1
0
mirror of https://github.com/openhwgroup/cvw synced 2025-02-11 06:05:49 +00:00

commented complicated step/right shift calc

This commit is contained in:
Cedar Turek 2022-12-30 12:03:10 -08:00
parent d7fc7c93f3
commit 33ca4d1c9a

View File

@ -38,36 +38,33 @@ module fdivsqrtpreproc (
input logic [`FMTBITS-1:0] Fmt,
input logic Sqrt,
input logic XZeroE,
input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // *** these are the src outputs before the mux choosing between them and PCE to put in srcA/B
input logic [2:0] Funct3E,
output logic [`NE+1:0] QeM,
output logic [`DIVb+3:0] X,
output logic [`DIVb-1:0] DPreproc,
// Int-specific
input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // *** these are the src outputs before the mux choosing between them and PCE to put in srcA/B
input logic MDUE, W64E,
output logic [`DIVBLEN:0] nE, nM, mM,
output logic NegQuotM, ALTBM, MDUM, W64M,
output logic AsM, AZeroM, BZeroM, AZeroE, BZeroE,
output logic [`NE+1:0] QeM,
output logic [`DIVb+3:0] X,
output logic [`DIVb-1:0] DPreproc,
output logic [`XLEN-1:0] AM
);
logic [`DIVb-1:0] XPreproc;
logic [`DIVb:0] PreSqrtX;
logic [`DIVb+3:0] DivX, SqrtX;
logic [`NE+1:0] QeE;
logic [`DIVb-1:0] IFNormLenX, IFNormLenD;
logic [`DIVBLEN:0] mE, ell;
logic [`DIVb+3:0] PreShiftX;
logic NumZeroE;
logic [`DIVb+3:0] DivX, SqrtX, PreShiftX; // Variations of dividend, to be muxed
logic [`NE+1:0] QeE; // Quotient Exponent (FP only)
logic [`DIVb-1:0] IFNormLenX, IFNormLenD; // Correctly-sized inputs for iterator
logic [`DIVBLEN:0] mE, ell; // Leading zeros of inputs
logic NumZeroE; // Numerator is zero (X or A)
if (`IDIV_ON_FPU) begin
logic signedDiv;
logic AsE, BsE, ALTBE, NegQuotE;
logic [`XLEN-1:0] AE, BE;
logic [`XLEN-1:0] PosA, PosB;
logic [`DIVBLEN:0] ZeroDiff, IntBits;
logic [`LOGRK-1:0] RightShiftX;
logic [`DIVBLEN:0] pPlusr, pPrCeil, p;
logic [`LOGRK-1:0] pPrTrunc;
logic [`XLEN-1:0] AE, BE, PosA, PosB;
logic [`DIVBLEN:0] TotalIntBits, ZeroDiff, IntSteps, p;
logic [`LOGRK-1:0] IntTrunc, RightShiftX;
// Extract inputs, signs, zero, depending on W64 mode if applicable
assign signedDiv = ~Funct3E[0];
@ -101,16 +98,15 @@ module fdivsqrtpreproc (
// Difference in number of leading zeros
assign ZeroDiff = mE - ell;
assign ALTBE = ZeroDiff[`DIVBLEN]; // A less than B
assign p = ALTBE ? '0 : ZeroDiff;
assign p = ALTBE ? '0 : ZeroDiff; // number of fractional result bits for int div
/* verilator lint_off WIDTH */
// calculate number of cycles nE right shift amount RightShiftX to complete in discrete number of steps
assign pPlusr = `LOGR + p;
assign pPrTrunc = pPlusr % `RK;
assign pPrCeil = (pPlusr >> `LOGRK) + |pPrTrunc;
assign nE = (pPrCeil * `DIVCOPIES) - 1;
assign IntBits = `LOGR + p - 1;
assign RightShiftX = `RK - 1 - IntBits % `RK;
