Radix 2 Integer division working (without signs or remainder)

This commit is contained in:
cturek 2022-07-05 21:34:49 +00:00
parent 72e216d053
commit 2faa8847f4
5 changed files with 205 additions and 157 deletions

BIN
pipelined/srt/inttestgen Executable file

Binary file not shown.

View File

@ -0,0 +1,83 @@
/* testgen.c */
/* Written 10/31/96 by David Harris
This program creates test vectors for mantissa component
of an IEEE floating point divider.
*/
/* #includes */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
/* Constants */
#define ENTRIES 10
#define RANDOM_VECS 500
/* Prototypes */
void output(FILE *fptr, long a, long b, long r, long rem);
void printhex(FILE *fptr, long x);
double random_input(void);
/* Main */
void main(void)
{
FILE *fptr;
long a, b, r, rem;
long list[ENTRIES] = {1, 3, 5, 18, 25, 33, 42, 65, 103, 255};
int i, j;
if ((fptr = fopen("inttestvectors","w")) == NULL) {
fprintf(stderr, "Couldn't write testvectors file\n");
exit(1);
}
for (i=0; i<ENTRIES; i++) {
b = list[i];
for (j=0; j<ENTRIES; j++) {
a = list[j];
r = a/b;
rem = a%b;
output(fptr, a, b, r, rem);
}
}
// for (i = 0; i< RANDOM_VECS; i++) {
// a = random_input();
// b = random_input();
// r = a/b;
// output(fptr, a, b, r);
// }
fclose(fptr);
}
/* Functions */
void output(FILE *fptr, long a, long b, long r, long rem)
{
printhex(fptr, a);
fprintf(fptr, "_");
printhex(fptr, b);
fprintf(fptr, "_");
printhex(fptr, r);
fprintf(fptr, "_");
printhex(fptr, rem);
fprintf(fptr, "\n");
}
void printhex(FILE *fptr, long m)
{
fprintf(fptr, "%016llx", m);
}
double random_input(void)
{
return 1.0 + rand()/32767.0;
}

View File

@ -1,3 +1,5 @@
add wave -noupdate /testbench/*
add wave -noupdate /testbench/srt/*
add wave -noupdate /testbench/srt/otfc2/*
add wave -noupdate /testbench/srt/preproc/*
add wave -noupdate /testbench/srt/divcounter/*

