCOPIES);
 | 
			
		||||
  end 
 | 
			
		||||
 | 
			
		||||
  /* verilator lint_on WIDTH */
 | 
			
		||||
 | 
			
		||||
@ -38,7 +38,7 @@ module fdivsqrtiter(
 | 
			
		||||
  input  logic XZeroE, YZeroE, 
 | 
			
		||||
  input  logic SqrtE, MDUE,
 | 
			
		||||
//  input  logic SqrtM,
 | 
			
		||||
  input  logic OTFCSwap,
 | 
			
		||||
  input  logic OTFCSwapE,
 | 
			
		||||
  input  logic [`DIVb+3:0] X,
 | 
			
		||||
  input  logic [`DIVb-1:0] DPreproc,
 | 
			
		||||
  output logic [`DIVb-1:0] D,
 | 
			
		||||
@ -114,13 +114,13 @@ module fdivsqrtiter(
 | 
			
		||||
  generate
 | 
			
		||||
    for(i=0; $unsigned(i)<`DIVCOPIES; i++) begin : iterations
 | 
			
		||||
      if (`RADIX == 2) begin: stage
 | 
			
		||||
        fdivsqrtstage2 fdivsqrtstage(.D, .DBar, .SqrtE, .OTFCSwap, .MDUE,
 | 
			
		||||
        fdivsqrtstage2 fdivsqrtstage(.D, .DBar, .SqrtE, .OTFCSwapE, .MDUE,
 | 
			
		||||
        .WS(WS[i]), .WC(WC[i]), .WSNext(WSNext[i]), .WCNext(WCNext[i]),
 | 
			
		||||
        .C(C[i]), .U(U[i]), .UM(UM[i]), .CNext(C[i+1]), .UNext(UNext[i]), .UMNext(UMNext[i]), .un(un[i]));
 | 
			
		||||
      end else begin: stage
 | 
			
		||||
        logic j1;
 | 
			
		||||
        assign j1 = (i == 0 & ~C[0][`DIVb-1]);
 | 
			
		||||
        fdivsqrtstage4 fdivsqrtstage(.D, .DBar, .D2, .DBar2, .SqrtE, .j1, .OTFCSwap, .MDUE,
 | 
			
		||||
        fdivsqrtstage4 fdivsqrtstage(.D, .DBar, .D2, .DBar2, .SqrtE, .j1, .OTFCSwapE, .MDUE,
 | 
			
		||||
        .WS(WS[i]), .WC(WC[i]), .WSNext(WSNext[i]), .WCNext(WCNext[i]), 
 | 
			
		||||
        .C(C[i]), .U(U[i]), .UM(UM[i]), .CNext(C[i+1]), .UNext(UNext[i]), .UMNext(UMNext[i]), .un(un[i]));
 | 
			
		||||
      end
 | 
			
		||||
 | 
			
		||||
@ -40,7 +40,7 @@ module fdivsqrtpostproc(
 | 
			
		||||
  input  logic              SpecialCaseM,
 | 
			
		||||
	input  logic [`XLEN-1:0]  ForwardedSrcAE,
 | 
			
		||||
  input  logic              RemOpM, ALTBM, BZeroM, As,
 | 
			
		||||
  input  logic [`DIVBLEN:0] n, m,
 | 
			
		||||
  input  logic [`DIVBLEN:0] nM, mM,
 | 
			
		||||
  output logic [`DIVb:0]    QmM, 
 | 
			
		||||
  output logic              WZeroM,
 | 
			
		||||
  output logic              DivSM,
 | 
			
		||||
@ -127,10 +127,10 @@ module fdivsqrtpostproc(
 | 
			
		||||
  
 | 
			
		||||
  always_comb
 | 
			
		||||
    if (RemOpM) begin
 | 
			
		||||
      NormShiftM = (m + (`DIVBLEN+1)'(`DIVa));
 | 
			
		||||
      NormShiftM = (mM + (`DIVBLEN+1)'(`DIVa));
 | 
			
		||||
      PreResultM = IntRemM;
 | 
			
		||||
    end else begin
 | 
			
		||||
      NormShiftM = ((`DIVBLEN+1)'(`DIVb) - (n << `LOGR));
 | 
			
		||||
      NormShiftM = ((`DIVBLEN+1)'(`DIVb) - (nM << `LOGR));
 | 
			
		||||
      PreResultM = {3'b000, IntQuotM};
 | 
			
		||||
    end
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
@ -41,8 +41,8 @@ module fdivsqrtpreproc (
 | 
			
