mirror of
https://github.com/openhwgroup/cvw
synced 2025-02-11 06:05:49 +00:00
Merge branch 'main' of github.com:davidharrishmc/riscv-wally into main
This commit is contained in:
commit
37451b8978
@ -1 +1 @@
|
|||||||
Subproject commit 84d043817f75f752c9873326475e11f16e3a6f7c
|
Subproject commit be67c99bd461742aa1c100bcc0732657faae2230
|
@ -1,5 +1,10 @@
|
|||||||
|
|
||||||
`include "../../../config/rv64icfd/wally-config.vh"
|
//`include "../../../config/old/rv64icfd/wally-config.vh"
|
||||||
|
|
||||||
|
`define FLEN 64//(`Q_SUPPORTED ? 128 : `D_SUPPORTED ? 64 : 32)
|
||||||
|
`define NE 11//(`Q_SUPPORTED ? 15 : `D_SUPPORTED ? 11 : 8)
|
||||||
|
`define NF 52//(`Q_SUPPORTED ? 112 : `D_SUPPORTED ? 52 : 23)
|
||||||
|
`define XLEN 64
|
||||||
module testbench3();
|
module testbench3();
|
||||||
|
|
||||||
logic [31:0] errors=0;
|
logic [31:0] errors=0;
|
||||||
@ -174,8 +179,9 @@ always @(posedge clk)
|
|||||||
// check results on falling edge of clk
|
// check results on falling edge of clk
|
||||||
always @(negedge clk) begin
|
always @(negedge clk) begin
|
||||||
|
|
||||||
// fp = $fopen("/home/kparry/riscv-wally/wally-pipelined/src/fpu/FMA/tbgen/results.dat","w");
|
|
||||||
if((FmtE==1'b1) & (FMAFlgM != flags[4:0] || (!wnan && (FMAResM != ans)) || (wnan && ansnan && ~((XNaNE && (FMAResM[`FLEN-2:0] == {XExpE,1'b1,X[`NF-2:0]})) || (YNaNE && (FMAResM[`FLEN-2:0] == {YExpE,1'b1,Y[`NF-2:0]})) || (ZNaNE && (FMAResM[`FLEN-2:0] == {ZExpE,1'b1,Z[`NF-2:0]})) || (FMAResM[`FLEN-2:0] == ans[`FLEN-2:0]))))) begin
|
if((FmtE==1'b1) & (FMAFlgM != flags[4:0] || (!wnan && (FMAResM != ans)) || (wnan && ansnan && ~((XNaNE && (FMAResM[`FLEN-2:0] == {XExpE,1'b1,X[`NF-2:0]})) || (YNaNE && (FMAResM[`FLEN-2:0] == {YExpE,1'b1,Y[`NF-2:0]})) || (ZNaNE && (FMAResM[`FLEN-2:0] == {ZExpE,1'b1,Z[`NF-2:0]})) || (FMAResM[`FLEN-2:0] == ans[`FLEN-2:0]))))) begin
|
||||||
|
// fp = $fopen("/home/kparry/riscv-wally/wally-pipelined/src/fpu/FMA/tbgen/results.dat","w");
|
||||||
|
// if((FmtE==1'b1) & (FMAFlgM != flags[4:0] || (FMAResM != ans))) begin
|
||||||
$display( "%h %h %h %h %h %h %h Wrong ",X,Y, Z, FMAResM, ans, FMAFlgM, flags);
|
$display( "%h %h %h %h %h %h %h Wrong ",X,Y, Z, FMAResM, ans, FMAFlgM, flags);
|
||||||
if(FMAResM == 64'h8000000000000000) $display( "FMAResM=-zero ");
|
if(FMAResM == 64'h8000000000000000) $display( "FMAResM=-zero ");
|
||||||
if(XDenormE) $display( "xdenorm ");
|
if(XDenormE) $display( "xdenorm ");
|
||||||
@ -193,7 +199,7 @@ always @(posedge clk)
|
|||||||
if(ans[`FLEN-2:`NF] == {`NE{1'b1}} && ans[`NF-1:0] != 0 && ~ans[`NF-1]) $display( "ans=sigNaN ");
|
if(ans[`FLEN-2:`NF] == {`NE{1'b1}} && ans[`NF-1:0] != 0 && ~ans[`NF-1]) $display( "ans=sigNaN ");
|
||||||
if(ans[`FLEN-2:`NF] == {`NE{1'b1}} && ans[`NF-1:0] != 0 && ans[`NF-1]) $display( "ans=qutNaN ");
|
if(ans[`FLEN-2:`NF] == {`NE{1'b1}} && ans[`NF-1:0] != 0 && ans[`NF-1]) $display( "ans=qutNaN ");
|
||||||
errors = errors + 1;
|
errors = errors + 1;
|
||||||
|
//if (errors == 10)
|
||||||
$stop;
|
$stop;
|
||||||
end
|
end
|
||||||
if((FmtE==1'b0)&(FMAFlgM != flags[4:0] || (!wnan && (FMAResM != ans)) || (wnan && ansnan && ~(((XNaNE && (FMAResM[30:0] == {X[30:23],1'b1,X[21:0]})) || (YNaNE && (FMAResM[30:0] == {Y[30:23],1'b1,Y[21:0]})) || (ZNaNE && (FMAResM[30:0] == {Z[30:23],1'b1,Z[21:0]})) || (FMAResM[30:0] == ans[30:0]))) ))) begin
|
if((FmtE==1'b0)&(FMAFlgM != flags[4:0] || (!wnan && (FMAResM != ans)) || (wnan && ansnan && ~(((XNaNE && (FMAResM[30:0] == {X[30:23],1'b1,X[21:0]})) || (YNaNE && (FMAResM[30:0] == {Y[30:23],1'b1,Y[21:0]})) || (ZNaNE && (FMAResM[30:0] == {Z[30:23],1'b1,Z[21:0]})) || (FMAResM[30:0] == ans[30:0]))) ))) begin
|
||||||
|
@ -9,4 +9,6 @@ make allclean
|
|||||||
make
|
make
|
||||||
make XLEN=32
|
make XLEN=32
|
||||||
exe2memfile.pl work/*/*/*.elf
|
exe2memfile.pl work/*/*/*.elf
|
||||||
cd ../../wally-pipelined/regression
|
cd ../linux-testgen/linux-testvectors
|
||||||
|
./tvLinker.sh
|
||||||
|
cd ../../../wally-pipelined/regression
|
||||||
|
@ -10,9 +10,11 @@
|
|||||||
# output.
|
# output.
|
||||||
#
|
#
|
||||||
##################################
|
##################################
|
||||||
import sys
|
import sys,os
|
||||||
|
|
||||||
from collections import namedtuple
|
from collections import namedtuple
|
||||||
|
regressionDir = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
os.chdir(regressionDir)
|
||||||
TestCase = namedtuple("TestCase", ['name', 'cmd', 'grepstr'])
|
TestCase = namedtuple("TestCase", ['name', 'cmd', 'grepstr'])
|
||||||
# name: the name of this test configuration (used in printing human-readable
|
# name: the name of this test configuration (used in printing human-readable
|
||||||
# output and picking logfile names)
|
# output and picking logfile names)
|
||||||
@ -32,7 +34,7 @@ configs = [
|
|||||||
]
|
]
|
||||||
def getBuildrootTC(short):
|
def getBuildrootTC(short):
|
||||||
INSTR_LIMIT = 100000 # multiple of 100000
|
INSTR_LIMIT = 100000 # multiple of 100000
|
||||||
MAX_EXPECTED = 182000000
|
MAX_EXPECTED = 246000000
|
||||||
if short:
|
if short:
|
||||||
BRcmd="vsim > {} -c <<!\ndo wally-buildroot-batch.do "+str(INSTR_LIMIT)+" 1 0\n!"