// calculate number of fractional digits nE and right shift amount RightShiftX to complete in discrete number of steps
assign TotalIntBits = `LOGR + p; // Total number of result bits
assign IntTrunc = TotalIntBits % `RK; // Truncation check for ceiling operator
assign IntSteps = (TotalIntBits >> `LOGRK) + |IntTrunc; // Number of steps for int div
assign nE = (IntSteps * `DIVCOPIES) - 1; // Fractional digits
assign RightShiftX = `RK - 1 - ((TotalIntBits - 1) % `RK); // Right shift amount
/* verilator lint_on WIDTH */
// Selet integer or floating-point operands
@ -118,18 +114,18 @@ module fdivsqrtpreproc (
assign X = MDUE ? DivX >> RightShiftX : PreShiftX;
// pipeline registers
flopen #(1) mdureg(clk, IFDivStartE, MDUE, MDUM);
flopen #(1) w64reg(clk, IFDivStartE, W64E, W64M);
flopen #(`DIVBLEN+1) nreg(clk, IFDivStartE, nE, nM);
flopen #(`DIVBLEN+1) mreg(clk, IFDivStartE, mE, mM);
flopen #(1) altbreg(clk, IFDivStartE, ALTBE, ALTBM);
flopen #(1) mdureg(clk, IFDivStartE, MDUE, MDUM);
flopen #(1) w64reg(clk, IFDivStartE, W64E, W64M);
flopen #(1) altbreg(clk, IFDivStartE, ALTBE, ALTBM);
flopen #(1) negquotreg(clk, IFDivStartE, NegQuotE, NegQuotM);
flopen #(1) azeroreg(clk, IFDivStartE, AZeroE, AZeroM);
flopen #(1) bzeroreg(clk, IFDivStartE, BZeroE, BZeroM);
flopen #(1) asignreg(clk, IFDivStartE, AsE, AsM);
flopen #(`XLEN) srcareg(clk, IFDivStartE, AE, AM);
flopen #(1) azeroreg(clk, IFDivStartE, AZeroE, AZeroM);
flopen #(1) bzeroreg(clk, IFDivStartE, BZeroE, BZeroM);
flopen #(1) asignreg(clk, IFDivStartE, AsE, AsM);
flopen #(`DIVBLEN+1) nreg(clk, IFDivStartE, nE, nM);
flopen #(`DIVBLEN+1) mreg(clk, IFDivStartE, mE, mM);
flopen #(`XLEN) srcareg(clk, IFDivStartE, AE, AM);
end else begin
end else begin // Int div not supported
assign IFNormLenX = {Xm, {(`DIVb-`NF-1){1'b0}}};
assign IFNormLenD = {Ym, {(`DIVb-`NF-1){1'b0}}};
assign NumZeroE = XZeroE;
@ -144,11 +140,11 @@ module fdivsqrtpreproc (
assign XPreproc = IFNormLenX << (ell + {{`DIVBLEN{1'b0}}, 1'b1});
assign DPreproc = IFNormLenD << (mE + {{`DIVBLEN{1'b0}}, 1'b1});
// append leading 1 (for nonzero inputs) and zero-extend
// *** explain this next line
assign PreSqrtX = (Xe[0]^ell[0]) ? {1'b0, ~NumZeroE, XPreproc[`DIVb-1:1]} : {~NumZeroE, XPreproc}; // Bottom bit of XPreproc is always zero because DIVb is larger than XLEN and NF
// append leading 1 (for nonzero inputs) and conditionally shift left by one to avoid sqrt(2)
assign PreSqrtX = (Xe[0]^ell[0]) ? {1'b0, ~NumZeroE, XPreproc[`DIVb-1:1]} : {~NumZeroE, XPreproc};
assign DivX = {3'b000, ~NumZeroE, XPreproc};
// Sqrt is initialized after a first step of R(X-1), which depends on Radix
// Sqrt is initialized on step one as R(X-1), so depends on Radix
if (`RADIX == 2) assign SqrtX = {3'b111, PreSqrtX};
else assign SqrtX = {2'b11, PreSqrtX, 1'b0};
assign PreShiftX = Sqrt ? SqrtX : DivX;