		||||
  input  logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // *** these are the src outputs before the mux choosing between them and PCE to put in srcA/B
 | 
			
		||||
	input  logic [2:0] 	Funct3E, Funct3M,
 | 
			
		||||
	input  logic MDUE, W64E,
 | 
			
		||||
  output logic [`DIVBLEN:0] n, m,
 | 
			
		||||
  output logic OTFCSwap, ALTBM, As, AZeroM, BZeroM, AZeroE, BZeroE,
 | 
			
		||||
  output logic [`DIVBLEN:0] nE, nM, mM,
 | 
			
		||||
  output logic OTFCSwapE, ALTBM, As, AZeroM, BZeroM, AZeroE, BZeroE,
 | 
			
		||||
  output logic [`NE+1:0] QeM,
 | 
			
		||||
  output logic [`DIVb+3:0] X,
 | 
			
		||||
  output logic [`DIVb-1:0] DPreproc
 | 
			
		||||
@ -55,9 +55,9 @@ module fdivsqrtpreproc (
 | 
			
		||||
  // Intdiv signals
 | 
			
		||||
  logic  [`DIVb-1:0] IFNormLenX, IFNormLenD;
 | 
			
		||||
  logic  [`XLEN-1:0] PosA, PosB;
 | 
			
		||||
  logic  Bs, CalcOTFCSwap, ALTBE;
 | 
			
		||||
  logic  Bs, CalcOTFCSwapE, ALTBE;
 | 
			
		||||
  logic  [`XLEN-1:0]  A64, B64;
 | 
			
		||||
  logic  [`DIVBLEN:0] Calcn, Calcm;
 | 
			
		||||
  logic  [`DIVBLEN:0] mE;
 | 
			
		||||
  logic  [`DIVBLEN:0] ZeroDiff, IntBits, RightShiftX;
 | 
			
		||||
  logic  [`DIVBLEN:0] pPlusr, pPrCeil, p, ell;
 | 
			
		||||
  logic  [`LOGRK-1:0] pPrTrunc;
 | 
			
		||||
@ -72,7 +72,7 @@ module fdivsqrtpreproc (
 | 
			
		||||
  assign A64 = W64E ? {{(`XLEN-32){As}}, ForwardedSrcAE[31:0]} : ForwardedSrcAE;
 | 
			
		||||
  assign B64 = W64E ? {{(`XLEN-32){Bs}}, ForwardedSrcBE[31:0]} : ForwardedSrcBE;
 | 
			
		||||
 | 
			
		||||
  assign CalcOTFCSwap = (As ^ Bs) & MDUE;
 | 
			
		||||
  assign CalcOTFCSwapE = (As ^ Bs) & MDUE;
 | 
			
		||||
  
 | 
			
		||||
  assign PosA = As ? -A64 : A64;
 | 
			
		||||
  assign PosB = Bs ? -B64 : B64;
 | 
			
		||||
@ -82,19 +82,19 @@ module fdivsqrtpreproc (
 | 
			
		||||
  assign IFNormLenX = MDUE ? {PosA, {(`DIVb-`XLEN){1'b0}}} : {Xm, {(`DIVb-`NF-1){1'b0}}};
 | 
			
		||||
  assign IFNormLenD = MDUE ? {PosB, {(`DIVb-`XLEN){1'b0}}} : {Ym, {(`DIVb-`NF-1){1'b0}}};
 | 
			
		||||
  lzc #(`DIVb) lzcX (IFNormLenX, ell);
 | 
			
		||||
  lzc #(`DIVb) lzcY (IFNormLenD, Calcm);
 | 
			
		||||
  lzc #(`DIVb) lzcY (IFNormLenD, mE);
 | 
			
		||||
 | 
			
		||||
  assign XPreproc = IFNormLenX << (ell + {{`DIVBLEN{1'b0}}, 1'b1}); // had issue with (`DIVBLEN+1)'(~MDUE) so using this instead
 | 
			
		||||
  assign DPreproc = IFNormLenD << (Calcm + {{`DIVBLEN{1'b0}}, 1'b1}); // replaced ~MDUE with 1 bc we always want that extra left shift
 | 
			
		||||
  assign DPreproc = IFNormLenD << (mE + {{`DIVBLEN{1'b0}}, 1'b1}); // replaced ~MDUE with 1 bc we always want that extra left shift
 | 
			
