mirror of
https://github.com/openhwgroup/cvw
synced 2025-02-11 06:05:49 +00:00
some optimizations in unpacker
This commit is contained in:
parent
b288f812ab
commit
3c63db9554
@ -1 +1 @@
|
||||
Subproject commit 307c77b26e070ae85ffea665ad9b642b40e33c86
|
||||
Subproject commit ad04e119a5d846a1c11159786ad3382cf5ad3649
|
@ -17,9 +17,9 @@ module fcvt (
|
||||
input logic XSNaNE, // is the input a signaling NaN
|
||||
input logic [2:0] FrmE, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
|
||||
input logic [`FPSIZES/3:0] FmtE, // the input's precision (11=quad 01=double 00=single 10=half)
|
||||
output logic [`FLEN-1:0] CvtResE, // the fp to fp conversion's result
|
||||
output logic [`XLEN-1:0] CvtIntResE, // the fp to fp conversion's result
|
||||
output logic [4:0] CvtFlgE // the fp to fp conversion's flags
|
||||
output logic [`FLEN-1:0] CvtResE, // the fp conversion result
|
||||
output logic [`XLEN-1:0] CvtIntResE, // the int conversion result
|
||||
output logic [4:0] CvtFlgE // the conversion's flags
|
||||
);
|
||||
|
||||
// OpCtrls:
|
||||
@ -261,7 +261,7 @@ module fcvt (
|
||||
// - shift left to normilize (-1-ZeroCnt)
|
||||
// - newBias to make the biased exponent
|
||||
//
|
||||
assign CalcExp = {1'b0, OldExp} - (`NE+1)'(`BIAS) + {2'b0, NewBias} - {{`NE{1'b0}}, XOrigDenormE|IntToFp} - {{`NE-$clog2(`LGLEN){1'b0}}, (ZeroCnt&{$clog2(`LGLEN)+1{XOrigDenormE|IntToFp}})};
|
||||
assign CalcExp = {1'b0, OldExp} - (`NE+1)'(`BIAS) + {2'b0, NewBias} - {{`NE{1'b0}}, XOrigDenormE|IntToFp} - {{`NE-$clog2(`LGLEN)+1{1'b0}}, (ZeroCnt&{$clog2(`LGLEN){XOrigDenormE|IntToFp}})};
|
||||
// find if the result is dnormal or underflows
|
||||
// - if Calculated expoenent is 0 or negitive (and the input/result is not exactaly 0)
|
||||
// - can't underflow an integer to Fp conversion
|
||||
@ -744,7 +744,7 @@ module fcvt (
|
||||
NaNRes = {{`Q_LEN-`H_LEN{1'b1}}, 1'b0, {`H_NE+1{1'b1}}, {`H_NF-1{1'b0}}};
|
||||
end
|
||||
// determine the infinity result
|
||||
// - if the input was infinity or rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
|
||||
// - if the input overflows in rounding mode RZ, RU, RD (and not rounding the value) then output the maximum normalized floating point number with the correct sign
|
||||
// - otherwise: output infinity with the correct sign
|
||||
// - kill the infinity singal if the input isn't fp
|
||||
InfRes = (~XInfE|IntToFp)&((FrmE[1:0]==2'b01) | (FrmE[1:0]==2'b10&~ResSgn) | (FrmE[1:0]==2'b11&ResSgn)) ? {{`Q_LEN-`H_LEN{1'b1}}, ResSgn, {`H_NE-1{1'b1}}, 1'b0, {`H_NF{1'b1}}} : {{`Q_LEN-`H_LEN{1'b1}}, ResSgn, {`H_NE{1'b1}}, (`H_NF)'(0)};
