This commit is contained in:
Ross Thompson 2023-07-06 14:55:43 -05:00
commit 2ce8b66574
34 changed files with 1753 additions and 1487 deletions

3
.gitmodules vendored
View File

@ -24,3 +24,6 @@
[submodule "addins/branch-predictor-simulator"]
path = addins/branch-predictor-simulator
url = https://github.com/synxlin/branch-predictor-simulator.git
[submodule "addins/FreeRTOS-Kernel"]
path = addins/FreeRTOS-Kernel
url = https://github.com/FreeRTOS/FreeRTOS-Kernel.git

@ -0,0 +1 @@
Subproject commit 17a46c252f2f237e03a6768c5d15731215322f31

View File

@ -34,18 +34,14 @@ other FP tests given by the great SoftFloat/TestFloat output.
4a.) Each test will test all its vectors - if you want to test a
subset of the vectors (e.g., only binary16), you should modify the
cvw/testbench/tests-fp.h and comment out the tests you do not want to
test. The best way to do this is to comment out each item out with
the // comment option in SV. For example,
string f128div[] = '{
// "f128_div_rne.tv",
// "f128_div_rz.tv",
// "f128_div_ru.tv",
// "f128_div_rd.tv",
// "f128_div_rnm.tv"
};
testfloat.do in the sim directory. Change the TEST_SIZE="all" to the
specific test you want to run. For example, if you want to run only
binary16, you should set this variable to TEST_SIZE="HP".
4b.) If you want to turn off the generation of wlf files while running
sim-testfloat-batch, you can modify testfloat.do in the sim
directory. Inside this DO file, modify the WAV file to 0 --> i.e.,
set "quietly set WAV 0;"

View File

@ -10,6 +10,4 @@
# sqrt - test square root
# all - test everything
# nowave for 2nd argument supresses wlf files
vsim -c -do "do testfloat.do rv64fpquad $1 $2"
vsim -c -do "do testfloat.do rv64fpquad $1"

View File

@ -25,14 +25,18 @@ vlib work
# start and run simulation
# remove +acc flag for faster sim during regressions if there is no need to access internal signals
# $num = the added words after the call
vlog +incdir+../config/$1 +incdir+../config/shared ../src/wally/cvw.sv ../testbench/testbench-fp.sv ../src/fpu/*.sv ../src/fpu/*/*.sv ../src/generic/*.sv ../src/generic/flop/*.sv -suppress 2583,7063,8607,2697
vlog +incdir+../config/$1 +incdir+../config/shared ../src/cvw.sv ../testbench/testbench-fp.sv ../src/fpu/*.sv ../src/fpu/*/*.sv ../src/generic/*.sv ../src/generic/flop/*.sv -suppress 2583,7063,8607,2697
vsim -voptargs=+acc work.testbenchfp -G TEST=$2
# Change TEST_SIZE to only test certain FP width
# values are QP, DP, SP, HP
vsim -voptargs=+acc work.testbenchfp -GTEST=$2 -GTEST_SIZE="all"
# Determine if nowave argument is provided
# this removes any output to a wlf or wave window to reduce
# disk space.
if {($argc > 2) && ($3 eq "nowave")} {
# Set WAV variable to avoid having any output to wave (to limit disk space)
quietly set WAV 1;
# Determine if nowave argument is provided this removes any output to
# a wlf or wave window to reduce disk space.
if {$WAV eq 0} {
puts "No wave output is selected"
} else {
puts "wave output is selected"

View File

@ -7,8 +7,15 @@ add wave -noupdate /testbenchfp/Y
add wave -noupdate /testbenchfp/Z
add wave -noupdate /testbenchfp/Res
add wave -noupdate /testbenchfp/Ans
add wave -noupdate /testbenchfp/reset
add wave -noupdate /testbenchfp/DivStart
add wave -noupdate /testbenchfp/FDivBusyE
add wave -noupdate /testbenchfp/CheckNow
add wave -noupdate /testbenchfp/DivDone
add wave -noupdate /testbenchfp/ResMatch
add wave -noupdate /testbenchfp/FlagMatch
add wave -noupdate /testbenchfp/CheckNow
add wave -noupdate /testbenchfp/NaNGood
add wave -group {PostProc} -noupdate /testbenchfp/postprocess/*
add wave -group {PostProc} -noupdate /testbenchfp/postprocess/specialcase/*
add wave -group {PostProc} -noupdate /testbenchfp/postprocess/flags/*

View File

@ -101,13 +101,13 @@ module fctrl import cvw::*; #(parameter cvw_t P) (
/* verilator lint_off CASEINCOMPLETE */ // default value above has priority so no other default needed
case(OpD)
7'b0000111: case(Funct3D)
3'b010: ControlsD = `FCTRLW'b1_0_10_00_0xx_0_0_0; // flw
3'b010: ControlsD = `FCTRLW'b1_0_10_00_0xx_0_0_0; // flw
3'b011: if (P.D_SUPPORTED) ControlsD = `FCTRLW'b1_0_10_00_0xx_0_0_0; // fld
3'b100: if (P.Q_SUPPORTED) ControlsD = `FCTRLW'b1_0_10_00_0xx_0_0_0; // flq
3'b001: if (P.ZFH_SUPPORTED) ControlsD = `FCTRLW'b1_0_10_00_0xx_0_0_0; // flh
endcase
7'b0100111: case(Funct3D)
3'b010: ControlsD = `FCTRLW'b0_0_10_00_0xx_0_0_0; // fsw
3'b010: ControlsD = `FCTRLW'b0_0_10_00_0xx_0_0_0; // fsw
3'b011: if (P.D_SUPPORTED) ControlsD = `FCTRLW'b0_0_10_00_0xx_0_0_0; // fsd
3'b100: if (P.Q_SUPPORTED) ControlsD = `FCTRLW'b0_0_10_00_0xx_0_0_0; // fsq
3'b001: if (P.ZFH_SUPPORTED) ControlsD = `FCTRLW'b0_0_10_00_0xx_0_0_0; // fsh