|
BRcmd="vsim > {} -c <<!\ndo wally-buildroot-batch.do "+str(INSTR_LIMIT)+" 1 0\n!"
|
||||||
BRgrepstr=str(INSTR_LIMIT)+" instructions"
|
BRgrepstr=str(INSTR_LIMIT)+" instructions"
|
||||||
@ -78,6 +80,7 @@ def run_test_case(config):
|
|||||||
logname = "logs/wally_"+config.name+".log"
|
logname = "logs/wally_"+config.name+".log"
|
||||||
cmd = config.cmd.format(logname)
|
cmd = config.cmd.format(logname)
|
||||||
print(cmd)
|
print(cmd)
|
||||||
|
os.chdir(regressionDir)
|
||||||
os.system(cmd)
|
os.system(cmd)
|
||||||
if search_log_for_text(config.grepstr, logname):
|
if search_log_for_text(config.grepstr, logname):
|
||||||
print("%s: Success" % config.name)
|
print("%s: Success" % config.name)
|
||||||
@ -91,11 +94,13 @@ def main():
|
|||||||
"""Run the tests and count the failures"""
|
"""Run the tests and count the failures"""
|
||||||
global configs
|
global configs
|
||||||
try:
|
try:
|
||||||
|
os.chdir(regressionDir)
|
||||||
os.mkdir("logs")
|
os.mkdir("logs")
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
if '-makeTests' in sys.argv:
|
if '-makeTests' in sys.argv:
|
||||||
|
os.chdir(regressionDir)
|
||||||
os.system('./make-tests.sh | tee ./logs/make-tests.log')
|
os.system('./make-tests.sh | tee ./logs/make-tests.log')
|
||||||
|
|
||||||
if '-all' in sys.argv:
|
if '-all' in sys.argv:
|
||||||
|
@ -23,8 +23,11 @@
|
|||||||
///////////////////////////////////////////
|
///////////////////////////////////////////
|
||||||
|
|
||||||
`include "wally-config.vh"
|
`include "wally-config.vh"
|
||||||
// `include "../../../config/rv64icfd/wally-config.vh"
|
|
||||||
|
|
||||||
|
// `define FLEN 64//(`Q_SUPPORTED ? 128 : `D_SUPPORTED ? 64 : 32)
|
||||||
|
// `define NE 11//(`Q_SUPPORTED ? 15 : `D_SUPPORTED ? 11 : 8)
|
||||||
|
// `define NF 52//(`Q_SUPPORTED ? 112 : `D_SUPPORTED ? 52 : 23)
|
||||||
|
// `define XLEN 64
|
||||||
module fma(
|
module fma(
|
||||||
input logic clk,
|
input logic clk,
|
||||||
input logic reset,
|
input logic reset,
|
||||||
@ -113,7 +116,7 @@ module fma1(
|
|||||||
logic [3*`NF+5:0] AlignedAddendE; // Z aligned for addition in U(NF+5.2NF+1)
|
logic [3*`NF+5:0] AlignedAddendE; // Z aligned for addition in U(NF+5.2NF+1)
|
||||||
logic [3*`NF+6:0] AlignedAddendInv; // aligned addend possibly inverted
|
logic [3*`NF+6:0] AlignedAddendInv; // aligned addend possibly inverted
|
||||||
logic [2*`NF+1:0] ProdManKilled; // the product's mantissa possibly killed
|
logic [2*`NF+1:0] ProdManKilled; // the product's mantissa possibly killed
|
||||||
logic [3*`NF+6:0] NegProdManKilled; // a negated ProdManKilled
|
logic [3*`NF+4:0] NegProdManKilled; // a negated ProdManKilled
|
||||||
logic [8:0] PNormCnt, NNormCnt; // the positive and nagitive LOA results
|
logic [8:0] PNormCnt, NNormCnt; // the positive and nagitive LOA results
|
||||||
logic [3*`NF+6:0] PreSum, NegPreSum; // positive and negitve versions of the sum
|
logic [3*`NF+6:0] PreSum, NegPreSum; // positive and negitve versions of the sum
|
||||||
|
|
||||||
@ -149,11 +152,11 @@ module fma1(
|
|||||||
|
|
||||||
add add(.AlignedAddendE, .ProdManE, .PSgnE, .ZSgnEffE, .KillProdE, .AlignedAddendInv, .ProdManKilled, .NegProdManKilled, .NegSumE, .PreSum, .NegPreSum, .InvZE, .XZeroE, .YZeroE);
|
add add(.AlignedAddendE, .ProdManE, .PSgnE, .ZSgnEffE, .KillProdE, .AlignedAddendInv, .ProdManKilled, .NegProdManKilled, .NegSumE, .PreSum, .NegPreSum, .InvZE, .XZeroE, .YZeroE);
|
||||||
|
|
||||||
loa loa(.AlignedAddendE, .AlignedAddendInv, .ProdManKilled, .NegProdManKilled, .PNormCnt, .NNormCnt);
|
loa loa(.A(AlignedAddendInv+{162'b0,InvZE}), .P(ProdManKilled), .NegSumE, .NormCntE);
|
||||||
|
|
||||||
// Choose the positive sum and accompanying LZA result.
|
// Choose the positive sum and accompanying LZA result.