|
||||
|
@ -587,7 +587,7 @@ module normalize(
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Normalization
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
//*** insert bias-bias simplification in fcvt.sv/phone pictures/ whiteboard... if still there
|
||||
//*** insert bias-bias simplification in fcvt.sv/phone pictures
|
||||
// Determine if the sum is zero
|
||||
assign SumZero = ~(|SumM);
|
||||
|
||||
|
@ -96,9 +96,9 @@ module unpack (
|
||||
|
||||
// extract the exponent, converting the smaller exponent into the larger precision if nessisary
|
||||
// - if the original precision had a denormal number convert the exponent value 1
|
||||
assign XExpE = FmtE ? X[`FLEN-2:`NF] : XOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {XLen1[`LEN1-2], {`NE-`NE1{~XLen1[`LEN1-2]&~XExpZero|XExpMaxE}}, XLen1[`LEN1-3:`NF1]};
|
||||
assign YExpE = FmtE ? Y[`FLEN-2:`NF] : YOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {YLen1[`LEN1-2], {`NE-`NE1{~YLen1[`LEN1-2]&~YExpZero|YExpMaxE}}, YLen1[`LEN1-3:`NF1]};
|
||||
assign ZExpE = FmtE ? Z[`FLEN-2:`NF] : ZOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {ZLen1[`LEN1-2], {`NE-`NE1{~ZLen1[`LEN1-2]&~ZExpZero|ZExpMaxE}}, ZLen1[`LEN1-3:`NF1]};
|
||||
assign XExpE = FmtE ? X[`FLEN-2:`NF] : XOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {XLen1[`LEN1-2], {`NE-`NE1{~XLen1[`LEN1-2]}}, XLen1[`LEN1-3:`NF1]};
|
||||
assign YExpE = FmtE ? Y[`FLEN-2:`NF] : YOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {YLen1[`LEN1-2], {`NE-`NE1{~YLen1[`LEN1-2]}}, YLen1[`LEN1-3:`NF1]};
|
||||
assign ZExpE = FmtE ? Z[`FLEN-2:`NF] : ZOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {ZLen1[`LEN1-2], {`NE-`NE1{~ZLen1[`LEN1-2]}}, ZLen1[`LEN1-3:`NF1]};
|
||||
|
||||
// is the input (in it's original format) denormalized
|
||||
assign XOrigDenormE = FmtE ? 0 : ~|XLen1[`LEN1-2:`NF1] & ~XFracZero;
|
||||
@ -257,9 +257,9 @@ module unpack (
|
||||
// also need to take into account possible zero/denorm/inf/NaN values
|
||||
|
||||
// convert the larger precision's exponent to use the largest precision's bias
|
||||
XExpE = XOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {XLen1[`LEN1-2], {`NE-`NE1{~XLen1[`LEN1-2]&~XExpZero|XExpMaxE}}, XLen1[`LEN1-3:`NF1]};
|
||||
YExpE = YOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {YLen1[`LEN1-2], {`NE-`NE1{~YLen1[`LEN1-2]&~YExpZero|YExpMaxE}}, YLen1[`LEN1-3:`NF1]};
|
||||