View File

@ -27,24 +27,24 @@
////////////////////////////////////////////////////////////////////////////////////////////////
module fdivsqrt import cvw::*; #(parameter cvw_t P) (
input logic clk,
input logic reset,
input logic clk,
input logic reset,
input logic [P.FMTBITS-1:0] FmtE,
input logic XsE,
input logic XsE,
input logic [P.NF:0] XmE, YmE,
input logic [P.NE-1:0] XeE, YeE,
input logic XInfE, YInfE,
input logic XZeroE, YZeroE,
input logic XNaNE, YNaNE,
input logic FDivStartE, IDivStartE,
input logic StallM,
input logic FlushE,
input logic SqrtE, SqrtM,
input logic XInfE, YInfE,
input logic XZeroE, YZeroE,
input logic XNaNE, YNaNE,
input logic FDivStartE, IDivStartE,
input logic StallM,
input logic FlushE,
input logic SqrtE, SqrtM,
input logic [P.XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // these are the src outputs before the mux choosing between them and PCE to put in srcA/B
input logic [2:0] Funct3E, Funct3M,
input logic IntDivE, W64E,
output logic DivStickyM,
output logic FDivBusyE, IFDivStartE, FDivDoneE,
input logic [2:0] Funct3E, Funct3M,
input logic IntDivE, W64E,
output logic DivStickyM,
output logic FDivBusyE, IFDivStartE, FDivDoneE,
output logic [P.NE+1:0] QeM,
output logic [P.DIVb:0] QmM,
output logic [P.XLEN-1:0] FIntDivResultM
@ -58,19 +58,19 @@ module fdivsqrt import cvw::*; #(parameter cvw_t P) (
logic [P.DIVb+3:0] D; // Iterator Divisor
logic [P.DIVb:0] FirstU, FirstUM; // Intermediate result values
logic [P.DIVb+1:0] FirstC; // Step tracker
logic Firstun; // Quotient selection
logic WZeroE; // Early termination flag
logic Firstun; // Quotient selection
logic WZeroE; // Early termination flag
logic [P.DURLEN-1:0] CyclesE; // FSM cycles
logic SpecialCaseM; // Divide by zero, square root of negative, etc.
logic DivStartE; // Enable signal for flops during stall
logic SpecialCaseM; // Divide by zero, square root of negative, etc.
logic DivStartE; // Enable signal for flops during stall
// Integer div/rem signals
logic BZeroM; // Denominator is zero
logic IntDivM; // Integer operation
logic BZeroM; // Denominator is zero
logic IntDivM; // Integer operation
logic [P.DIVBLEN:0] nM, mM; // Shift amounts
logic NegQuotM, ALTBM, AsM, W64M; // Special handling for postprocessor
logic NegQuotM, ALTBM, AsM, W64M; // Special handling for postprocessor
logic [P.XLEN-1:0] AM; // Original Numerator for postprocessor
logic ISpecialCaseE; // Integer div/remainder special cases
logic ISpecialCaseE; // Integer div/remainder special cases
fdivsqrtpreproc #(P) fdivsqrtpreproc( // Preprocessor
.clk, .IFDivStartE, .Xm(XmE), .Ym(YmE), .Xe(XeE), .Ye(YeE),

View File

@ -28,8 +28,8 @@
module fdivsqrtcycles import cvw::*; #(parameter cvw_t P) (
input logic [P.FMTBITS-1:0] FmtE,
input logic SqrtE,
input logic IntDivE,
input logic SqrtE,
input logic IntDivE,
input logic [P.DIVBLEN:0] nE,
output logic [P.DURLEN-1:0] CyclesE
);

View File

@ -29,8 +29,8 @@
module fdivsqrtexpcalc import cvw::*; #(parameter cvw_t P) (
input logic [P.FMTBITS-1:0] Fmt,
input logic [P.NE-1:0] Xe, Ye,
input logic Sqrt,
input logic XZero,
input logic Sqrt,
input logic XZero,
input logic [P.DIVBLEN:0] ell, m,
output logic [P.NE+1:0] Qe
);

View File

@ -27,18 +27,17 @@
////////////////////////////////////////////////////////////////////////////////////////////////
module fdivsqrtfgen2 import cvw::*; #(parameter cvw_t P) (
input logic up, uz,
input logic up, uz,
input logic [P.DIVb+3:0] C, U, UM,
output logic [P.DIVb+3:0] F
);
logic [P.DIVb+3:0] FP, FN, FZ;
logic [P.DIVb+3:0] FP, FN, FZ;
// Generate for both positive and negative bits
assign FP = ~(U << 1) & C;
assign FN = (UM << 1) | (C & ~(C << 2));
assign FZ = '0;
always_comb // Choose which adder input will be used
if (up) F = FP;
else if (uz) F = FZ;

View File

@ -27,11 +27,11 @@
////////////////////////////////////////////////////////////////////////////////////////////////
module fdivsqrtfgen4 import cvw::*; #(parameter cvw_t P) (
input logic [3:0] udigit,
input logic [3:0] udigit,
input logic [P.DIVb+3:0] C, U, UM,
output logic [P.DIVb+3:0] F
);
logic [P.DIVb+3:0] F2, F1, F0, FN1, FN2;
logic [P.DIVb+3:0] F2, F1, F0, FN1, FN2;
// Generate for both positive and negative bits
assign F2 = (~U << 2) & (C << 2);

View File

@ -27,20 +27,20 @@
////////////////////////////////////////////////////////////////////////////////////////////////
module fdivsqrtfsm import cvw::*; #(parameter cvw_t P) (
input logic clk, reset,
input logic XInfE, YInfE,
input logic XZeroE, YZeroE,
input logic XNaNE, YNaNE,
input logic FDivStartE, IDivStartE,
input logic XsE, WZeroE,
input logic SqrtE,
input logic StallM, FlushE,
input logic IntDivE,
input logic ISpecialCaseE,
input logic clk, reset,
input logic XInfE, YInfE,
input logic XZeroE, YZeroE,
input logic XNaNE, YNaNE,
input logic FDivStartE, IDivStartE,
input logic XsE, WZeroE,
input logic SqrtE,
input logic StallM, FlushE,
input logic IntDivE,
input logic ISpecialCaseE,
input logic [P.DURLEN-1:0] CyclesE,
output logic IFDivStartE,
output logic FDivBusyE, FDivDoneE,
output logic SpecialCaseM
output logic IFDivStartE,
output logic FDivBusyE, FDivDoneE,
output logic SpecialCaseM
);
typedef enum logic [1:0] {IDLE, BUSY, DONE} statetype;

View File

@ -27,14 +27,14 @@
////////////////////////////////////////////////////////////////////////////////////////////////
module fdivsqrtiter import cvw::*; #(parameter cvw_t P) (
input logic clk,
input logic IFDivStartE,
input logic FDivBusyE,
input logic SqrtE,
input logic clk,
input logic IFDivStartE,
input logic FDivBusyE,
input logic SqrtE,
input logic [P.DIVb+3:0] X, D,
output logic [P.DIVb:0] FirstU, FirstUM,
output logic [P.DIVb+1:0] FirstC,
output logic Firstun,
output logic Firstun,
output logic [P.DIVb+3:0] FirstWS, FirstWC
);
@ -48,11 +48,11 @@ module fdivsqrtiter import cvw::*; #(parameter cvw_t P) (
logic [P.DIVb:0] UNext[P.DIVCOPIES-1:0]; // U1.b
logic [P.DIVb:0] UMNext[P.DIVCOPIES-1:0]; // U1.b
logic [P.DIVb+1:0] C[P.DIVCOPIES:0]; // Q2.b
logic [P.DIVb+1:0] initC; // Q2.b
logic [P.DIVb+1:0] initC; // Q2.b
logic [P.DIVCOPIES-1:0] un;
logic [P.DIVb+3:0] WSN, WCN; // Q4.b
logic [P.DIVb+3:0] DBar, D2, DBar2; // Q4.b
logic [P.DIVb+3:0] WSN, WCN; // Q4.b
logic [P.DIVb+3:0] DBar, D2, DBar2; // Q4.b
logic [P.DIVb+1:0] NextC;
logic [P.DIVb:0] UMux, UMMux;
logic [P.DIVb:0] initU, initUM;
@ -63,7 +63,7 @@ module fdivsqrtiter import cvw::*; #(parameter cvw_t P) (
// Otherwise, the divisor is retained and the residual and result
// are fed back for the next iteration.
// Residual WS/SC registers/initializaiton mux
// Residual WS/SC registers/initialization mux
mux2 #(P.DIVb+4) wsmux(WS[P.DIVCOPIES], X, IFDivStartE, WSN);
mux2 #(P.DIVb+4) wcmux(WC[P.DIVCOPIES], '0, IFDivStartE, WCN);
flopen #(P.DIVb+4) wsreg(clk, FDivBusyE, WSN, WS[0]);

