OTFC simplification

This commit is contained in:
David Harris 2022-09-19 00:51:56 -07:00
parent 59b6346a28
commit 309995a6e9

View File

@ -30,34 +30,6 @@
`include "wally-config.vh"
module otfc2 (
input logic qp, qz,
input logic [`DIVb:0] Q, QM,
output logic [`DIVb:0] QNext, QMNext
);
// The on-the-fly converter transfers the quotient
// bits to the quotient as they come.
// Use this otfc for division only.
logic [`DIVb-1:0] QR, QMR;
assign QR = Q[`DIVb-1:0];
assign QMR = QM[`DIVb-1:0]; // Shifted Q and QM
always_comb begin
if (qp) begin
QNext = {QR, 1'b1};
QMNext = {QR, 1'b0};
end else if (qz) begin
QNext = {QR, 1'b0};
QMNext = {QMR, 1'b1};
end else begin // If qp and qz are not true, then qn is
QNext = {QMR, 1'b1};
QMNext = {QMR, 1'b0};
end
end
endmodule
///////////////////////////////
// Square Root OTFC, Radix 2 //
///////////////////////////////
@ -70,78 +42,25 @@ module sotfc2(
// The on-the-fly converter transfers the square root
// bits to the quotient as they come.
// Use this otfc for division and square root.
logic [`DIVb:0] CExt;
logic [`DIVb:0] K;
assign CExt = C[`DIVb:0]; // {1'b1, C[`DIVb-1:0]};
// *** define K and use it; show in textbook
assign K = (C[`DIVb:0] & ~(C[`DIVb:0] << 1));
always_comb begin
if (sp) begin
SNext = S | (CExt & ~(CExt << 1));
SNext = S | K;
SMNext = S;
end else if (sz) begin
SNext = S;
SMNext = SM | (CExt & ~(CExt << 1));
SMNext = SM | K;
end else begin // If sp and sz are not true, then sn is
SNext = SM | (CExt & ~(CExt << 1));
SNext = SM | K;
SMNext = SM;
end
end
endmodule
module otfc4 (
input logic [3:0] q,
input logic [`DIVb:0] Q, QM,
output logic [`DIVb:0] QNext, QMNext
);
// The on-the-fly converter transfers the quotient
// bits to the quotient as they come.
//
// This code follows the psuedocode presented in the
// floating point chapter of the book. Right now,
// it is written for Radix-4 division.
//
// QM is Q-1. It allows us to write negative bits
// without using a costly CPA.
// QR and QMR are the shifted versions of Q and QM.
// They are treated as [N-1:r] size signals, and
// discard the r most significant bits of Q and QM.
logic [`DIVb-2:0] QR, QMR;
// shift Q (quotent) and QM (quotent-1)
// if q = 2 Q = {Q, 10} QM = {Q, 01}
// else if q = 1 Q = {Q, 01} QM = {Q, 00}
// else if q = 0 Q = {Q, 00} QM = {QM, 11}
// else if q = -1 Q = {QM, 11} QM = {QM, 10}
// else if q = -2 Q = {QM, 10} QM = {QM, 01}
assign QR = Q[`DIVb-2:0];
assign QMR = QM[`DIVb-2:0]; // Shifted Q and QM
always_comb begin
if (q[3]) begin // +2
QNext = {QR, 2'b10};
QMNext = {QR, 2'b01};
end else if (q[2]) begin // +1
QNext = {QR, 2'b01};
QMNext = {QR, 2'b00};
end else if (q[1]) begin // -1
QNext = {QMR, 2'b11};
QMNext = {QMR, 2'b10};
end else if (q[0]) begin // -2
QNext = {QMR, 2'b10};
QMNext = {QMR, 2'b01};
end else begin // 0
QNext = {QR, 2'b00};
QMNext = {QMR, 2'b11};
end
end
// Final Qmeint is in the range [.5, 2)
endmodule
///////////////////////////////
// Square Root OTFC, Radix 4 //
///////////////////////////////