ZExpE = ZOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {ZLen1[`LEN1-2], {`NE-`NE1{~ZLen1[`LEN1-2]&~ZExpZero|ZExpMaxE}}, ZLen1[`LEN1-3:`NF1]};
|
||||
XExpE = XOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {XLen1[`LEN1-2], {`NE-`NE1{~XLen1[`LEN1-2]}}, XLen1[`LEN1-3:`NF1]};
|
||||
YExpE = YOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {YLen1[`LEN1-2], {`NE-`NE1{~YLen1[`LEN1-2]}}, YLen1[`LEN1-3:`NF1]};
|
||||
ZExpE = ZOrigDenormE ? {1'b0, {`NE-`NE1{1'b1}}, (`NE1-1)'(1)} : {ZLen1[`LEN1-2], {`NE-`NE1{~ZLen1[`LEN1-2]}}, ZLen1[`LEN1-3:`NF1]};
|
||||
|
||||
// extract the fraction and add the nessesary trailing zeros
|
||||
XFracE = {XLen1[`NF1-1:0], (`NF-`NF1)'(0)};
|
||||
@ -282,9 +282,9 @@ module unpack (
|
||||
// also need to take into account possible zero/denorm/inf/NaN values
|
||||
|
||||
// convert the smallest precision's exponent to use the largest precision's bias
|
||||
XExpE = XOrigDenormE ? {1'b0, {`NE-`NE2{1'b1}}, (`NE2-1)'(1)} : {XLen2[`LEN2-2], {`NE-`NE2{~XLen2[`LEN2-2]&~XExpZero|XExpMaxE}}, XLen2[`LEN2-3:`NF2]};
|
||||
YExpE = YOrigDenormE ? {1'b0, {`NE-`NE2{1'b1}}, (`NE2-1)'(1)} : {YLen2[`LEN2-2], {`NE-`NE2{~YLen2[`LEN2-2]&~YExpZero|YExpMaxE}}, YLen2[`LEN2-3:`NF2]};
|
||||
ZExpE = ZOrigDenormE ? {1'b0, {`NE-`NE2{1'b1}}, (`NE2-1)'(1)} : {ZLen2[`LEN2-2], {`NE-`NE2{~ZLen2[`LEN2-2]&~ZExpZero|ZExpMaxE}}, ZLen2[`LEN2-3:`NF2]};
|
||||
XExpE = XOrigDenormE ? {1'b0, {`NE-`NE2{1'b1}}, (`NE2-1)'(1)} : {XLen2[`LEN2-2], {`NE-`NE2{~XLen2[`LEN2-2]}}, XLen2[`LEN2-3:`NF2]};
|
||||
YExpE = YOrigDenormE ? {1'b0, {`NE-`NE2{1'b1}}, (`NE2-1)'(1)} : {YLen2[`LEN2-2], {`NE-`NE2{~YLen2[`LEN2-2]}}, YLen2[`LEN2-3:`NF2]};
|
||||
ZExpE = ZOrigDenormE ? {1'b0, {`NE-`NE2{1'b1}}, (`NE2-1)'(1)} : {ZLen2[`LEN2-2], {`NE-`NE2{~ZLen2[`LEN2-2]}}, ZLen2[`LEN2-3:`NF2]};
|
||||
|
||||
// extract the fraction and add the nessesary trailing zeros
|
||||
XFracE = {XLen2[`NF2-1:0], (`NF-`NF2)'(0)};
|
||||
@ -447,9 +447,9 @@ module unpack (
|
||||
|
||||
// convert the double precsion exponent into quad precsion
|
||||
|
||||
XExpE = XOrigDenormE ? {1'b0, {`Q_NE-`D_NE{1'b1}}, (`D_NE-1)'(1)} : {XLen1[`D_LEN-2], {`Q_NE-`D_NE{~XLen1[`D_LEN-2]&~XExpZero|XExpMaxE}}, XLen1[`D_LEN-3:`D_NF]};
|
||||
YExpE = YOrigDenormE ? {1'b0, {`Q_NE-`D_NE{1'b1}}, (`D_NE-1)'(1)} : {YLen1[`D_LEN-2], {`Q_NE-`D_NE{~YLen1[`D_LEN-2]&~YExpZero|YExpMaxE}}, YLen1[`D_LEN-3:`D_NF]};
|
||||
ZExpE = ZOrigDenormE ? {1'b0, {`Q_NE-`D_NE{1'b1}}, (`D_NE-1)'(1)} : {ZLen1[`D_LEN-2], {`Q_NE-`D_NE{~ZLen1[`D_LEN-2]&~ZExpZero|ZExpMaxE}}, ZLen1[`D_LEN-3:`D_NF]};
|
||||