View File

@ -27,27 +27,27 @@
////////////////////////////////////////////////////////////////////////////////////////////////
module fdivsqrtpostproc import cvw::*; #(parameter cvw_t P) (
input logic clk, reset,
input logic StallM,
input logic clk, reset,
input logic StallM,
input logic [P.DIVb+3:0] WS, WC,
input logic [P.DIVb+3:0] D,
input logic [P.DIVb:0] FirstU, FirstUM,
input logic [P.DIVb+1:0] FirstC,
input logic SqrtE,
input logic Firstun, SqrtM, SpecialCaseM, NegQuotM,
input logic SqrtE,
input logic Firstun, SqrtM, SpecialCaseM, NegQuotM,
input logic [P.XLEN-1:0] AM,
input logic RemOpM, ALTBM, BZeroM, AsM, W64M,
input logic RemOpM, ALTBM, BZeroM, AsM, W64M,
input logic [P.DIVBLEN:0] nM, mM,
output logic [P.DIVb:0] QmM,
output logic WZeroE,
output logic DivStickyM,
output logic WZeroE,
output logic DivStickyM,
output logic [P.XLEN-1:0] FIntDivResultM
);
logic [P.DIVb+3:0] W, Sum;
logic [P.DIVb:0] PreQmM;
logic NegStickyM;
logic weq0E, WZeroM;
logic NegStickyM;
logic weq0E, WZeroM;
logic [P.XLEN-1:0] IntDivResultM;
//////////////////////////

View File

@ -27,24 +27,24 @@
////////////////////////////////////////////////////////////////////////////////////////////////
module fdivsqrtpreproc import cvw::*; #(parameter cvw_t P) (
input logic clk,
input logic IFDivStartE,
input logic clk,
input logic IFDivStartE,
input logic [P.NF:0] Xm, Ym,
input logic [P.NE-1:0] Xe, Ye,
input logic [P.FMTBITS-1:0] FmtE,
input logic SqrtE,
input logic XZeroE,
input logic [2:0] Funct3E,
input logic SqrtE,
input logic XZeroE,
input logic [2:0] Funct3E,
output logic [P.NE+1:0] QeM,
output logic [P.DIVb+3:0] X, D,
// Int-specific
input logic [P.XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // *** these are the src outputs before the mux choosing between them and PCE to put in srcA/B
input logic IntDivE, W64E,
output logic ISpecialCaseE,
input logic IntDivE, W64E,
output logic ISpecialCaseE,
output logic [P.DURLEN-1:0] CyclesE,
output logic [P.DIVBLEN:0] nM, mM,
output logic NegQuotM, ALTBM, IntDivM, W64M,
output logic AsM, BZeroM,
output logic NegQuotM, ALTBM, IntDivM, W64M,
output logic AsM, BZeroM,
output logic [P.XLEN-1:0] AM
);
@ -54,11 +54,11 @@ module fdivsqrtpreproc import cvw::*; #(parameter cvw_t P) (
logic [P.NE+1:0] QeE; // Quotient Exponent (FP only)
logic [P.DIVb-1:0] IFX, IFD; // Correctly-sized inputs for iterator, selected from int or fp input
logic [P.DIVBLEN:0] mE, nE, ell; // Leading zeros of inputs
logic NumerZeroE; // Numerator is zero (X or A)
logic AZeroE, BZeroE; // A or B is Zero for integer division
logic SignedDivE; // signed division
logic NegQuotE; // Integer quotient is negative
logic AsE, BsE; // Signs of integer inputs
logic NumerZeroE; // Numerator is zero (X or A)
logic AZeroE, BZeroE; // A or B is Zero for integer division
logic SignedDivE; // signed division
logic NegQuotE; // Integer quotient is negative
logic AsE, BsE; // Signs of integer inputs
logic [P.XLEN-1:0] AE; // input A after W64 adjustment
logic ALTBE;
@ -166,7 +166,7 @@ module fdivsqrtpreproc import cvw::*; #(parameter cvw_t P) (
// Sqrt is initialized on step one as R(X-1), so depends on Radix
mux2 #(P.DIVb+1) sqrtxmux({~XZeroE, Xfract}, {1'b0, ~XZeroE, Xfract[P.DIVb-1:1]}, (Xe[0] ^ ell[0]), PreSqrtX);
if (P.RADIX == 2) assign SqrtX = {3'b111, PreSqrtX};
if (P.RADIX == 2) assign SqrtX = {3'b111, PreSqrtX};
else assign SqrtX = {2'b11, PreSqrtX, 1'b0};
mux2 #(P.DIVb+4) prexmux(DivX, SqrtX, SqrtE, PreShiftX);