|
||||||
assign SumE = NegSumE ? NegPreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
|
assign SumE = NegSumE ? NegPreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
|
||||||
assign NormCntE = NegSumE ? NNormCnt : PNormCnt;
|
// assign NormCntE = NegSumE ? NNormCnt : PNormCnt;
|
||||||
|
|
||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
@ -311,7 +314,7 @@ module add(
|
|||||||
input logic XZeroE, YZeroE, // is the input zero
|
input logic XZeroE, YZeroE, // is the input zero
|
||||||
output logic [3*`NF+6:0] AlignedAddendInv, // aligned addend possibly inverted
|
output logic [3*`NF+6:0] AlignedAddendInv, // aligned addend possibly inverted
|
||||||
output logic [2*`NF+1:0] ProdManKilled, // the product's mantissa possibly killed
|
output logic [2*`NF+1:0] ProdManKilled, // the product's mantissa possibly killed
|
||||||
output logic [3*`NF+6:0] NegProdManKilled, // a negated ProdManKilled
|
output logic [3*`NF+4:0] NegProdManKilled, // a negated ProdManKilled
|
||||||
output logic NegSumE, // was the sum negitive
|
output logic NegSumE, // was the sum negitive
|
||||||
output logic InvZE, // do you invert Z
|
output logic InvZE, // do you invert Z
|
||||||
output logic [3*`NF+6:0] PreSum, NegPreSum// possibly negitive sum
|
output logic [3*`NF+6:0] PreSum, NegPreSum// possibly negitive sum
|
||||||
@ -327,99 +330,65 @@ module add(
|
|||||||
assign InvZE = ZSgnEffE ^ PSgnE;
|
assign InvZE = ZSgnEffE ^ PSgnE;
|
||||||
|
|
||||||
// Choose an inverted or non-inverted addend - the one has to be added now for the LZA
|
// Choose an inverted or non-inverted addend - the one has to be added now for the LZA
|
||||||
assign AlignedAddendInv = InvZE ? -{1'b0, AlignedAddendE} : {1'b0, AlignedAddendE};
|
assign AlignedAddendInv = InvZE ? {1'b1, ~AlignedAddendE} : {1'b0, AlignedAddendE};
|
||||||
// Kill the product if the product is too small to effect the addition (determined in fma1.sv)
|
// Kill the product if the product is too small to effect the addition (determined in fma1.sv)
|
||||||
assign ProdManKilled = ProdManE&{2*`NF+2{~KillProdE}};
|
assign ProdManKilled = ProdManE&{2*`NF+2{~KillProdE}};
|
||||||
// Negate ProdMan for LZA and the negitive sum calculation
|
// Negate ProdMan for LZA and the negitive sum calculation
|
||||||
assign NegProdManKilled = {{`NF+3{~(XZeroE|YZeroE|KillProdE)}}, -ProdManKilled, 2'b0};
|
assign NegProdManKilled = {{`NF+3{~(XZeroE|YZeroE|KillProdE)}}, ~ProdManKilled&{2*`NF+2{~(XZeroE|YZeroE)}}};
|
||||||
|
|
||||||
|
|
||||||
|
// Is the sum negitive
|
||||||
|
assign NegSumE = (AlignedAddendE > {54'b0, ProdManKilled, 2'b0})&InvZE; //***use this to avoid addition and final muxing???
|
||||||
|
|
||||||
// Do the addition
|
// Do the addition
|
||||||
// - calculate a positive and negitive sum in parallel
|
// - calculate a positive and negitive sum in parallel
|
||||||
assign PreSum = AlignedAddendInv + {55'b0, ProdManKilled, 2'b0};
|
assign PreSum = AlignedAddendInv + {55'b0, ProdManKilled, 2'b0} + {{3*`NF+6{1'b0}}, InvZE};
|
||||||
assign NegPreSum = AlignedAddendE + NegProdManKilled;
|
assign NegPreSum = AlignedAddendE + {NegProdManKilled, 2'b0} + {{(3*`NF+3){1'b0}},~(XZeroE|YZeroE),2'b0};
|
||||||
|
|
||||||
// Is the sum negitive
|
|
||||||
assign NegSumE = PreSum[3*`NF+6];
|
|
||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
|
|
||||||
module loa(
|
module loa( //https://ieeexplore.ieee.org/abstract/document/930098
|
||||||
input logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
|
|
||||||
input logic [3*`NF+6:0] AlignedAddendInv, // aligned addend possibly inverted
|
|
||||||
input logic [2*`NF+1:0] ProdManKilled, // the product's mantissa possibly killed
|
|
||||||
input logic [3*`NF+6:0] NegProdManKilled, // a negated ProdManKilled
|
|
||||||
output logic [8:0] PNormCnt, NNormCnt // positive and negitive LOA result
|
|
||||||
);
|
|
||||||
|
|
||||||
// LZAs one for the positive result and one for the negitive
|
|
||||||
// - the +1 from inverting causes problems for normalization
|
|
||||||
posloa posloa(AlignedAddendInv, ProdManKilled, PNormCnt);
|
|
||||||
negloa negloa({1'b0,AlignedAddendE}, NegProdManKilled, NNormCnt);
|
|
||||||
|
|
||||||
endmodule
|
|
||||||
|
|
||||||
|
|
||||||
module posloa(
|
|
||||||
input logic [3*`NF+6:0] A, // addend
|
input logic [3*`NF+6:0] A, // addend
|
||||||
input logic [2*`NF+1:0] P, // product
|
input logic [2*`NF+1:0] P, // product
|
||||||
output logic [8:0] PCnt // normalization shift count for the positive result
|
input logic NegSumE, // is the sum negitive
|
||||||
|
output logic [8:0] NormCntE // normalization shift count for the positive result
|
||||||
);
|
);
|
||||||
|
|
||||||
|
|
||||||
// calculate the propagate (T) and kill (Z) bits
|
|
||||||
logic [3*`NF+6:0] T;
|
logic [3*`NF+6:0] T;
|
||||||
|
logic [3*`NF+5:0] G;
|
||||||
logic [3*`NF+5:0] Z;
|
logic [3*`NF+5:0] Z;
|
||||||
assign T[3*`NF+6:2*`NF+4] = A[3*`NF+6:2*`NF+4];
|
assign T[3*`NF+6:2*`NF+4] = A[3*`NF+6:2*`NF+4];
|
||||||
assign Z[3*`NF+5:2*`NF+4] = A[3*`NF+5:2*`NF+4];
|
assign G[3*`NF+5:2*`NF+4] = 0;
|
||||||
|
assign Z[3*`NF+5:2*`NF+4] = ~A[3*`NF+5:2*`NF+4];
|
||||||
assign T[2*`NF+3:2] = A[2*`NF+3:2]^P;
|
assign T[2*`NF+3:2] = A[2*`NF+3:2]^P;
|
||||||
assign Z[2*`NF+3:2] = A[2*`NF+3:2]|P;
|
assign G[2*`NF+3:2] = A[2*`NF+3:2]&P;
|
||||||
|
assign Z[2*`NF+3:2] = ~A[2*`NF+3:2]&~P;
|
||||||
assign T[1:0] = A[1:0];
|
assign T[1:0] = A[1:0];
|
||||||
assign Z[1:0] = A[1:0];
|
assign G[1:0] = 0;
|
||||||
|
assign Z[1:0] = ~A[1:0];
|
||||||
|
|
||||||
|
|
||||||
// Apply function to determine Leading pattern
|
// Apply function to determine Leading pattern
|
||||||
logic [3*`NF+6:0] f;
|
logic [3*`NF+6:0] f;
|
||||||
assign f = T^{Z[3*`NF+5:0], 1'b0};
|
assign f = NegSumE ? T^{~G[3*`NF+5:0],1'b1} : T^{~Z[3*`NF+5:0], 1'b1};