XExpE = XOrigDenormE ? {1'b0, {`Q_NE-`D_NE{1'b1}}, (`D_NE-1)'(1)} : {XLen1[`D_LEN-2], {`Q_NE-`D_NE{~XLen1[`D_LEN-2]}}, XLen1[`D_LEN-3:`D_NF]};
|
||||
YExpE = YOrigDenormE ? {1'b0, {`Q_NE-`D_NE{1'b1}}, (`D_NE-1)'(1)} : {YLen1[`D_LEN-2], {`Q_NE-`D_NE{~YLen1[`D_LEN-2]}}, YLen1[`D_LEN-3:`D_NF]};
|
||||
ZExpE = ZOrigDenormE ? {1'b0, {`Q_NE-`D_NE{1'b1}}, (`D_NE-1)'(1)} : {ZLen1[`D_LEN-2], {`Q_NE-`D_NE{~ZLen1[`D_LEN-2]}}, ZLen1[`D_LEN-3:`D_NF]};
|
||||
|
||||
// extract the fraction and add the nessesary trailing zeros
|
||||
XFracE = {XLen1[`D_NF-1:0], (`Q_NF-`D_NF)'(0)};
|
||||
@ -471,9 +471,9 @@ module unpack (
|
||||
// also need to take into account possible zero/denorm/inf/NaN values
|
||||
|
||||
// convert the single precsion exponent into quad precsion
|
||||
XExpE = XOrigDenormE ? {1'b0, {`Q_NE-`S_NE{1'b1}}, (`S_NE-1)'(1)} : {XLen2[`S_LEN-2], {`Q_NE-`S_NE{~XLen2[`S_LEN-2]&~XExpZero|XExpMaxE}}, XLen2[`S_LEN-3:`S_NF]};
|
||||
YExpE = YOrigDenormE ? {1'b0, {`Q_NE-`S_NE{1'b1}}, (`S_NE-1)'(1)} : {YLen2[`S_LEN-2], {`Q_NE-`S_NE{~YLen2[`S_LEN-2]&~YExpZero|YExpMaxE}}, YLen2[`S_LEN-3:`S_NF]};
|
||||
ZExpE = ZOrigDenormE ? {1'b0, {`Q_NE-`S_NE{1'b1}}, (`S_NE-1)'(1)} : {ZLen2[`S_LEN-2], {`Q_NE-`S_NE{~ZLen2[`S_LEN-2]&~ZExpZero|ZExpMaxE}}, ZLen2[`S_LEN-3:`S_NF]};
|
||||
XExpE = XOrigDenormE ? {1'b0, {`Q_NE-`S_NE{1'b1}}, (`S_NE-1)'(1)} : {XLen2[`S_LEN-2], {`Q_NE-`S_NE{~XLen2[`S_LEN-2]}}, XLen2[`S_LEN-3:`S_NF]};
|
||||
YExpE = YOrigDenormE ? {1'b0, {`Q_NE-`S_NE{1'b1}}, (`S_NE-1)'(1)} : {YLen2[`S_LEN-2], {`Q_NE-`S_NE{~YLen2[`S_LEN-2]}}, YLen2[`S_LEN-3:`S_NF]};
|
||||
ZExpE = ZOrigDenormE ? {1'b0, {`Q_NE-`S_NE{1'b1}}, (`S_NE-1)'(1)} : {ZLen2[`S_LEN-2], {`Q_NE-`S_NE{~ZLen2[`S_LEN-2]}}, ZLen2[`S_LEN-3:`S_NF]};
|
||||
|
||||
// extract the fraction and add the nessesary trailing zeros
|
||||
XFracE = {XLen2[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
|
||||
@ -495,9 +495,9 @@ module unpack (
|
||||
// also need to take into account possible zero/denorm/inf/NaN values
|
||||
|
||||
// convert the half precsion exponent into quad precsion
|
||||
XExpE = XOrigDenormE ? {1'b0, {`Q_NE-`H_NE{1'b1}}, (`H_NE-1)'(1)} : {XLen3[`H_LEN-2], {`Q_NE-`H_NE{~XLen3[`H_LEN-2]&~XExpZero|XExpMaxE}}, XLen3[`H_LEN-3:`H_NF]};
|
||||
YExpE = YOrigDenormE ? {1'b0, {`Q_NE-`H_NE{1'b1}}, (`H_NE-1)'(1)} : {YLen3[`H_LEN-2], {`Q_NE-`H_NE{~YLen3[`H_LEN-2]&~YExpZero|YExpMaxE}}, YLen3[`H_LEN-3:`H_NF]};
|
||||
ZExpE = ZOrigDenormE ? {1'b0, {`Q_NE-`H_NE{1'b1}}, (`H_NE-1)'(1)} : {ZLen3[`H_LEN-2], {`Q_NE-`H_NE{~ZLen3[`H_LEN-2]&~ZExpZero|ZExpMaxE}}, ZLen3[`H_LEN-3:`H_NF]};