View File

@ -32,6 +32,8 @@ module controller import cvw::*; #(parameter cvw_t P) (
// Decode stage control signals
input logic StallD, FlushD, // Stall, flush Decode stage
input logic [31:0] InstrD, // Instruction in Decode stage
input logic [1:0] STATUS_FS, // is FPU enabled?
input logic [3:0] ENVCFG_CBE, // Cache block operation enables
output logic [2:0] ImmSrcD, // Type of immediate extension
input logic IllegalIEUFPUInstrD, // Illegal IEU and FPU instruction
output logic IllegalBaseInstrD, // Illegal I-type instruction, or illegal RV32 access to upper 16 registers
@ -60,6 +62,9 @@ module controller import cvw::*; #(parameter cvw_t P) (
output logic [2:0] BALUControlE, // ALU Control signals for B instructions in Execute Stage
output logic BMUActiveE, // Bit manipulation instruction being executed
output logic MDUActiveE, // Mul/Div instruction being executed
output logic [3:0] CMOpM, // 1: cbo.inval; 2: cbo.flush; 4: cbo.clean; 8: cbo.zero
output logic IFUPrefetchE, // instruction prefetch
output logic LSUPrefetchM, // data prefetch
// Memory stage control signals
input logic StallM, FlushM, // Stall, flush Memory stage
@ -80,16 +85,18 @@ module controller import cvw::*; #(parameter cvw_t P) (
output logic StoreStallD // Store (memory write) causes stall
);
logic [6:0] OpD; // Opcode in Decode stage
logic [2:0] Funct3D; // Funct3 field in Decode stage
logic [6:0] Funct7D; // Funct7 field in Decode stage
logic [4:0] Rs1D; // Rs1 source register in Decode stage
logic [4:0] Rs1D, Rs2D, RdD; // Rs1/2 source register / dest reg in Decode stage
`define CTRLW 23
`define CTRLW 24
// pipelined control signals
logic RegWriteD, RegWriteE; // RegWrite (register will be written)
logic [2:0] ResultSrcD, ResultSrcE, ResultSrcM; // Select which result to write back to register file
logic [2:0] PreImmSrcD; // Immediate source format (before amending for prefetches)
logic [1:0] MemRWD, MemRWE; // Store (write to memory)
logic ALUOpD; // 0 for address generation, 1 for all other operations (must use Funct3)
logic BaseW64D; // W64 for Base instructions specifically
@ -103,6 +110,7 @@ module controller import cvw::*; #(parameter cvw_t P) (
logic CSRReadD; // CSR read instruction
logic [1:0] AtomicD; // Atomic (AMO) instruction
logic FenceXD; // Fence instruction
logic CMOD; // Cache management instruction
logic InvalidateICacheD, FlushDCacheD;// Invalidate I$, flush D$
logic CSRWriteD, CSRWriteE; // CSR write
logic PrivilegedD, PrivilegedE; // Privileged instruction
@ -126,16 +134,27 @@ module controller import cvw::*; #(parameter cvw_t P) (
logic [2:0] ZBBSelectD; // ZBB Mux Select Signal
logic IFunctD, RFunctD, MFunctD; // Detect I, R, and M-type RV32IM/Rv64IM instructions
logic LFunctD, SFunctD, BFunctD; // Detect load, store, branch instructions
logic JFunctD; // detect jalr instruction
logic FLSFunctD; // Detect floating-point loads and stores
logic JRFunctD; // detect jalr instruction
logic FenceFunctD; // Detect fence instruction
logic CMOFunctD; // Detect CMO instruction
logic AFunctD, AMOFunctD; // Detect atomic instructions
logic RWFunctD, MWFunctD; // detect RW/MW instructions
logic PFunctD, CSRFunctD; // detect privileged / CSR instruction
logic FenceM; // Fence.I or sfence.VMA instruction in memory stage
logic [2:0] ALUSelectD; // ALU Output selection mux control
logic IWValidFunct3D; // Detects if Funct3 is valid for IW instructions
logic [3:0] CMOpD, CMOpE; // which CMO instruction 1: cbo.inval; 2: cbo.flush; 4: cbo.clean; 8: cbo.zero
logic IFUPrefetchD; // instruction prefetch
logic LSUPrefetchD, LSUPrefetchE; // data prefetch
// Extract fields
assign OpD = InstrD[6:0];
assign OpD = InstrD[6:0];
assign Funct3D = InstrD[14:12];
assign Funct7D = InstrD[31:25];
assign Rs1D = InstrD[19:15];
assign Rs1D = InstrD[19:15];
assign Rs2D = InstrD[24:20];
assign RdD = InstrD[11:7];
// Funct 7 checking
// Be rigorous about detecting illegal instructions if CSRs or bit manipulation is supported
@ -156,70 +175,108 @@ module controller import cvw::*; #(parameter cvw_t P) (
assign MFunctD = (Funct7D == 7'b0000001) & (P.M_SUPPORTED | (P.ZMMUL_SUPPORTED & ~Funct3D[2])); // muldiv
assign LFunctD = Funct3D == 3'b000 | Funct3D == 3'b001 | Funct3D == 3'b010 | Funct3D == 3'b100 | Funct3D == 3'b101 |
((P.XLEN == 64) & (Funct3D == 3'b011 | Funct3D == 3'b110));
assign FLSFunctD = (STATUS_FS != 2'b00) & ((Funct3D == 3'b010 & P.F_SUPPORTED) | (Funct3D == 3'b011 & P.D_SUPPORTED) |
(Funct3D == 3'b100 & P.Q_SUPPORTED) | (Funct3D == 3'b001 & P.ZFH_SUPPORTED));
assign FenceFunctD = (Funct3D == 3'b000) | (P.ZIFENCEI_SUPPORTED & Funct3D == 3'b001);
assign CMOFunctD = (Funct3D == 3'b010 & RdD == 5'b0) &
((P.ZICBOZ_SUPPORTED & InstrD[31:20] == 12'd4 & ENVCFG_CBE[3]) |
(P.ZICBOM_SUPPORTED & ((InstrD[31:20] == 12'd0 & (ENVCFG_CBE[1:0] != 2'b00))) |
(InstrD[31:20] == 12'd1 | InstrD[31:20] == 12'd2) & ENVCFG_CBE[2]));
// *** need to get with enable bits such as MENVCFG_CBZE
assign AFunctD = (Funct3D == 3'b010) | (P.XLEN == 64 & Funct3D == 3'b011);
assign AMOFunctD = (InstrD[31:27] == 5'b00001) |
(InstrD[31:27] == 5'b00000) |
(InstrD[31:27] == 5'b00100) |
(InstrD[31:27] == 5'b01100) |
(InstrD[31:27] == 5'b01000) |
(InstrD[31:27] == 5'b10000) |
(InstrD[31:27] == 5'b10100) |
(InstrD[31:27] == 5'b11000) |
(InstrD[31:27] == 5'b11100);
assign RWFunctD = ((Funct3D == 3'b000 | Funct3D == 3'b001 | Funct3D == 3'b101) & Funct7ZeroD |
(Funct3D == 3'b000 | Funct3D == 3'b101) & Funct7b5D) & (P.XLEN == 64);
assign MWFunctD = MFunctD & (P.XLEN == 64) & ~(Funct3D == 3'b001 | Funct3D == 3'b010 | Funct3D == 3'b011);
assign SFunctD = Funct3D == 3'b000 | Funct3D == 3'b001 | Funct3D == 3'b010 |