		||||
 | 
			
		||||
  assign ZeroDiff = Calcm - ell;
 | 
			
		||||
  assign ZeroDiff = mE - ell;
 | 
			
		||||
  assign ALTBE = ZeroDiff[`DIVBLEN]; // A less than B
 | 
			
		||||
  assign p = ALTBE ? '0 : ZeroDiff;
 | 
			
		||||
 | 
			
		||||
  assign pPlusr = (`DIVBLEN)'(`LOGR) + p;
 | 
			
		||||
  assign pPrTrunc = pPlusr[`LOGRK-1:0];
 | 
			
		||||
  assign pPrCeil = (pPlusr >> `LOGRK) + {{`DIVBLEN{1'b0}}, |(pPrTrunc)};
 | 
			
		||||
  assign Calcn = (pPrCeil << `LOGK) - 1;
 | 
			
		||||
  assign nE = (pPrCeil << `LOGK) - 1;
 | 
			
		||||
  assign IntBits = (`DIVBLEN)'(`RK) + p;
 | 
			
		||||
  assign RightShiftX = (`DIVBLEN)'(`RK) - {{(`DIVBLEN-`RK){1'b0}}, IntBits[`RK-1:0]};
 | 
			
		||||
 | 
			
		||||
@ -119,14 +119,14 @@ module fdivsqrtpreproc (
 | 
			
		||||
  // DIVRESLEN/(r*`DIVCOPIES)
 | 
			
		||||
 | 
			
		||||
  flopen #(`NE+2)    expreg(clk, IFDivStartE, QeE, QeM);
 | 
			
		||||
  flopen #(1)       swapreg(clk, IFDivStartE, CalcOTFCSwap, OTFCSwap);
 | 
			
		||||
  flopen #(1)       swapreg(clk, IFDivStartE, CalcOTFCSwapE, OTFCSwapE); // Retain value for each iteration of divider in Execute stage
 | 
			
		||||
  flopen #(1)       altbreg(clk, IFDivStartE, ALTBE, ALTBM);
 | 
			
		||||
  flopen #(1)      azeroreg(clk, IFDivStartE, AZeroE, AZeroM);
 | 
			
		||||
  flopen #(1)      bzeroreg(clk, IFDivStartE, BZeroE, BZeroM);
 | 
			
		||||
  flopen #(`DIVBLEN+1) nreg(clk, IFDivStartE, Calcn, n);
 | 
			
		||||
  flopen #(`DIVBLEN+1) mreg(clk, IFDivStartE, Calcm, m);
 | 
			
		||||
  flopen #(`DIVBLEN+1) nreg(clk, IFDivStartE, nE, nM);
 | 
			
		||||
  flopen #(`DIVBLEN+1) mreg(clk, IFDivStartE, mE, mM);
 | 
			
		||||
  //flopen #(`XLEN)   srcareg(clk, IFDivStartE, ForwardedSrcAE, ForwardedSrcAM); //HERE
 | 
			
		||||
  expcalc expcalc(.Fmt, .Xe, .Ye, .Sqrt, .XZeroE, .ell, .m(Calcm), .Qe(QeE));
 | 
			
		||||
  expcalc expcalc(.Fmt, .Xe, .Ye, .Sqrt, .XZeroE, .ell, .m(mE), .Qe(QeE));
 | 
			
		||||
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -34,7 +34,7 @@ module fdivsqrtqsel4cmp (
 | 
			
		||||
  input logic [2:0] Dmsbs,
 | 
			
		||||
  input logic [4:0] Smsbs,
 | 
			
		||||
  input logic [7:0] WSmsbs, WCmsbs,
 | 
			
		||||
  input logic SqrtE, j1, OTFCSwap, MDUE,
 | 
			
		||||
  input logic SqrtE, j1, OTFCSwapE, MDUE,
 | 
			
		||||
  output logic [3:0] udigit
 | 
			
		||||
);
 | 
			
		||||
	logic [6:0] Wmsbs;
 | 
			
		||||
@ -93,5 +93,5 @@ module fdivsqrtqsel4cmp (
 | 
			
		||||
    else udigitsel = 4'b0001; // choose -2	
 | 
			
		||||
 | 
			
		||||
  assign udigitswap = {udigitsel[0], udigitsel[1], udigitsel[2], udigitsel[3]};
 | 
			