|
||||
XExpE = XOrigDenormE ? {1'b0, {`Q_NE-`H_NE{1'b1}}, (`H_NE-1)'(1)} : {XLen3[`H_LEN-2], {`Q_NE-`H_NE{~XLen3[`H_LEN-2]}}, XLen3[`H_LEN-3:`H_NF]};
|
||||
YExpE = YOrigDenormE ? {1'b0, {`Q_NE-`H_NE{1'b1}}, (`H_NE-1)'(1)} : {YLen3[`H_LEN-2], {`Q_NE-`H_NE{~YLen3[`H_LEN-2]}}, YLen3[`H_LEN-3:`H_NF]};
|
||||
ZExpE = ZOrigDenormE ? {1'b0, {`Q_NE-`H_NE{1'b1}}, (`H_NE-1)'(1)} : {ZLen3[`H_LEN-2], {`Q_NE-`H_NE{~ZLen3[`H_LEN-2]}}, ZLen3[`H_LEN-3:`H_NF]};
|
||||
|
||||
// extract the fraction and add the nessesary trailing zeros
|
||||
XFracE = {XLen3[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
|
||||
|
@ -3,11 +3,13 @@ module lzc #(parameter WIDTH=1) (
|
||||
input logic [WIDTH-1:0] num,
|
||||
output logic [$clog2(WIDTH)-1:0] ZeroCnt
|
||||
);
|
||||
/* verilator lint_off CMPCONST */
|
||||
|
||||
logic [$clog2(WIDTH)-1:0] i;
|
||||
always_comb begin
|
||||
i = 0;
|
||||
while (~num[WIDTH-1-i] & $unsigned(i) <= $unsigned(WIDTH-1)) i = i+1; // search for leading one
|
||||
while (~num[WIDTH-1-(32)'(i)] & $unsigned(i) <= $unsigned(($clog2(WIDTH))'(WIDTH-1))) i = i+1; // search for leading one
|
||||
ZeroCnt = i;
|
||||
end
|
||||
/* verilator lint_on CMPCONST */
|
||||
endmodule
|
||||
|
@ -1174,13 +1174,13 @@ end
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// check if the non-fma test is correct
|
||||
if(~((Res === Ans | NaNGood | NaNGood === 1'bx) & (ResFlg === AnsFlg | AnsFlg === 5'bx))&(UnitVal !== `CVTINTUNIT)) begin
|
||||
if(~((Res === Ans | NaNGood | NaNGood === 1'bx) & (ResFlg === AnsFlg | AnsFlg === 5'bx))&(UnitVal !== `CVTINTUNIT)&(UnitVal !== `CMPUNIT)) begin
|
||||
errors += 1;
|
||||
$display("There is an error in %s", Tests[TestNum]);
|
||||
$display("inputs: %h %h %h\nSrcA: %h\n Res: %h %h\n Ans: %h %h", X, Y, Z, SrcA, Res, ResFlg, Ans, AnsFlg);
|
||||
$stop;
|
||||
end
|
||||
|
||||
|
||||
// TestFloat sets the result to all 1's when there is an invalid result, however in
|
||||
// http://www.jhauser.us/arithmetic/TestFloat-3/doc/TestFloat-general.html it says
|
||||
// for an unsigned integer result 0 is also okay
|
||||
@ -1470,7 +1470,7 @@ module readvectors (
|
||||
Ans = TestVector[8];
|
||||
end
|
||||
2'b10: begin // half
|
||||
X = {{`FLEN-`H_LEN{1'b1}}, TestVector[12+3*(`H_LEN)-1:12+(`H_LEN)]};
|
||||
X = {{`FLEN-`H_LEN{1'b1}}, TestVector[12+2*(`H_LEN)-1:12+(`H_LEN)]};
|
||||
Y = {{`FLEN-`H_LEN{1'b1}}, TestVector[12+(`H_LEN)-1:12]};
|
||||
Ans = TestVector[8];
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user