((P.XLEN == 64) & (Funct3D == 3'b011));
assign BFunctD = (Funct3D[2:1] != 2'b01); // legal branches
assign JFunctD = (Funct3D == 3'b000);
assign BFunctD = Funct3D[2:1] != 2'b01; // legal branches
assign JRFunctD = Funct3D == 3'b000;
assign PFunctD = Funct3D == 3'b000 & Rs1D == 5'b0 & RdD == 5'b0;
assign CSRFunctD = Funct3D[1:0] != 2'b00;
assign IWValidFunct3D = Funct3D == 3'b000 | Funct3D == 3'b001 | Funct3D == 3'b101;
end else begin:legalcheck2
assign IFunctD = 1; // Don't bother to separate out shift decoding
assign RFunctD = ~Funct7D[0]; // Not a multiply
assign MFunctD = Funct7D[0] & (P.M_SUPPORTED | (P.ZMMUL_SUPPORTED & ~Funct3D[2])); // muldiv
assign LFunctD = 1; // don't bother to check Funct3 for loads
assign FLSFunctD = 1; // don't bother to check Func3 for floating-point loads/stores
assign FenceFunctD = 1; // don't bother to check fields for fences
assign CMOFunctD = 1; // don't bother to check fields for CMO instructions
assign AFunctD = 1; // don't bother to check fields for atomics
assign AMOFunctD = 1; // don't bother to check Funct7 for AMO operations
assign RWFunctD = 1; // don't bother to check fields for RW instructions
assign MWFunctD = 1; // don't bother to check fields for MW instructions
assign SFunctD = 1; // don't bother to check Funct3 for stores
assign BFunctD = 1; // don't bother to check Funct3 for branches
assign JFunctD = 1; // don't bother to check Funct3 for jumps
assign JRFunctD = 1; // don't bother to check Funct3 for jalrs
assign PFunctD = 1; // don't bother to check fields for privileged instructions
assign CSRFunctD = 1; // don't bother to check Funct3 for CSR operations
assign IWValidFunct3D = 1;
end
// Main Instruction Decoder
/* verilator lint_off CASEINCOMPLETE */
always_comb begin
ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_1; // default: Illegal instruction
ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_0_1; // default: Illegal instruction
case(OpD)
// RegWrite_ImmSrc_ALUSrc_MemRW_ResultSrc_Branch_ALUOp_Jump_ALUResultSrc_W64_CSRRead_Privileged_Fence_MDU_Atomic_Illegal
7'b0000011: if (LFunctD)
ControlsD = `CTRLW'b1_000_01_10_001_0_0_0_0_0_0_0_0_0_00_0; // loads
7'b0000111: ControlsD = `CTRLW'b0_000_01_10_001_0_0_0_0_0_0_0_0_0_00_1; // flw - only legal if FP supported
7'b0001111: if (P.ZIFENCEI_SUPPORTED)
ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_1_0_00_0; // fence
else
ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_0; // fence treated as nop
// RegWrite_ImmSrc_ALUSrc_MemRW_ResultSrc_Branch_ALUOp_Jump_ALUResultSrc_W64_CSRRead_Privileged_Fence_MDU_Atomic_CMO_Illegal
7'b0000011: if (LFunctD)
ControlsD = `CTRLW'b1_000_01_10_001_0_0_0_0_0_0_0_0_0_00_0_0; // loads
7'b0000111: if (FLSFunctD)
ControlsD = `CTRLW'b0_000_01_10_001_0_0_0_0_0_0_0_0_0_00_0_1; // flw - only legal if FP supported
7'b0001111: if (FenceFunctD) begin
if (P.ZIFENCEI_SUPPORTED)
ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_1_0_00_0_0; // fence
else
ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_0_0; // fence treated as nop
end else if (CMOFunctD) begin
ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_0_0_0_00_1_0; // CMO Instruction
end
7'b0010011: if (IFunctD)
ControlsD = `CTRLW'b1_000_01_00_000_0_1_0_0_0_0_0_0_0_00_0; // I-type ALU
7'b0010111: ControlsD = `CTRLW'b1_100_11_00_000_0_0_0_0_0_0_0_0_0_00_0; // auipc
ControlsD = `CTRLW'b1_000_01_00_000_0_1_0_0_0_0_0_0_0_00_0_0; // I-type ALU
7'b0010111: ControlsD = `CTRLW'b1_100_11_00_000_0_0_0_0_0_0_0_0_0_00_0_0; // auipc
7'b0011011: if (IFunctD & IWValidFunct3D & P.XLEN == 64)
ControlsD = `CTRLW'b1_000_01_00_000_0_1_0_0_1_0_0_0_0_00_0; // IW-type ALU for RV64i
ControlsD = `CTRLW'b1_000_01_00_000_0_1_0_0_1_0_0_0_0_00_0_0; // IW-type ALU for RV64i
7'b0100011: if (SFunctD)
ControlsD = `CTRLW'b0_001_01_01_000_0_0_0_0_0_0_0_0_0_00_0; // stores
7'b0100111: ControlsD = `CTRLW'b0_001_01_01_000_0_0_0_0_0_0_0_0_0_00_1; // fsw - only legal if FP supported
7'b0101111: if (P.A_SUPPORTED) begin
if (InstrD[31:27] == 5'b00010)
ControlsD = `CTRLW'b1_000_00_10_001_0_0_0_0_0_0_0_0_0_01_0; // lr
ControlsD = `CTRLW'b0_001_01_01_000_0_0_0_0_0_0_0_0_0_00_0_0; // stores
7'b0100111: if (FLSFunctD)
ControlsD = `CTRLW'b0_001_01_01_000_0_0_0_0_0_0_0_0_0_00_0_1; // fsw - only legal if FP supported
7'b0101111: if (P.A_SUPPORTED & AFunctD) begin
if (InstrD[31:27] == 5'b00010 & Rs2D == 5'b0)
ControlsD = `CTRLW'b1_000_00_10_001_0_0_0_0_0_0_0_0_0_01_0_0; // lr
else if (InstrD[31:27] == 5'b00011)
ControlsD = `CTRLW'b1_101_01_01_100_0_0_0_0_0_0_0_0_0_01_0; // sc
else
ControlsD = `CTRLW'b1_101_01_11_001_0_0_0_0_0_0_0_0_0_10_0; // amo
ControlsD = `CTRLW'b1_101_01_01_100_0_0_0_0_0_0_0_0_0_01_0_0; // sc
else if (AMOFunctD)
ControlsD = `CTRLW'b1_101_01_11_001_0_0_0_0_0_0_0_0_0_10_0_0; // amo
end
7'b0110011: if (RFunctD)
ControlsD = `CTRLW'b1_000_00_00_000_0_1_0_0_0_0_0_0_0_00_0; // R-type
ControlsD = `CTRLW'b1_000_00_00_000_0_1_0_0_0_0_0_0_0_00_0_0; // R-type
else if (MFunctD)
ControlsD = `CTRLW'b1_000_00_00_011_0_0_0_0_0_0_0_0_1_00_0; // Multiply/divide
7'b0110111: ControlsD = `CTRLW'b1_100_01_00_000_0_0_0_1_0_0_0_0_0_00_0; // lui
7'b0111011: if (RFunctD & (P.XLEN == 64))
ControlsD = `CTRLW'b1_000_00_00_000_0_1_0_0_1_0_0_0_0_00_0; // R-type W instructions for RV64i
else if (MFunctD & (P.XLEN == 64))
ControlsD = `CTRLW'b1_000_00_00_011_0_0_0_0_1_0_0_0_1_00_0; // W-type Multiply/Divide
ControlsD = `CTRLW'b1_000_00_00_011_0_0_0_0_0_0_0_0_1_00_0_0; // Multiply/divide
7'b0110111: ControlsD = `CTRLW'b1_100_01_00_000_0_0_0_1_0_0_0_0_0_00_0_0; // lui
7'b0111011: if (RWFunctD)
ControlsD = `CTRLW'b1_000_00_00_000_0_1_0_0_1_0_0_0_0_00_0_0; // R-type W instructions for RV64i
else if (MWFunctD)