|
||||||
|
|
||||||
lzc lzc(.f, .Cnt(PCnt));
|
lzc lzc(.f, .NormCntE);
|
||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
module negloa(
|
|
||||||
input logic [3*`NF+6:0] A, // addend
|
|
||||||
input logic [3*`NF+6:0] P, // product
|
|
||||||
output logic [8:0] NCnt // normalization shift count for the negitive result
|
|
||||||
);
|
|
||||||
|
|
||||||
// calculate the propagate (T) and kill (Z) bits
|
|
||||||
logic [3*`NF+6:0] T;
|
|
||||||
logic [3*`NF+5:0] Z;
|
|
||||||
assign T = A^P;
|
|
||||||
assign Z = ~(A[3*`NF+5:0]|P[3*`NF+5:0]);
|
|
||||||
|
|
||||||
|
|
||||||
// Apply function to determine Leading pattern
|
|
||||||
logic [3*`NF+6:0] f;
|
|
||||||
assign f = T^{~Z, 1'b0};
|
|
||||||
|
|
||||||
lzc lzc(.f, .Cnt(NCnt));
|
|
||||||
|
|
||||||
endmodule
|
|
||||||
|
|
||||||
|
|
||||||
module lzc(
|
module lzc(
|
||||||
input logic [3*`NF+6:0] f,
|
input logic [3*`NF+6:0] f,
|
||||||
output logic [8:0] Cnt // normalization shift count for the negitive result
|
output logic [8:0] NormCntE // normalization shift
|
||||||
);
|
);
|
||||||
|
|
||||||
logic [8:0] i;
|
logic [8:0] i;
|
||||||
always_comb begin
|
always_comb begin
|
||||||
i = 0;
|
i = 0;
|
||||||
while (~f[3*`NF+6-i] && $unsigned(i) <= $unsigned(9'd3*9'd`NF+9'd6)) i = i+1; // search for leading one
|
while (~f[3*`NF+6-i] && $unsigned(i) <= $unsigned(9'd3*9'd`NF+9'd6)) i = i+1; // search for leading one
|
||||||
Cnt = i;
|
NormCntE = i;
|
||||||
end
|
end
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
@ -479,7 +448,7 @@ module fma2(
|
|||||||
// Normalization
|
// Normalization
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
normalize normalize(.SumM, .ZExpM, .ProdExpM, .NormCntM, .FmtM, .KillProdM, .AddendStickyM, .NormSum,
|
normalize normalize(.SumM, .ZExpM, .ProdExpM, .NormCntM, .FmtM, .KillProdM, .AddendStickyM, .NormSum, .NegSumM,
|
||||||
.SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm);
|
.SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm);
|
||||||
|
|
||||||
|
|
||||||
@ -611,6 +580,80 @@ module resultselect(
|
|||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
|
|
||||||
|
// module normalize(
|
||||||
|
// input logic [3*`NF+5:0] SumM, // the positive sum
|
||||||
|
// input logic [`NE-1:0] ZExpM, // exponent of Z
|
||||||
|
// input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
|
||||||
|
// input logic [8:0] NormCntM, // normalization shift count
|
||||||
|
// input logic FmtM, // precision 1 = double 0 = single
|
||||||
|
// input logic KillProdM, // is the product set to zero
|
||||||
|
// input logic AddendStickyM, // the sticky bit caclulated from the aligned addend
|
||||||
|
// input logic NegSumM, // was the sum negitive
|
||||||
|
// output logic [`NF+2:0] NormSum, // normalized sum
|
||||||
|
// output logic SumZero, // is the sum zero
|
||||||
|
// output logic NormSumSticky, UfSticky, // sticky bits
|
||||||
|
// output logic [`NE+1:0] SumExp, // exponent of the normalized sum
|
||||||
|
// output logic ResultDenorm // is the result denormalized
|
||||||
|
// );
|
||||||
|
// logic [`NE+1:0] FracLen; // length of the fraction
|
||||||
|
// logic [`NE+1:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results
|
||||||
|
// logic [8:0] DenormShift; // right shift if the result is denormalized //***change this later
|
||||||
|
// logic [3*`NF+5:0] CorrSumShifted; // the shifted sum after LZA correction
|
||||||
|
// logic [3*`NF+7:0] SumShifted; // the shifted sum before LZA correction
|
||||||
|
// logic [`NE+1:0] SumExpTmpTmp; // the exponent of the normalized sum with the `FLEN bias
|
||||||
|
// logic PreResultDenorm; // is the result denormalized - calculated before LZA corection
|
||||||
|
// logic PreResultDenorm2; // is the result denormalized - calculated before LZA corection
|
||||||
|
// logic LZAPlus1; // add one to the sum's exponent due to LZA correction
|
||||||
|
|
||||||
|
// ///////////////////////////////////////////////////////////////////////////////
|
||||||
|
// // Normalization
|
||||||
|
// ///////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
// // Determine if the sum is zero
|
||||||
|
// assign SumZero = ~(|SumM);
|
||||||
|
|
||||||
|
// // determine the length of the fraction based on precision
|
||||||
|
// assign FracLen = FmtM ? `NF+1 : 13'd24;
|
||||||
|
|
||||||
|
// // calculate the sum's exponent
|
||||||
|
// assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCntM} + 1 - (`NF+4)); // ****try moving this into previous stage
|
||||||
|
// assign SumExpTmp = FmtM ? SumExpTmpTmp : (SumExpTmpTmp-1023+127)&{`NE+2{|SumExpTmpTmp}}; // ***move this ^ the subtraction by a constant isn't simplified
|
||||||
|
|
||||||
|
// logic SumDLTEZ, SumDGEFL, SumSLTEZ, SumSGEFL;
|
||||||
|
// assign SumDLTEZ = SumExpTmpTmp[`NE+1] | ~|SumExpTmpTmp;
|
||||||
|
// assign SumDGEFL = ($signed(SumExpTmpTmp)>=$signed(-(13'd`NF+13'd1)));
|
||||||
|
// assign SumSLTEZ = $signed(SumExpTmpTmp) <= $signed(13'd1023-13'd127);
|
||||||
|
// assign SumSGEFL = ($signed(SumExpTmpTmp)>=$signed(-13'd24+13'd1023-13'd127)) | ~|SumExpTmpTmp;
|
||||||
|
// assign PreResultDenorm2 = (FmtM ? SumDLTEZ : SumSLTEZ) & (FmtM ? SumDGEFL : SumSGEFL) & ~SumZero; //***make sure math good
|
||||||
|
// // always_comb begin
|
||||||
|
// // assert (PreResultDenorm == PreResultDenorm2) else $fatal ("PreResultDenorms not equal");
|
||||||
|
// // end
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// // Determine if the result is denormal
|
||||||
|
// // assign PreResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero;
|
||||||
|
|
||||||
|
// // Determine the shift needed for denormal results
|
||||||
|
// // - if not denorm add 1 to shift out the leading 1
|
||||||
|
// assign DenormShift = PreResultDenorm2 ? SumExpTmp[8:0] : 1; //*** change this when changing the size of DenormShift also change to an and opperation