		||||
  assign udigit = OTFCSwap ? udigitswap : udigitsel;
 | 
			
		||||
  assign udigit = OTFCSwapE ? udigitswap : udigitsel;
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
@ -38,7 +38,7 @@ module fdivsqrtstage2 (
 | 
			
		||||
  input  logic [`DIVb+3:0]  WS, WC,
 | 
			
		||||
  input  logic [`DIVb+1:0] C,
 | 
			
		||||
  input  logic SqrtE,
 | 
			
		||||
  input  logic OTFCSwap, MDUE,
 | 
			
		||||
  input  logic OTFCSwapE, MDUE,
 | 
			
		||||
  output logic un,
 | 
			
		||||
  output logic [`DIVb+1:0] CNext,
 | 
			
		||||
  output logic [`DIVb:0] UNext, UMNext, 
 | 
			
		||||
@ -60,7 +60,7 @@ module fdivsqrtstage2 (
 | 
			
		||||
	// 0000 =  0
 | 
			
		||||
	// 0010 = -1
 | 
			
		||||
	// 0001 = -2
 | 
			
		||||
  fdivsqrtqsel2 qsel2(WS[`DIVb+3:`DIVb], WC[`DIVb+3:`DIVb], OTFCSwap, up, uz, un);
 | 
			
		||||
  fdivsqrtqsel2 qsel2(WS[`DIVb+3:`DIVb], WC[`DIVb+3:`DIVb], OTFCSwapE, up, uz, un);
 | 
			
		||||
 | 
			
		||||
  // Sqrt F generation
 | 
			
		||||
  fdivsqrtfgen2 fgen2(.up, .uz, .C(CNext), .U, .UM, .F);
 | 
			
		||||
 | 
			
		||||
@ -36,7 +36,7 @@ module fdivsqrtstage4 (
 | 
			
		||||
  input  logic [`DIVb:0] U, UM,
 | 
			
		||||
  input  logic [`DIVb+3:0]  WS, WC,
 | 
			
		||||
  input  logic [`DIVb+1:0] C,
 | 
			
		||||
  input  logic SqrtE, j1, OTFCSwap, MDUE,
 | 
			
		||||
  input  logic SqrtE, j1, OTFCSwapE, MDUE,
 | 
			
		||||
  output logic [`DIVb+1:0] CNext,
 | 
			
		||||
  output logic un,
 | 
			
		||||
  output logic [`DIVb:0] UNext, UMNext, 
 | 
			
		||||
@ -65,7 +65,7 @@ module fdivsqrtstage4 (
 | 
			
		||||
  assign WCmsbs = WC[`DIVb+3:`DIVb-4];
 | 
			
		||||
  assign WSmsbs = WS[`DIVb+3:`DIVb-4];
 | 
			
		||||
 | 
			
		||||
  fdivsqrtqsel4cmp qsel4(.Dmsbs, .Smsbs, .WSmsbs, .WCmsbs, .SqrtE, .j1, .udigit, .OTFCSwap, .MDUE);
 | 
			
		||||
  fdivsqrtqsel4cmp qsel4(.Dmsbs, .Smsbs, .WSmsbs, .WCmsbs, .SqrtE, .j1, .udigit, .OTFCSwapE, .MDUE);
 | 
			
		||||
  assign un = 1'b0; // unused for radix 4
 | 
			
		||||
 | 
			
		||||
  // F generation logic
 | 
			
		||||
 | 
			
		||||
@ -114,7 +114,7 @@ module ifu (
 | 
			
		||||
  logic 					   ICacheFetchLine;
 | 
			
		||||
  logic 					   BusStall;
 | 
			
		||||
  logic 					   ICacheStallF, IFUCacheBusStallF;
 | 
			
		||||
  logic 					   GatedStallF;
 | 
			
		||||
  logic 					   GatedStallD;
 | 
			
		||||
(* mark_debug = "true" *)  logic [31:0] 				   PostSpillInstrRawF;
 | 
			
		||||
  // branch predictor signal
 | 
			
		||||
  logic [`XLEN-1:0]            PCNext1F, PCNext0F;
 | 
			
		||||
@ -200,7 +200,7 @@ module ifu (
 | 
			
		||||
  // The IROM uses untranslated addresses, so it is not compatible with virtual memory.
 | 
			