ControlsD = `CTRLW'b1_000_00_00_011_0_0_0_0_1_0_0_0_1_00_0_0; // W-type Multiply/Divide
7'b1100011: if (BFunctD)
ControlsD = `CTRLW'b0_010_11_00_000_1_0_0_0_0_0_0_0_0_00_0; // branches
7'b1100111: if (JFunctD)
ControlsD = `CTRLW'b1_000_01_00_000_0_0_1_1_0_0_0_0_0_00_0; // jalr
7'b1101111: ControlsD = `CTRLW'b1_011_11_00_000_0_0_1_1_0_0_0_0_0_00_0; // jal
ControlsD = `CTRLW'b0_010_11_00_000_1_0_0_0_0_0_0_0_0_00_0_0; // branches
7'b1100111: if (JRFunctD)
ControlsD = `CTRLW'b1_000_01_00_000_0_0_1_1_0_0_0_0_0_00_0_0; // jalr
7'b1101111: ControlsD = `CTRLW'b1_011_11_00_000_0_0_1_1_0_0_0_0_0_00_0_0; // jal
7'b1110011: if (P.ZICSR_SUPPORTED) begin
if (Funct3D == 3'b000)
ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_1_0_0_00_0; // privileged; decoded further in priveleged modules
else
ControlsD = `CTRLW'b1_000_00_00_010_0_0_0_0_0_1_0_0_0_00_0; // csrs
if (PFunctD)
ControlsD = `CTRLW'b0_000_00_00_000_0_0_0_0_0_0_1_0_0_00_0_0; // privileged; decoded further in privdec modules
else if (CSRFunctD)
ControlsD = `CTRLW'b1_000_00_00_010_0_0_0_0_0_1_0_0_0_00_0_0; // csrs
end
endcase
end
@ -230,9 +287,9 @@ module controller import cvw::*; #(parameter cvw_t P) (
// On RV32E, can't write to upper 16 registers. Checking reads to upper 16 is more costly so disregard them.
assign IllegalERegAdrD = P.E_SUPPORTED & P.ZICSR_SUPPORTED & ControlsD[`CTRLW-1] & InstrD[11];
//assign IllegalBaseInstrD = 1'b0;
assign {BaseRegWriteD, ImmSrcD, ALUSrcAD, BaseALUSrcBD, MemRWD,
assign {BaseRegWriteD, PreImmSrcD, ALUSrcAD, BaseALUSrcBD, MemRWD,
ResultSrcD, BranchD, ALUOpD, JumpD, ALUResultSrcD, BaseW64D, CSRReadD,
PrivilegedD, FenceXD, MDUD, AtomicD, unused} = IllegalIEUFPUInstrD ? `CTRLW'b0 : ControlsD;
PrivilegedD, FenceXD, MDUD, AtomicD, CMOD, unused} = IllegalIEUFPUInstrD ? `CTRLW'b0 : ControlsD;
assign CSRZeroSrcD = InstrD[14] ? (InstrD[19:15] == 0) : (Rs1D == 0); // Is a CSR instruction using zero as the source?
assign CSRWriteD = CSRReadD & !(CSRZeroSrcD & InstrD[13]); // Don't write if setting or clearing zeros
@ -299,14 +356,42 @@ module controller import cvw::*; #(parameter cvw_t P) (
assign InvalidateICacheD = 0;
assign FlushDCacheD = 0;
end
// Cache Management instructions
always_comb begin
CMOpD = 4'b0000; // default: not a cbo instruction
if ((P.ZICBOM_SUPPORTED | P.ZICBOZ_SUPPORTED) & CMOD) begin
CMOpD[3] = (InstrD[31:20] == 12'd4); // cbo.zero
CMOpD[2] = (InstrD[31:20] == 12'd2); // cbo.clean
CMOpD[1] = (InstrD[31:20] == 12'd1) | ((InstrD[31:20] == 12'd0) & (ENVCFG_CBE[1:0] == 2'b01)); // cbo.flush
CMOpD[0] = (InstrD[31:20] == 12'd0) & (ENVCFG_CBE[1:0] == 2'b11); // cbo.inval
end
end
// Prefetch Hints
always_comb begin
// default: not a prefetch hint
IFUPrefetchD = 1'b0;
LSUPrefetchD = 1'b0;
ImmSrcD = PreImmSrcD;
if (P.ZICBOP_SUPPORTED & (InstrD[14:0] == 15'b110_00000_0010011)) begin // ori with destiation x0 is hint for Prefetch
case (Rs2D) // which type of prefectch? Note: prefetch.r and .w are handled the same in Wally
5'b00000: IFUPrefetchD = 1'b1; // prefetch.i
5'b00001: LSUPrefetchD = 1'b1; // prefetch.r
5'b00011: LSUPrefetchD = 1'b1; // prefetch.w
// default: not a prefetch hint
endcase
if (IFUPrefetchD | LSUPrefetchD) ImmSrcD = 3'b001; // use S-type immediate format for prefetches
end
end
// Decode stage pipeline control register
flopenrc #(1) controlregD(clk, reset, FlushD, ~StallD, 1'b1, InstrValidD);
// Execute stage pipeline control register and logic
flopenrc #(29) controlregE(clk, reset, FlushE, ~StallE,
{ALUSelectD, RegWriteD, ResultSrcD, MemRWD, JumpD, BranchD, ALUSrcAD, ALUSrcBD, ALUResultSrcD, CSRReadD, CSRWriteD, PrivilegedD, Funct3D, W64D, SubArithD, MDUD, AtomicD, InvalidateICacheD, FlushDCacheD, FenceD, InstrValidD},
{ALUSelectE, IEURegWriteE, ResultSrcE, MemRWE, JumpE, BranchE, ALUSrcAE, ALUSrcBE, ALUResultSrcE, CSRReadE, CSRWriteE, PrivilegedE, Funct3E, W64E, SubArithE, MDUE, AtomicE, InvalidateICacheE, FlushDCacheE, FenceE, InstrValidE});
flopenrc #(35) controlregE(clk, reset, FlushE, ~StallE,
{ALUSelectD, RegWriteD, ResultSrcD, MemRWD, JumpD, BranchD, ALUSrcAD, ALUSrcBD, ALUResultSrcD, CSRReadD, CSRWriteD, PrivilegedD, Funct3D, W64D, SubArithD, MDUD, AtomicD, InvalidateICacheD, FlushDCacheD, FenceD, CMOpD, IFUPrefetchD, LSUPrefetchD, InstrValidD},
{ALUSelectE, IEURegWriteE, ResultSrcE, MemRWE, JumpE, BranchE, ALUSrcAE, ALUSrcBE, ALUResultSrcE, CSRReadE, CSRWriteE, PrivilegedE, Funct3E, W64E, SubArithE, MDUE, AtomicE, InvalidateICacheE, FlushDCacheE, FenceE, CMOpE, IFUPrefetchE, LSUPrefetchE, InstrValidE});
// Branch Logic
// The comparator handles both signed and unsigned branches using BranchSignedE
@ -325,9 +410,9 @@ module controller import cvw::*; #(parameter cvw_t P) (
assign IntDivE = MDUE & Funct3E[2]; // Integer division operation
// Memory stage pipeline control register
flopenrc #(20) controlregM(clk, reset, FlushM, ~StallM,
{RegWriteE, ResultSrcE, MemRWE, CSRReadE, CSRWriteE, PrivilegedE, Funct3E, FWriteIntE, AtomicE, InvalidateICacheE, FlushDCacheE, FenceE, InstrValidE, IntDivE},
{RegWriteM, ResultSrcM, MemRWM, CSRReadM, CSRWriteM, PrivilegedM, Funct3M, FWriteIntM, AtomicM, InvalidateICacheM, FlushDCacheM, FenceM, InstrValidM, IntDivM});
flopenrc #(25) controlregM(clk, reset, FlushM, ~StallM,
{RegWriteE, ResultSrcE, MemRWE, CSRReadE, CSRWriteE, PrivilegedE, Funct3E, FWriteIntE, AtomicE, InvalidateICacheE, FlushDCacheE, FenceE, InstrValidE, IntDivE, CMOpE, LSUPrefetchE},
{RegWriteM, ResultSrcM, MemRWM, CSRReadM, CSRWriteM, PrivilegedM, Funct3M, FWriteIntM, AtomicM, InvalidateICacheM, FlushDCacheM, FenceM, InstrValidM, IntDivM, CMOpM, LSUPrefetchM});
// Writeback stage pipeline control register
flopenrc #(5) controlregW(clk, reset, FlushW, ~StallW,