|
||||||
|
// // Normalize the sum
|
||||||
|
// assign SumShifted = {2'b0, SumM} << NormCntM+DenormShift; //*** fix mux's with constants in them //***NormCnt can be simplified
|
||||||
|
// // LZA correction
|
||||||
|
// assign LZAPlus1 = SumShifted[3*`NF+7];
|
||||||
|
// assign CorrSumShifted = LZAPlus1 ? SumShifted[3*`NF+6:1] : SumShifted[3*`NF+5:0];
|
||||||
|
// assign NormSum = CorrSumShifted[3*`NF+5:2*`NF+3];
|
||||||
|
// // Calculate the sticky bit
|
||||||
|
// assign NormSumSticky = (|CorrSumShifted[2*`NF+2:0]) | (|CorrSumShifted[136:2*`NF+3]&~FmtM);
|
||||||
|
// assign UfSticky = AddendStickyM | NormSumSticky;
|
||||||
|
|
||||||
|
// // Determine sum's exponent
|
||||||
|
// assign SumExp = (SumExpTmp+{12'b0, LZAPlus1}+{12'b0, ~|SumExpTmp&SumShifted[3*`NF+6]}) & {`NE+2{~(SumZero|ResultDenorm)}};
|
||||||
|
// // recalculate if the result is denormalized
|
||||||
|
// assign ResultDenorm = PreResultDenorm2&~SumShifted[3*`NF+6]&~SumShifted[3*`NF+7];
|
||||||
|
|
||||||
|
// endmodule
|
||||||
|
|
||||||
module normalize(
|
module normalize(
|
||||||
input logic [3*`NF+5:0] SumM, // the positive sum
|
input logic [3*`NF+5:0] SumM, // the positive sum
|
||||||
input logic [`NE-1:0] ZExpM, // exponent of Z
|
input logic [`NE-1:0] ZExpM, // exponent of Z
|
||||||
@ -619,6 +662,7 @@ module normalize(
|
|||||||
input logic FmtM, // precision 1 = double 0 = single
|
input logic FmtM, // precision 1 = double 0 = single
|
||||||
input logic KillProdM, // is the product set to zero
|
input logic KillProdM, // is the product set to zero
|
||||||
input logic AddendStickyM, // the sticky bit caclulated from the aligned addend
|
input logic AddendStickyM, // the sticky bit caclulated from the aligned addend
|
||||||
|
input logic NegSumM, // was the sum negitive
|
||||||
output logic [`NF+2:0] NormSum, // normalized sum
|
output logic [`NF+2:0] NormSum, // normalized sum
|
||||||
output logic SumZero, // is the sum zero
|
output logic SumZero, // is the sum zero
|
||||||
output logic NormSumSticky, UfSticky, // sticky bits
|
output logic NormSumSticky, UfSticky, // sticky bits
|
||||||
@ -629,15 +673,29 @@ module normalize(
|
|||||||
logic [`NE+1:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results
|
logic [`NE+1:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results
|
||||||
logic [8:0] DenormShift; // right shift if the result is denormalized //***change this later
|
logic [8:0] DenormShift; // right shift if the result is denormalized //***change this later
|
||||||
logic [3*`NF+5:0] CorrSumShifted; // the shifted sum after LZA correction
|
logic [3*`NF+5:0] CorrSumShifted; // the shifted sum after LZA correction
|
||||||
logic [3*`NF+7:0] SumShifted; // the shifted sum before LZA correction
|
logic [3*`NF+8:0] SumShifted; // the shifted sum before LZA correction
|
||||||
logic [`NE+1:0] SumExpTmpTmp; // the exponent of the normalized sum with the `FLEN bias
|
logic [`NE+1:0] SumExpTmpTmp; // the exponent of the normalized sum with the `FLEN bias
|
||||||
logic PreResultDenorm; // is the result denormalized - calculated before LZA corection
|
logic PreResultDenorm; // is the result denormalized - calculated before LZA corection
|
||||||
logic LZAPlus1; // add one to the sum's exponent due to LZA correction
|
logic PreResultDenorm2; // is the result denormalized - calculated before LZA corection
|
||||||
|
logic LZAPlus1, LZAPlus2; // add one or two to the sum's exponent due to LZA correction
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
// Normalization
|
// Normalization
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
|
||||||
|
// logic [8:0] supposedNormCnt;
|
||||||
|
// logic [8:0] i;
|
||||||
|
// always_comb begin
|
||||||
|
// i = 0;
|
||||||
|
// while (~SumM[3*`NF+5-i] && $unsigned(i) <= $unsigned(3*`NF+5)) i = i+1; // search for leading one
|
||||||
|
// supposedNormCnt = i; // compute shift count
|
||||||
|
// end
|
||||||
|
|
||||||
|
// always_comb begin
|
||||||
|
// assert (NormCntM == supposedNormCnt | NormCntM == supposedNormCnt+1 | NormCntM == supposedNormCnt+2) else $fatal ("normcnt not expected");
|
||||||
|
// end
|
||||||
|
|
||||||
// Determine if the sum is zero
|
// Determine if the sum is zero
|
||||||
assign SumZero = ~(|SumM);
|
assign SumZero = ~(|SumM);
|
||||||
|
|
||||||
@ -645,19 +703,36 @@ module normalize(
|
|||||||
assign FracLen = FmtM ? `NF+1 : 13'd24;
|
assign FracLen = FmtM ? `NF+1 : 13'd24;
|
||||||
|
|
||||||
// calculate the sum's exponent
|
// calculate the sum's exponent
|
||||||
assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCntM} + 1 - (`NF+4));
|
assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCntM} + 1 - (`NF+4)); // ****try moving this into previous stage
|
||||||
assign SumExpTmp = FmtM ? SumExpTmpTmp : (SumExpTmpTmp-1023+127)&{`NE+2{|SumExpTmpTmp}};
|
assign SumExpTmp = FmtM ? SumExpTmpTmp : (SumExpTmpTmp-1023+127)&{`NE+2{|SumExpTmpTmp}}; // ***move this ^ the subtraction by a constant isn't simplified
|
||||||
|
|
||||||
|
logic SumDLTEZ, SumDGEFL, SumSLTEZ, SumSGEFL;
|
||||||
|
assign SumDLTEZ = SumExpTmpTmp[`NE+1] | ~|SumExpTmpTmp;
|
||||||
|
assign SumDGEFL = ($signed(SumExpTmpTmp)>=$signed(-(13'd`NF+13'd1)));
|
||||||
|
assign SumSLTEZ = $signed(SumExpTmpTmp) <= $signed(13'd1023-13'd127);
|
||||||
|
assign SumSGEFL = ($signed(SumExpTmpTmp)>=$signed(-13'd24+13'd1023-13'd127)) | ~|SumExpTmpTmp;
|
||||||
|
assign PreResultDenorm2 = (FmtM ? SumDLTEZ : SumSLTEZ) & (FmtM ? SumDGEFL : SumSGEFL) & ~SumZero; //***make sure math good
|
||||||
|
// always_comb begin
|
||||||
|
// assert (PreResultDenorm == PreResultDenorm2) else $fatal ("PreResultDenorms not equal");
|
||||||
|
// end
|
||||||
|
|
||||||
|
// 010. when should be 001.