View File

@ -48,8 +48,8 @@ module srt (
input logic Signed, // Interpret integers as signed 2's complement
input logic Int, // Choose integer inputs
input logic Sqrt, // perform square root, not divide
output logic rsign,
output logic [`DIVLEN-1:0] Quot, Rem, QuotOTFC, // *** later handle integers
output logic rsign, done,
output logic [`DIVLEN-1:0] Rem, Quot, // *** later handle integers
output logic [`NE-1:0] rExp,
output logic [3:0] Flags
);
@ -59,11 +59,10 @@ module srt (
logic calcSign;
logic [`DIVLEN-1:0] X, Dpreproc;
logic [`DIVLEN+3:0] WS, WSA, WSN, WC, WCA, WCN, D, Db, Dsel;
logic [`DIVLEN+2:0] rp, rm;
logic [$clog2(`XLEN+1)-1:0] intExp;
logic [$clog2(`XLEN+1)-1:0] intExp, dur, calcDur;
logic intSign;
srtpreproc preproc(SrcA, SrcB, SrcXFrac, SrcYFrac, Fmt, W64, Signed, Int, Sqrt, X, Dpreproc, intExp, intSign);
srtpreproc preproc(SrcA, SrcB, SrcXFrac, SrcYFrac, Fmt, W64, Signed, Int, Sqrt, X, Dpreproc, intExp, calcDur, intSign);
// Top Muxes and Registers
// When start is asserted, the inputs are loaded into the divider.
@ -78,25 +77,25 @@ module srt (
// Quotient Selection logic
// Given partial remainder, select quotient of +1, 0, or -1 (qp, qz, pm)
qsel2 qsel2(WS[`DIVLEN+3:`DIVLEN], WC[`DIVLEN+3:`DIVLEN], qp, qz, qm);
// Accumulate quotient digits in a shift register (now done in OTFC)
qacc #(`DIVLEN+3) qacc(clk, Start, qp, qz, qm, rp, rm);
flopen #(`NE) expflop(clk, Start, calcExp, rExp);
flopen #(1) signflop(clk, Start, calcSign, rsign);
flopen #(7) durflop(clk, Start, calcDur, dur);
counter divcounter(clk, Start, dur, done);
// Divisor Selection logic
inv dinv(D, Db);
assign Db = ~D;
mux3onehot #(`DIVLEN) divisorsel(Db, {(`DIVLEN+4){1'b0}}, D, qp, qz, qm, Dsel);
// Partial Product Generation
csa #(`DIVLEN+4) csa(WS, WC, Dsel, qp, WSA, WCA);
otfc2 #(`DIVLEN) otfc2(clk, Start, qp, qz, qm, QuotOTFC);
otfc2 #(`DIVLEN) otfc2(clk, Start, qp, qz, qm, Quot);
expcalc expcalc(.XExp, .YExp, .calcExp);
signcalc signcalc(.XSign, .YSign, .calcSign);
srtpostproc postproc(rp, rm, Quot);
endmodule
////////////////
@ -115,7 +114,7 @@ module srtpreproc (
input logic Int, // Choose integer inputs
input logic Sqrt, // perform square root, not divide
output logic [`DIVLEN-1:0] X, D,
output logic [$clog2(`XLEN+1)-1:0] intExp, // Quotient integer exponent
output logic [$clog2(`XLEN+1)-1:0] intExp, dur, // Quotient integer exponent
output logic intSign // Quotient integer sign
);
@ -132,8 +131,8 @@ module srtpreproc (
assign ExtraA = {PosA, {`EXTRAINTBITS{1'b0}}};
assign ExtraB = {PosB, {`EXTRAINTBITS{1'b0}}};
assign PreprocA = ExtraA << zeroCntA;
assign PreprocB = ExtraB << zeroCntB;
assign PreprocA = ExtraA << (zeroCntA + 1);
assign PreprocB = ExtraB << (zeroCntB + 1);
assign PreprocX = {SrcXFrac, {`EXTRAFRACBITS{1'b0}}};
assign PreprocY = {SrcYFrac, {`EXTRAFRACBITS{1'b0}}};
@ -142,6 +141,8 @@ module srtpreproc (