View File

@ -98,7 +98,7 @@ module datapath import cvw::*; #(parameter cvw_t P) (
assign Rs2D = InstrD[24:20];
assign RdD = InstrD[11:7];
regfile #(P.XLEN, P.E_SUPPORTED) regf(clk, reset, RegWriteW, Rs1D, Rs2D, RdW, ResultW, R1D, R2D);
extend #(P.XLEN, P.A_SUPPORTED) ext(.InstrD(InstrD[31:7]), .ImmSrcD, .ImmExtD);
extend #(P) ext(.InstrD(InstrD[31:7]), .ImmSrcD, .ImmExtD);
// Execute stage pipeline register and logic
flopenrc #(P.XLEN) RD1EReg(clk, reset, FlushE, ~StallE, R1D, R1E);

View File

@ -27,28 +27,29 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
module extend #(parameter XLEN, A_SUPPORTED) (
input logic [31:7] InstrD, // All instruction bits except opcode (lower 7 bits)
input logic [2:0] ImmSrcD, // Select what kind of extension to perform
output logic [XLEN-1:0] ImmExtD); // Extended immediate
module extend import cvw::*; #(parameter cvw_t P) (
input logic [31:7] InstrD, // All instruction bits except opcode (lower 7 bits)
input logic [2:0] ImmSrcD, // Select what kind of extension to perform
output logic [P.XLEN-1:0] ImmExtD); // Extended immediate
localparam [XLEN-1:0] undefined = {(XLEN){1'bx}}; // could change to 0 after debug
localparam [P.XLEN-1:0] undefined = {(P.XLEN){1'bx}}; // could change to 0 after debug
always_comb
case(ImmSrcD)
case (ImmSrcD)
// I-type
3'b000: ImmExtD = {{(XLEN-12){InstrD[31]}}, InstrD[31:20]};
3'b000: ImmExtD = {{(P.XLEN-12){InstrD[31]}}, InstrD[31:20]};
// S-type (stores)
3'b001: ImmExtD = {{(XLEN-12){InstrD[31]}}, InstrD[31:25], InstrD[11:7]};
3'b001: ImmExtD = {{(P.XLEN-12){InstrD[31]}}, InstrD[31:25], InstrD[11:7]};
// B-type (branches)
3'b010: ImmExtD = {{(XLEN-12){InstrD[31]}}, InstrD[7], InstrD[30:25], InstrD[11:8], 1'b0};
3'b010: ImmExtD = {{(P.XLEN-12){InstrD[31]}}, InstrD[7], InstrD[30:25], InstrD[11:8], 1'b0};
// J-type (jal)
3'b011: ImmExtD = {{(XLEN-20){InstrD[31]}}, InstrD[19:12], InstrD[20], InstrD[30:21], 1'b0};
3'b011: ImmExtD = {{(P.XLEN-20){InstrD[31]}}, InstrD[19:12], InstrD[20], InstrD[30:21], 1'b0};
// U-type (lui, auipc)
3'b100: ImmExtD = {{(XLEN-31){InstrD[31]}}, InstrD[30:12], 12'b0};
3'b100: ImmExtD = {{(P.XLEN-31){InstrD[31]}}, InstrD[30:12], 12'b0};
// Store Conditional: zero offset
3'b101: if (A_SUPPORTED) ImmExtD = 0;
3'b101: if (P.A_SUPPORTED) ImmExtD = 0;
else ImmExtD = undefined;
default: ImmExtD = undefined; // undefined
endcase
endmodule

View File

@ -30,6 +30,8 @@ module ieu import cvw::*; #(parameter cvw_t P) (
input logic clk, reset,
// Decode stage signals
input logic [31:0] InstrD, // Instruction
input logic [1:0] STATUS_FS, // is FPU enabled?
input logic [3:0] ENVCFG_CBE, // Cache block operation enables
input logic IllegalIEUFPUInstrD, // Illegal instruction
output logic IllegalBaseInstrD, // Illegal I-type instruction, or illegal RV32 access to upper 16 registers
// Execute stage signals
@ -43,6 +45,9 @@ module ieu import cvw::*; #(parameter cvw_t P) (
output logic [P.XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // ALU src inputs before the mux choosing between them and PCE to put in srcA/B
output logic [4:0] RdE, // Destination register
output logic MDUActiveE, // Mul/Div instruction being executed
output logic [3:0] CMOpM, // 1: cbo.inval; 2: cbo.flush; 4: cbo.clean; 8: cbo.zero
output logic IFUPrefetchE, // instruction prefetch
output logic LSUPrefetchM, // datata prefetch
// Memory stage signals
input logic SquashSCW, // Squash store conditional, from LSU
output logic [1:0] MemRWM, // Read/write control goes to LSU
@ -97,11 +102,11 @@ module ieu import cvw::*; #(parameter cvw_t P) (
logic BMUActiveE; // Bit manipulation instruction being executed
controller #(P) c(
.clk, .reset, .StallD, .FlushD, .InstrD, .ImmSrcD,
.clk, .reset, .StallD, .FlushD, .InstrD, .STATUS_FS, .ENVCFG_CBE, .ImmSrcD,
.IllegalIEUFPUInstrD, .IllegalBaseInstrD, .StallE, .FlushE, .FlagsE, .FWriteIntE,
.PCSrcE, .ALUSrcAE, .ALUSrcBE, .ALUResultSrcE, .ALUSelectE, .MemReadE, .CSRReadE,
.Funct3E, .IntDivE, .MDUE, .W64E, .SubArithE, .BranchD, .BranchE, .JumpD, .JumpE, .SCE,
.BranchSignedE, .BSelectE, .ZBBSelectE, .BALUControlE, .BMUActiveE, .MDUActiveE,
.BranchSignedE, .BSelectE, .ZBBSelectE, .BALUControlE, .BMUActiveE, .MDUActiveE, .CMOpM, .IFUPrefetchE, .LSUPrefetchM,
.StallM, .FlushM, .MemRWM, .CSRReadM, .CSRWriteM, .PrivilegedM, .AtomicM, .Funct3M,
.RegWriteM, .FlushDCacheM, .InstrValidM, .InstrValidE, .InstrValidD, .FWriteIntM,
.StallW, .FlushW, .RegWriteW, .IntDivW, .ResultSrcW, .CSRWriteFenceM, .InvalidateICacheM, .StoreStallD);

View File

@ -39,6 +39,8 @@ module lsu import cvw::*; #(parameter cvw_t P) (
input logic [6:0] Funct7M, // Atomic memory operation function
input logic [1:0] AtomicM, // Atomic memory operation
input logic FlushDCacheM, // Flush D cache to next level of memory
input logic [3:0] CMOpM, // 1: cbo.inval; 2: cbo.flush; 4: cbo.clean; 8: cbo.zero
input logic LSUPrefetchM, // Prefetch
output logic CommittedM, // Delay interrupts while memory operation in flight
output logic SquashSCW, // Store conditional failed disable write to GPR
output logic DCacheMiss, // D cache miss for performance counters
@ -224,7 +226,7 @@ module lsu import cvw::*; #(parameter cvw_t P) (
logic [1:0] DTIMMemRWM;
// The DTIM uses untranslated addresses, so it is not compatible with virtual memory.
mux2 #(P.PA_BITS) DTIMAdrMux(IEUAdrExtE[P.PA_BITS-1:0], IEUAdrExtM[P.PA_BITS-1:0], MemRWM[0], DTIMAdr);
mux2 #(P.PA_BITS) DTIMAdrMux(IEUAdrExtE[P.PA_BITS-1:0], IEUAdrExtM[P.PA_BITS-1:0], MemRWM[0], DTIMAdr);
assign DTIMMemRWM = SelDTIM & ~IgnoreRequestTLB ? LSURWM : '0;
// **** fix ReadDataWordM to be LLEN. ByteMask is wrong length.
// **** create config to support DTIM with floating point.
@ -258,8 +260,10 @@ module lsu import cvw::*; #(parameter cvw_t P) (
assign CacheableOrFlushCacheM = CacheableM | FlushDCacheM;
assign CacheRWM = CacheableM & ~IgnoreRequestTLB & ~SelDTIM ? LSURWM : '0;
assign CacheAtomicM = CacheableM & ~IgnoreRequestTLB & ~SelDTIM ? LSUAtomicM : '0;
assign FlushDCache = FlushDCacheM & ~(IgnoreRequestTLB | SelHPTW);
assign FlushDCache = FlushDCacheM & ~(IgnoreRequestTLB | SelHPTW);
// *** need RT to add support for CMOpM and LSUPrefetchM (DH 7/2/23)
// *** prefetch can just act as a read operation
cache #(.P(P), .PA_BITS(P.PA_BITS), .XLEN(P.XLEN), .LINELEN(P.DCACHE_LINELENINBITS), .NUMLINES(P.DCACHE_WAYSIZEINBYTES*8/LINELEN),
.NUMWAYS(P.DCACHE_NUMWAYS), .LOGBWPL(LLENLOGBWPL), .WORDLEN(P.LLEN), .MUXINTERVAL(P.LLEN), .READ_ONLY_CACHE(0)) dcache(
.clk, .reset, .Stall(GatedStallW), .SelBusBeat, .FlushStage(FlushW), .CacheRW(CacheRWM), .CacheAtomic(CacheAtomicM),