|
||||||
|
// - shift left one
|
||||||
|
// - add one from exp
|
||||||
|
// - if kill prod dont add to exp
|
||||||
|
|
||||||
// Determine if the result is denormal
|
// Determine if the result is denormal
|
||||||
assign PreResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero;
|
// assign PreResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero;
|
||||||
|
|
||||||
// Determine the shift needed for denormal results
|
// Determine the shift needed for denormal results
|
||||||
// - if not denorm add 1 to shift out the leading 1
|
// - if not denorm add 1 to shift out the leading 1
|
||||||
assign DenormShift = PreResultDenorm ? SumExpTmp[8:0] : 1; //*** change this when changing the size of DenormShift also change to an and opperation
|
assign DenormShift = PreResultDenorm2 ? SumExpTmp[8:0] : 1; //*** change this when changing the size of DenormShift also change to an and opperation
|
||||||
// Normalize the sum
|
// Normalize the sum
|
||||||
assign SumShifted = {2'b0, SumM} << NormCntM+DenormShift; //*** fix mux's with constants in them //***NormCnt can be simplified
|
assign SumShifted = {3'b0, SumM} << NormCntM+DenormShift; //*** fix mux's with constants in them //***NormCnt can be simplified
|
||||||
// LZA correction
|
// LZA correction
|
||||||
assign LZAPlus1 = SumShifted[3*`NF+7];
|
assign LZAPlus1 = SumShifted[3*`NF+7];
|
||||||
|
assign LZAPlus2 = SumShifted[3*`NF+8];
|
||||||
|
// the only possible mantissa for a plus two is all zeroes - a one has to propigate all the way through a sum. so we can leave the bottom statement alone
|
||||||
assign CorrSumShifted = LZAPlus1 ? SumShifted[3*`NF+6:1] : SumShifted[3*`NF+5:0];
|
assign CorrSumShifted = LZAPlus1 ? SumShifted[3*`NF+6:1] : SumShifted[3*`NF+5:0];
|
||||||
assign NormSum = CorrSumShifted[3*`NF+5:2*`NF+3];
|
assign NormSum = CorrSumShifted[3*`NF+5:2*`NF+3];
|
||||||
// Calculate the sticky bit
|
// Calculate the sticky bit
|
||||||
@ -665,9 +740,10 @@ module normalize(
|
|||||||
assign UfSticky = AddendStickyM | NormSumSticky;
|
assign UfSticky = AddendStickyM | NormSumSticky;
|
||||||
|
|
||||||
// Determine sum's exponent
|
// Determine sum's exponent
|
||||||
assign SumExp = (SumExpTmp+{12'b0, LZAPlus1}+{12'b0, ~|SumExpTmp&SumShifted[3*`NF+6]}) & {`NE+2{~(SumZero|ResultDenorm)}};
|
// if plus1 If plus2 if said denorm but norm plus 1 if said denorm (-1 val) but norm plus 2
|
||||||
|
assign SumExp = (SumExpTmp+{12'b0, LZAPlus1&~KillProdM}+{11'b0, LZAPlus2&~KillProdM, 1'b0}+{12'b0, ~|SumExpTmp&SumShifted[3*`NF+6]&~KillProdM}+{11'b0, &SumExpTmp&SumShifted[3*`NF+6]&~KillProdM, 1'b0}) & {`NE+2{~(SumZero|ResultDenorm)}};
|
||||||
// recalculate if the result is denormalized
|
// recalculate if the result is denormalized
|
||||||
assign ResultDenorm = PreResultDenorm&~SumShifted[3*`NF+6]&~SumShifted[3*`NF+7];
|
assign ResultDenorm = PreResultDenorm2&~SumShifted[3*`NF+6]&~SumShifted[3*`NF+7];
|
||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
|
@ -96,7 +96,7 @@ module datapath (
|
|||||||
//Mux for writting floating point
|
//Mux for writting floating point
|
||||||
|
|
||||||
regfile regf(clk, reset, {RegWriteW | FWriteIntW}, Rs1D, Rs2D, RdW, WriteDataW, RD1D, RD2D);
|
regfile regf(clk, reset, {RegWriteW | FWriteIntW}, Rs1D, Rs2D, RdW, WriteDataW, RD1D, RD2D);
|
||||||
extend ext(.InstrD(InstrD[31:7]), .*);
|
extend ext(.InstrD(InstrD[31:7]), .ImmSrcD, .ExtImmD);
|
||||||
|
|
||||||
// Execute stage pipeline register and logic
|
// Execute stage pipeline register and logic
|
||||||
flopenrc #(`XLEN) RD1EReg(clk, reset, FlushE, ~StallE, RD1D, RD1E);
|
flopenrc #(`XLEN) RD1EReg(clk, reset, FlushE, ~StallE, RD1D, RD1E);
|
||||||
|
@ -90,9 +90,69 @@ module ieu (
|
|||||||
logic MemReadE, CSRReadE;
|
logic MemReadE, CSRReadE;
|
||||||
logic JumpE;
|
logic JumpE;
|
||||||
|
|
||||||
controller c(.*);
|
controller c(
|
||||||
datapath dp(.*);
|
.clk, .reset,
|
||||||
forward fw(.*);
|
// Decode stage control signals
|
||||||
|
.StallD, .FlushD, .InstrD, .ImmSrcD,
|
||||||
|
.IllegalIEUInstrFaultD, .IllegalBaseInstrFaultD,
|
||||||
|
// Execute stage control signals
|
||||||
|
.StallE, .FlushE, .FlagsE,
|
||||||
|
.PCSrcE, // for datapath and Hazard Unit
|
||||||
|
.ALUControlE, .ALUSrcAE, .ALUSrcBE,
|
||||||
|
.TargetSrcE,
|
||||||
|
.MemReadE, .CSRReadE, // for Hazard Unit
|
||||||
|
.Funct3E, .MulDivE, .W64E,
|
||||||
|
.JumpE,
|
||||||
|
// Memory stage control signals
|
||||||
|
.StallM, .FlushM, .MemRWM,
|
||||||
|
.CSRReadM, .CSRWriteM, .PrivilegedM,
|
||||||
|
.SCE, .AtomicE, .AtomicM, .Funct3M,
|
||||||
|
.RegWriteM, // for Hazard Unit
|
||||||
|
.InvalidateICacheM, .FlushDCacheM, .InstrValidM,
|
||||||
|
// Writeback stage control signals
|
||||||
|
.StallW, .FlushW,
|
||||||
|
.RegWriteW, // for datapath and Hazard Unit
|
||||||
|
.ResultSrcW,