assign D = Int ? PreprocB : PreprocY;
assign intExp = zeroCntB - zeroCntA + 1;
assign intSign = Signed & (SrcA[`XLEN - 1] ^ SrcB[`XLEN - 1]);
assign dur = Int ? (intExp & {7{~intExp[6]}}) : (`DIVLEN + 2);
endmodule
/////////////////////////////////
@ -179,38 +180,10 @@ module qsel2 ( // *** eventually just change to 4 bits
assign #1 qm = magnitude & sign;
endmodule
//////////
// qacc //
//////////
// To be replaced by OTFC
module qacc #(parameter N=68) (
input logic clk,
input logic req,
input logic qp, qz, qm,
output logic [N-1:0] rp, rm
);
flopr #(N) rmreg(clk, req, {rm[N-2:0], qm}, rm);
flopr #(N) rpreg(clk, req, {rp[N-2:0], qp}, rp);
/* always @(posedge clk)
begin
if (req)
begin
rp <= #1 0;
rm <= #1 0;
end
else
begin
rm <= #1 {rm[54:0], qm};
rp <= #1 {rp[54:0], qp};
end
end */
endmodule
///////////////////////////////////
// On-The-Fly Converter, Radix 2 //
///////////////////////////////////
module otfc2 #(parameter N=65) (
module otfc2 #(parameter N=64) (
input logic clk,
input logic Start,
input logic qp, qz, qm,
@ -254,13 +227,29 @@ module otfc2 #(parameter N=65) (
endmodule
/////////
// inv //
/////////
module inv(input logic [`DIVLEN+3:0] in,
output logic [`DIVLEN+3:0] out);
/////////////
// counter //
/////////////
module counter(input logic clk,
input logic req,
input logic [$clog2(`XLEN+1)-1:0] dur,
output logic done);
logic [$clog2(`XLEN+1)-1:0] count;
assign #1 out = ~in;
// This block of control logic sequences the divider
// through its iterations. You may modify it if you
// build a divider which completes in fewer iterations.
// You are not responsible for the (trivial) circuit
// design of the block.
always @(posedge clk)
begin
if (count == dur) done <= #1 1;
else if (done | req) done <= #1 0;
if (req) count <= #1 0;
else count <= #1 count+1;
end
endmodule
//////////
@ -323,43 +312,4 @@ module signcalc(
assign calcSign = XSign ^ YSign;
endmodule
////////////////////
// Postprocessing //
////////////////////
module srtpostproc (
input [`DIVLEN+2:0] rp, rm,
output [`DIVLEN-1:0] Quot
);
//assign Quot = rp - rm;
finaladd #(`DIVLEN+3) finaladd(rp, rm, Quot);
endmodule
//////////////
// finaladd //
//////////////
module finaladd #(parameter N=68) (
input logic [N-1:0] rp, rm,
output logic [N-4:0] r
);
logic [N-1:0] diff;
// this magic block performs the final addition for you
// to convert the positive and negative quotient digits
// into a normalized mantissa. It returns the 52 bit
// mantissa after shifting to guarantee a leading 1.
// You can assume this block operates in one cycle
// and do not need to budget it in your area and power
// calculations.
// Since no rounding is performed, the result may be too
// small by one unit in the least significant place (ulp).
// The checker ignores such an error.
assign #1 diff = rp - rm;
assign #1 r = diff[N-1] ? diff[N-2:2] : diff[N-3:1];
endmodule
endmodule