		||||
  if (`IROM_SUPPORTED) begin : irom 
 | 
			
		||||
    assign IFURWF = 2'b10;
 | 
			
		||||
    irom irom(.clk, .reset, .ce(~GatedStallF | reset), .Adr(PCNextFSpill[`XLEN-1:0]), .ReadData(IROMInstrF));
 | 
			
		||||
    irom irom(.clk, .reset, .ce(~GatedStallD | reset), .Adr(PCNextFSpill[`XLEN-1:0]), .ReadData(IROMInstrF));
 | 
			
		||||
 
 | 
			
		||||
  end else begin
 | 
			
		||||
    assign IFURWF = 2'b10;
 | 
			
		||||
@ -222,7 +222,7 @@ module ifu (
 | 
			
		||||
      cache #(.LINELEN(`ICACHE_LINELENINBITS),
 | 
			
		||||
              .NUMLINES(`ICACHE_WAYSIZEINBYTES*8/`ICACHE_LINELENINBITS),
 | 
			
		||||
              .NUMWAYS(`ICACHE_NUMWAYS), .LOGBWPL(LOGBWPL), .WORDLEN(32), .MUXINTERVAL(16), .DCACHE(0))
 | 
			
		||||
      icache(.clk, .reset, .FlushStage(TrapM), .Stall(GatedStallF),
 | 
			
		||||
      icache(.clk, .reset, .FlushStage(TrapM), .Stall(GatedStallD),
 | 
			
		||||
             .FetchBuffer, .CacheBusAck(ICacheBusAck),
 | 
			
		||||
             .CacheBusAdr(ICacheBusAdr), .CacheStall(ICacheStallF), 
 | 
			
		||||
             .CacheBusRW,
 | 
			
		||||
@ -244,7 +244,7 @@ module ifu (
 | 
			
		||||
            .BeatCount(), .Cacheable(CacheableF), .SelBusBeat(), .WriteDataM('0),
 | 
			
		||||
             .CacheBusAck(ICacheBusAck), .HWDATA(), .CacheableOrFlushCacheM(1'b0), .CacheReadDataWordM('0),
 | 
			
		||||
            .FetchBuffer, .PAdr(PCPF),
 | 
			
		||||
            .BusRW, .Stall(GatedStallF),
 | 
			
		||||
            .BusRW, .Stall(GatedStallD),
 | 
			
		||||
            .BusStall, .BusCommitted(BusCommittedF));
 | 
			
		||||
 | 
			
		||||
      mux3 #(32) UnCachedDataMux(.d0(ICacheInstrF), .d1(FetchBuffer[32-1:0]), .d2(IROMInstrF),
 | 
			
		||||
@ -261,7 +261,7 @@ module ifu (
 | 
			
		||||
      ahbinterface #(0) ahbinterface(.HCLK(clk), .Flush(TrapM), .HRESETn(~reset), .HREADY(IFUHREADY), 
 | 
			
		||||
        .HRDATA(HRDATA), .HTRANS(IFUHTRANS), .HWRITE(IFUHWRITE), .HWDATA(),
 | 
			
		||||
        .HWSTRB(), .BusRW, .ByteMask(), .WriteData('0),
 | 
			
		||||
        .Stall(GatedStallF), .BusStall, .BusCommitted(BusCommittedF), .FetchBuffer(FetchBuffer));
 | 
			
		||||
        .Stall(GatedStallD), .BusStall, .BusCommitted(BusCommittedF), .FetchBuffer(FetchBuffer));
 | 
			
		||||
 | 
			
		||||
      assign CacheCommittedF = '0;
 | 
			
		||||
      if(`IROM_SUPPORTED) mux2 #(32) UnCachedDataMux2(FetchBuffer, IROMInstrF, SelIROM, InstrRawF);
 | 
			
		||||
@ -278,7 +278,7 @@ module ifu (
 | 
			
		||||
  
 | 
			
		||||
  assign IFUCacheBusStallF = ICacheStallF | BusStall;
 | 
			
		||||
  assign IFUStallF = IFUCacheBusStallF | SelNextSpillF;
 | 
			
		||||
  assign GatedStallF = StallF & ~SelNextSpillF;
 | 
			
		||||
  assign GatedStallD = StallD & ~SelNextSpillF;
 | 
			
		||||
  
 | 
			
		||||
  flopenl #(32) AlignedInstrRawDFlop(clk, reset | FlushD, ~StallD, PostSpillInstrRawF, nop, InstrRawD);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user