|
||||||
|
// Stall during CSRs
|
||||||
|
.CSRWritePendingDEM,
|
||||||
|
.StoreStallD
|
||||||
|
);
|
||||||
|
|
||||||
|
datapath dp(
|
||||||
|
.clk, .reset,
|
||||||
|
// Decode stage signals
|
||||||
|
.ImmSrcD, .InstrD,
|
||||||
|
// Execute stage signals
|
||||||
|
.StallE, .FlushE, .ForwardAE, .ForwardBE,
|
||||||
|
.ALUControlE, .ALUSrcAE, .ALUSrcBE,
|
||||||
|
.TargetSrcE, .JumpE, .IllegalFPUInstrE,
|
||||||
|
.FWriteDataE, .PCE, .PCLinkE, .FlagsE,
|
||||||
|
.PCTargetE,
|
||||||
|
.ForwardedSrcAE, .ForwardedSrcBE, // *** these are the src outputs before the mux choosing between them and PCE to put in srcA/B
|
||||||
|
.SrcAE, .SrcBE,
|
||||||
|
// Memory stage signals
|
||||||
|
.StallM, .FlushM, .FWriteIntM, .FIntResM,
|
||||||
|
.SrcAM, .WriteDataM, .MemAdrM, .MemAdrE,
|
||||||
|
// Writeback stage signals
|
||||||
|
.StallW, .FlushW, .FWriteIntW, .RegWriteW,
|
||||||
|
.SquashSCW, .ResultSrcW, .ReadDataW,
|
||||||
|
// input logic [`XLEN-1:0] PCLinkW,
|
||||||
|
.CSRReadValW, .ReadDataM, .MulDivResultW,
|
||||||
|
// Hazard Unit signals
|
||||||
|
.Rs1D, .Rs2D, .Rs1E, .Rs2E,
|
||||||
|
.RdE, .RdM, .RdW
|
||||||
|
);
|
||||||
|
|
||||||
|
forward fw(
|
||||||
|
.Rs1D, .Rs2D, .Rs1E, .Rs2E, .RdE, .RdM, .RdW,
|
||||||
|
.MemReadE, .MulDivE, .CSRReadE,
|
||||||
|
.RegWriteM, .RegWriteW,
|
||||||
|
.FWriteIntE, .FWriteIntM, .FWriteIntW,
|
||||||
|
.SCE,
|
||||||
|
// Forwarding controls
|
||||||
|
.ForwardAE, .ForwardBE,
|
||||||
|
.FPUStallD, .LoadStallD, .MulDivStallD, .CSRRdStallD
|
||||||
|
);
|
||||||
|
|
||||||
endmodule
|
endmodule
|
||||||
|
|
||||||
|
@ -187,7 +187,9 @@ module lsu
|
|||||||
.DCacheStall(DCacheStall));
|
.DCacheStall(DCacheStall));
|
||||||
|
|
||||||
mmu #(.TLB_ENTRIES(`DTLB_ENTRIES), .IMMU(0))
|
mmu #(.TLB_ENTRIES(`DTLB_ENTRIES), .IMMU(0))
|
||||||
dmmu(.PAdr(MemPAdrMtoDCache),
|
dmmu(.clk, .reset, .SATP_REGW, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
|
||||||
|
.PrivilegeModeW, .DisableTranslation(DisableTranslation),
|
||||||
|
.PAdr(MemPAdrMtoDCache),
|
||||||
.VAdr(MemAdrM),
|
.VAdr(MemAdrM),
|
||||||
.Size(Funct3MtoDCache[1:0]),
|
.Size(Funct3MtoDCache[1:0]),
|
||||||
.PTE(PTE),
|
.PTE(PTE),
|
||||||
@ -196,18 +198,16 @@ module lsu
|
|||||||
.TLBFlush(DTLBFlushM),
|
.TLBFlush(DTLBFlushM),
|
||||||
.PhysicalAddress(MemPAdrM),
|
.PhysicalAddress(MemPAdrM),
|
||||||
.TLBMiss(DTLBMissM),
|
.TLBMiss(DTLBMissM),
|
||||||
.TLBPageFault(DTLBPageFaultM),
|
|
||||||
.ExecuteAccessF(1'b0),
|
|
||||||
//.AtomicAccessM(AtomicMaskedM[1]),
|
|
||||||
.AtomicAccessM(1'b0),
|
|
||||||
.WriteAccessM(MemRWMtoLRSC[0]),
|
|
||||||
.ReadAccessM(MemRWMtoLRSC[1]),
|
|
||||||
.DisableTranslation(DisableTranslation),
|
|
||||||
.InstrAccessFaultF(),
|
|
||||||
.Cacheable(CacheableM),
|
.Cacheable(CacheableM),
|
||||||
.Idempotent(),
|
.Idempotent(),
|
||||||
.AtomicAllowed(),
|
.AtomicAllowed(),
|
||||||
.*); // *** the pma/pmp instruction access faults don't really matter here. is it possible to parameterize which outputs exist?
|
.TLBPageFault(DTLBPageFaultM),
|
||||||
|
.InstrAccessFaultF(), .LoadAccessFaultM, .StoreAccessFaultM,
|
||||||
|
.AtomicAccessM(1'b0), .ExecuteAccessF(1'b0),
|
||||||
|
.WriteAccessM(MemRWMtoLRSC[0]), .ReadAccessM(MemRWMtoLRSC[1]),
|
||||||
|
.PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW
|
||||||
|
//.AtomicAccessM(AtomicMaskedM[1]),
|
||||||
|
); // *** the pma/pmp instruction access faults don't really matter here. is it possible to parameterize which outputs exist?
|
||||||
|
|
||||||
|
|
||||||
assign MemReadM = MemRWMtoLRSC[1] & ~(ExceptionM | PendingInterruptMtoDCache) & ~DTLBMissM; // & ~NonBusTrapM & ~DTLBMissM & CurrState != STATE_STALLED;
|
assign MemReadM = MemRWMtoLRSC[1] & ~(ExceptionM | PendingInterruptMtoDCache) & ~DTLBMissM; // & ~NonBusTrapM & ~DTLBMissM & CurrState != STATE_STALLED;
|
||||||
|
@ -85,40 +85,85 @@ module uncore (
|
|||||||
assign {HSELEXT, HSELBootTim, HSELTim, HSELCLINT, HSELGPIO, HSELUART, HSELPLIC, HSELSDC} = HSELRegions[7:0];
|
assign {HSELEXT, HSELBootTim, HSELTim, HSELCLINT, HSELGPIO, HSELUART, HSELPLIC, HSELSDC} = HSELRegions[7:0];
|
||||||
|
|
||||||
// subword accesses: converts HWDATAIN to HWDATA
|
// subword accesses: converts HWDATAIN to HWDATA
|
||||||
subwordwrite sww(.*);
|
subwordwrite sww(
|
||||||
|
.HRDATA,
|
||||||
|
.HADDRD, .HSIZED,
|
||||||
|
.HWDATAIN, .HWDATA);
|
||||||
|
|
||||||
generate
|
generate
|
||||||
// tightly integrated memory
|
// tightly integrated memory
|
||||||
if (`TIM_SUPPORTED) begin : dtim
|
if (`TIM_SUPPORTED) begin : dtim
|
||||||
dtim #(.BASE(`TIM_BASE), .RANGE(`TIM_RANGE)) dtim (.*);
|
dtim #(
|
||||||
|
.BASE(`TIM_BASE), .RANGE(`TIM_RANGE)) dtim (
|
||||||
|
.HCLK, .HRESETn,
|
||||||
|
.HSELTim, .HADDR,
|
||||||
|
.HWRITE, .HREADY,
|
||||||
|
.HTRANS, .HWDATA, .HREADTim,
|
||||||
|