View File

@ -3,26 +3,26 @@
/////////////
// counter //
/////////////
module counter(input logic clk,
input logic req,
output logic done);
// module counter(input logic clk,
// input logic req,
// output logic done);
logic [7:0] count;
// logic [7:0] count;
// This block of control logic sequences the divider
// through its iterations. You may modify it if you
// build a divider which completes in fewer iterations.
// You are not responsible for the (trivial) circuit
// design of the block.
// // This block of control logic sequences the divider
// // through its iterations. You may modify it if you
// // build a divider which completes in fewer iterations.
// // You are not responsible for the (trivial) circuit
// // design of the block.
always @(posedge clk)
begin
if (count == `DIVLEN + 2) done <= #1 1;
else if (done | req) done <= #1 0;
if (req) count <= #1 0;
else count <= #1 count+1;
end
endmodule
// always @(posedge clk)
// begin
// if (count == `DIVLEN + 2) done <= #1 1;
// else if (done | req) done <= #1 0;
// if (req) count <= #1 0;
// else count <= #1 count+1;
// end
// endmodule
///////////
// clock //
@ -42,21 +42,23 @@ module testbench;
logic clk;
logic req;
logic done;
logic Int;
logic [63:0] a, b;
logic [51:0] afrac, bfrac;
logic [10:0] aExp, bExp;
logic asign, bsign;
logic [51:0] r, rOTFC;
logic [`DIVLEN-1:0] Quot, QuotOTFC;
logic [54:0] rp, rm; // positive quotient digits
logic [51:0] r;
logic [63:0] rInt;
logic [`DIVLEN-1:0] Quot;
// Test parameters
parameter MEM_SIZE = 40000;
parameter MEM_WIDTH = 64+64+64;
parameter MEM_WIDTH = 64+64+64+64;
`define memr 63:0
`define memb 127:64
`define mema 191:128
`define memrem 63:0
`define memr 127:64
`define memb 191:128
`define mema 255:192
// Test logicisters
logic [MEM_WIDTH-1:0] Tests [0:MEM_SIZE]; // Space for input file
@ -67,18 +69,20 @@ module testbench;
logic rsign;
integer testnum, errors;
assign Int = 1'b1;
// Divider
srt srt(.clk, .Start(req),
.Stall(1'b0), .Flush(1'b0),
.XExp(aExp), .YExp(bExp), .rExp,
.XSign(asign), .YSign(bsign), .rsign,
.SrcXFrac(afrac), .SrcYFrac(bfrac),
.SrcA('0), .SrcB('0), .Fmt(2'b00),
.W64(1'b0), .Signed(1'b0), .Int(1'b0), .Sqrt(1'b0),
.Quot, .QuotOTFC, .Rem(), .Flags());
.SrcA(a), .SrcB(b), .Fmt(2'b00),
.W64(1'b1), .Signed(1'b0), .Int, .Sqrt(1'b0),
.Quot, .Rem(), .Flags(), .done);
// Counter
counter counter(clk, req, done);
// counter counter(clk, req, done);
initial
@ -94,7 +98,7 @@ module testbench;
begin
testnum = 0;
errors = 0;
$readmemh ("testvectors", Tests);
$readmemh ("inttestvectors", Tests);
Vec = Tests[testnum];
a = Vec[`mema];
{asign, aExp, afrac} = a;
@ -102,7 +106,7 @@ module testbench;
{bsign, bExp, bfrac} = b;
nextr = Vec[`memr];
r = Quot[(`DIVLEN - 1):(`DIVLEN - 52)];
rOTFC = QuotOTFC[(`DIVLEN - 1):(`DIVLEN - 52)];
rInt = Quot;
req <= #5 1;
end
@ -111,45 +115,54 @@ module testbench;
always @(posedge clk)
begin
r = Quot[(`DIVLEN - 1):(`DIVLEN - 52)];
rOTFC = QuotOTFC[(`DIVLEN - 1):(`DIVLEN - 52)];
if (done)
begin
req <= #5 1;
diffp = correctr[51:0] - r;
diffn = r - correctr[51:0];
if ((rsign !== correctr[63]) | (rExp !== correctr[62:52]) | ($signed(diffn) > 1) | ($signed(diffp) > 1) | (diffn === 64'bx) | (diffp === 64'bx)) // check if accurate to 1 ulp
begin
errors = errors+1;
$display("result was %h_%h, should be %h %h %h\n", rExp, r, correctr, diffn, diffp);
$display("failed\n");
$stop;
end
if (r !== rOTFC) // Check if OTFC works
begin
errors = errors+1;
$display("OTFC is %h, should be %h\n", rOTFC, r);
$display("failed\n");
// $stop;
rInt = Quot;
if (done) begin
if (~Int) begin
req <= #5 1;
diffp = correctr[51:0] - r;
diffn = r - correctr[51:0];
if ((rsign !== correctr[63]) | (rExp !== correctr[62:52]) | ($signed(diffn) > 1) | ($signed(diffp) > 1) | (diffn === 64'bx) | (diffp === 64'bx)) // check if accurate to 1 ulp
begin
errors = errors+1;
$display("result was %h_%h, should be %h %h %h\n", rExp, r, correctr, diffn, diffp);
$display("failed\n");
$stop;
end
if (afrac === 52'hxxxxxxxxxxxxx)
begin
$display("%d Tests completed successfully", testnum);
$stop;
end
end else begin
req <= #5 1;
diffp = correctr[63:0] - rInt;
diffn = rInt - correctr[63:0];
if (($signed(diffn) > 1) | ($signed(diffp) > 1) | (diffn === 64'bx) | (diffp === 64'bx)) // check if accurate to 1 ulp
begin
errors = errors+1;
$display("result was %h, should be %h %h %h\n", rInt, correctr, diffn, diffp);
$display("failed\n");
$stop;
end
if (afrac === 52'hxxxxxxxxxxxxx)
begin
$display("%d Tests completed successfully", testnum);
$stop;
end
end
end
if (afrac === 52'hxxxxxxxxxxxxx)
begin
$display("%d Tests completed successfully", testnum);
$stop;
end
end
if (req)
begin
req <= #5 0;
correctr = nextr;
testnum = testnum+1;
Vec = Tests[testnum];
$display("a = %h b = %h",a,b);
a = Vec[`mema];
{asign, aExp, afrac} = a;
b = Vec[`memb];
{bsign, bExp, bfrac} = b;
nextr = Vec[`memr];
end
if (req) begin
req <= #5 0;
correctr = nextr;
testnum = testnum+1;
Vec = Tests[testnum];
$display("a = %h b = %h",a,b);
a = Vec[`mema];
{asign, aExp, afrac} = a;
b = Vec[`memb];
{bsign, bExp, bfrac} = b;
nextr = Vec[`memr];
end
end
endmodule