.HRESPTim, .HREADYTim);
|
||||||
end
|
end
|
||||||
|
|
||||||
if (`BOOTTIM_SUPPORTED) begin : bootdtim
|
if (`BOOTTIM_SUPPORTED) begin : bootdtim
|
||||||
dtim #(.BASE(`BOOTTIM_BASE), .RANGE(`BOOTTIM_RANGE), .PRELOAD("blink-led.mem"))
|
dtim #(.BASE(`BOOTTIM_BASE), .RANGE(`BOOTTIM_RANGE), .PRELOAD("blink-led.mem"))
|
||||||
bootdtim(.HSELTim(HSELBootTim), .HREADTim(HREADBootTim), .HRESPTim(HRESPBootTim), .HREADYTim(HREADYBootTim), .*);
|
bootdtim(
|
||||||
|
.HCLK, .HRESETn,
|
||||||
|
.HSELTim(HSELBootTim), .HADDR,
|
||||||
|
.HWRITE, .HREADY, .HTRANS,
|
||||||
|
.HWDATA,
|
||||||
|
.HREADTim(HREADBootTim), .HRESPTim(HRESPBootTim), .HREADYTim(HREADYBootTim));
|
||||||
end
|
end
|
||||||
|
|
||||||
// memory-mapped I/O peripherals
|
// memory-mapped I/O peripherals
|
||||||
if (`CLINT_SUPPORTED == 1) begin : clint
|
if (`CLINT_SUPPORTED == 1) begin : clint
|
||||||
clint clint(.HADDR(HADDR[15:0]), .MTIME(MTIME_CLINT), .MTIMECMP(MTIMECMP_CLINT), .*);
|
clint clint(
|
||||||
|
.HCLK, .HRESETn,
|
||||||
|
.HSELCLINT, .HADDR(HADDR[15:0]), .HWRITE,
|
||||||
|
.HWDATA, .HREADY, .HTRANS,
|
||||||
|
.HREADCLINT,
|
||||||
|
.HRESPCLINT, .HREADYCLINT,
|
||||||
|
.MTIME(MTIME_CLINT), .MTIMECMP(MTIMECMP_CLINT),
|
||||||
|
.TimerIntM, .SwIntM);
|
||||||
|
|
||||||
end else begin : clint
|
end else begin : clint
|
||||||
assign MTIME_CLINT = 0; assign MTIMECMP_CLINT = 0;
|
assign MTIME_CLINT = 0; assign MTIMECMP_CLINT = 0;
|
||||||
assign TimerIntM = 0; assign SwIntM = 0;
|
assign TimerIntM = 0; assign SwIntM = 0;
|
||||||
end
|
end
|
||||||
if (`PLIC_SUPPORTED == 1) begin : plic
|
if (`PLIC_SUPPORTED == 1) begin : plic
|
||||||
plic plic(.HADDR(HADDR[27:0]), .*);
|
plic plic(
|
||||||
|
.HCLK, .HRESETn,
|
||||||
|
.HSELPLIC, .HADDR(HADDR[27:0]),
|
||||||
|
.HWRITE, .HREADY, .HTRANS, .HWDATA,
|
||||||
|
.UARTIntr, .GPIOIntr,
|
||||||
|
.HREADPLIC, .HRESPPLIC, .HREADYPLIC,
|
||||||
|
.ExtIntM);
|
||||||
end else begin : plic
|
end else begin : plic
|
||||||
assign ExtIntM = 0;
|
assign ExtIntM = 0;
|
||||||
end
|
end
|
||||||
if (`GPIO_SUPPORTED == 1) begin : gpio
|
if (`GPIO_SUPPORTED == 1) begin : gpio
|
||||||
gpio gpio(.HADDR(HADDR[7:0]), .*);
|
gpio gpio(
|
||||||
|
.HCLK, .HRESETn, .HSELGPIO,
|
||||||
|
.HADDR(HADDR[7:0]),
|
||||||
|
.HWDATA,
|
||||||
|
.HWRITE, .HREADY,
|
||||||
|
.HTRANS,
|
||||||
|
.HREADGPIO,
|
||||||
|
.HRESPGPIO, .HREADYGPIO,
|
||||||
|
.GPIOPinsIn,
|
||||||
|
.GPIOPinsOut, .GPIOPinsEn,
|
||||||
|
.GPIOIntr);
|
||||||
|
|
||||||
end else begin : gpio
|
end else begin : gpio
|
||||||
assign GPIOPinsOut = 0; assign GPIOPinsEn = 0; assign GPIOIntr = 0;
|
assign GPIOPinsOut = 0; assign GPIOPinsEn = 0; assign GPIOIntr = 0;
|
||||||
end
|
end
|
||||||
if (`UART_SUPPORTED == 1) begin : uart
|
if (`UART_SUPPORTED == 1) begin : uart
|
||||||
uart uart(.HADDR(HADDR[2:0]), .TXRDYb(), .RXRDYb(), .INTR(UARTIntr), .SIN(UARTSin), .SOUT(UARTSout),
|
uart uart(
|
||||||
.DSRb(1'b1), .DCDb(1'b1), .CTSb(1'b0), .RIb(1'b1),
|
.HCLK, .HRESETn,
|
||||||
.RTSb(), .DTRb(), .OUT1b(), .OUT2b(), .*);
|
.HSELUART,
|
||||||
|
.HADDR(HADDR[2:0]),
|
||||||
|
.HWRITE, .HWDATA,
|
||||||
|
.HREADUART, .HRESPUART, .HREADYUART,
|
||||||
|
.SIN(UARTSin), .DSRb(1'b1), .DCDb(1'b1), .CTSb(1'b0), .RIb(1'b1), // from E1A driver from RS232 interface
|
||||||
|
.SOUT(UARTSout), .RTSb(), .DTRb(), // to E1A driver to RS232 interface
|
||||||
|
.OUT1b(), .OUT2b(), .INTR(UARTIntr), .TXRDYb(), .RXRDYb()); // to CPU
|
||||||
end else begin : uart
|
end else begin : uart
|
||||||
assign UARTSout = 0; assign UARTIntr = 0;
|
assign UARTSout = 0; assign UARTIntr = 0;
|
||||||
end
|
end
|
||||||
|
@ -48,7 +48,7 @@ module testbench();
|
|||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
////////////////////////////////// HARDWARE ///////////////////////////////////
|
////////////////////////////////// HARDWARE ///////////////////////////////////
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
logic clk, reset, reset_ext;
|
logic clk, reset_ext;
|
||||||
initial begin reset_ext <= 1; # 22; reset_ext <= 0; end
|
initial begin reset_ext <= 1; # 22; reset_ext <= 0; end
|
||||||
always begin clk <= 1; # 5; clk <= 0; # 5; end
|
always begin clk <= 1; # 5; clk <= 0; # 5; end
|
||||||
|
|
||||||
@ -85,6 +85,9 @@ module testbench();
|
|||||||
.UARTSin, .UARTSout,
|
.UARTSin, .UARTSout,
|
||||||
.SDCCLK, .SDCCmdIn, .SDCCmdOut, .SDCCmdOE, .SDCDatIn);
|
.SDCCLK, .SDCCmdIn, .SDCCmdOut, .SDCCmdOE, .SDCDatIn);
|
||||||
|
|
||||||
|
logic reset;
|
||||||
|
assign reset = dut.reset;
|
||||||
|
|
||||||
// Write Back stage signals not needed by Wally itself
|
// Write Back stage signals not needed by Wally itself
|
||||||
parameter nop = 'h13;
|
parameter nop = 'h13;
|
||||||
logic [`XLEN-1:0] PCW;
|
logic [`XLEN-1:0] PCW;
|
||||||
|
Loading…
Reference in New Issue
Block a user