View File

@ -84,6 +84,7 @@ module csr import cvw::*; #(parameter cvw_t P) (
output var logic [7:0] PMPCFG_ARRAY_REGW[P.PMP_ENTRIES-1:0],
output var logic [P.PA_BITS-3:0] PMPADDR_ARRAY_REGW[P.PMP_ENTRIES-1:0],
output logic [2:0] FRM_REGW,
output logic [3:0] ENVCFG_CBE,
//
output logic [P.XLEN-1:0] CSRReadValW, // value read from CSR
output logic [P.XLEN-1:0] UnalignedPCNextF, // Next PC, accounting for traps and returns
@ -123,7 +124,11 @@ module csr import cvw::*; #(parameter cvw_t P) (
logic [P.XLEN-1:0] TVecAlignedM;
logic InstrValidNotFlushedM;
logic STimerInt;
logic MENVCFG_STCE;
logic [63:0] MENVCFG_REGW;
logic [P.XLEN-1:0] SENVCFG_REGW;
logic ENVCFG_STCE; // supervisor timer counter enable
logic ENVCFG_PBMTE; // page-based memory types enable
logic ENVCFG_FIOM; // fence implies io (presently not used)
// only valid unflushed instructions can access CSRs
assign InstrValidNotFlushedM = InstrValidM & ~StallW & ~FlushW;
@ -214,7 +219,7 @@ module csr import cvw::*; #(parameter cvw_t P) (
csri #(P) csri(.clk, .reset,
.CSRMWriteM, .CSRSWriteM, .CSRWriteValM, .CSRAdrM,
.MExtInt, .SExtInt, .MTimerInt, .STimerInt, .MSwInt,
.MIDELEG_REGW, .MENVCFG_STCE, .MIP_REGW, .MIE_REGW, .MIP_REGW_writeable);
.MIDELEG_REGW, .ENVCFG_STCE, .MIP_REGW, .MIE_REGW, .MIP_REGW_writeable);
csrsr #(P) csrsr(.clk, .reset, .StallW,
.WriteMSTATUSM, .WriteMSTATUSHM, .WriteSSTATUSM,
@ -233,10 +238,12 @@ module csr import cvw::*; #(parameter cvw_t P) (
.MEDELEG_REGW, .MIDELEG_REGW,.PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW,
.MIP_REGW, .MIE_REGW, .WriteMSTATUSM, .WriteMSTATUSHM,
.IllegalCSRMAccessM, .IllegalCSRMWriteReadonlyM,
.MENVCFG_STCE);
.MENVCFG_REGW);
if (P.S_SUPPORTED) begin:csrs
logic STCE;
assign STCE = P.SSTC_SUPPORTED & (PrivilegeModeW == P.M_MODE | (MCOUNTEREN_REGW[1] & ENVCFG_STCE));
csrs #(P) csrs(.clk, .reset,
.CSRSWriteM, .STrapM, .CSRAdrM,
.NextEPCM, .NextCauseM, .NextMtvalM, .SSTATUS_REGW,
@ -244,8 +251,8 @@ module csr import cvw::*; #(parameter cvw_t P) (
.CSRWriteValM, .PrivilegeModeW,
.CSRSReadValM, .STVEC_REGW, .SEPC_REGW,
.SCOUNTEREN_REGW,
.SATP_REGW, .MIP_REGW, .MIE_REGW, .MIDELEG_REGW, .MTIME_CLINT, .MENVCFG_STCE,
.WriteSSTATUSM, .IllegalCSRSAccessM, .STimerInt);
.SATP_REGW, .MIP_REGW, .MIE_REGW, .MIDELEG_REGW, .MTIME_CLINT, .STCE,
.WriteSSTATUSM, .IllegalCSRSAccessM, .STimerInt, .SENVCFG_REGW);
end else begin
assign WriteSSTATUSM = 0;
assign CSRSReadValM = 0;
@ -282,6 +289,17 @@ module csr import cvw::*; #(parameter cvw_t P) (
assign IllegalCSRCAccessM = 1; // counters aren't enabled
end
// Broadcast appropriate environment configuration based on privilege mode
assign ENVCFG_STCE = MENVCFG_REGW[63]; // supervisor timer counter enable
assign ENVCFG_PBMTE = MENVCFG_REGW[62]; // page-based memory types enable
assign ENVCFG_CBE = (PrivilegeModeW == P.M_MODE) ? 4'b1111 :
(PrivilegeModeW == P.S_MODE | !P.S_SUPPORTED) ? MENVCFG_REGW[7:4] :
(MENVCFG_REGW[7:4] & SENVCFG_REGW[7:4]);
// FIOM presently doesn't do anything because Wally fences don't do anything
assign ENVCFG_FIOM = (PrivilegeModeW == P.M_MODE) ? 1'b1 :
(PrivilegeModeW == P.S_MODE | !P.S_SUPPORTED) ? MENVCFG_REGW[0] :
(MENVCFG_REGW[0] & SENVCFG_REGW[0]);
// merge CSR Reads
assign CSRReadValM = CSRUReadValM | CSRSReadValM | CSRMReadValM | CSRCReadValM;
flopenrc #(P.XLEN) CSRValWReg(clk, reset, FlushW, ~StallW, CSRReadValM, CSRReadValW);

View File

@ -34,7 +34,7 @@ module csri import cvw::*; #(parameter cvw_t P) (
input logic [11:0] CSRAdrM,
input logic MExtInt, SExtInt, MTimerInt, STimerInt, MSwInt,
input logic [11:0] MIDELEG_REGW,
input logic MENVCFG_STCE,
input logic ENVCFG_STCE,
output logic [11:0] MIP_REGW, MIE_REGW,
output logic [11:0] MIP_REGW_writeable // only SEIP, STIP, SSIP are actually writeable; the rest are hardwired to 0
);
@ -61,7 +61,7 @@ module csri import cvw::*; #(parameter cvw_t P) (
if (P.S_SUPPORTED) begin:mask
if (P.SSTC_SUPPORTED) begin
assign MIP_WRITE_MASK = 12'h202; // SEIP and SSIP are writable, but STIP is not writable when STIMECMP is implemented (see SSTC spec)
assign STIP = MENVCFG_STCE ? STimerInt : MIP_REGW_writeable[5];
assign STIP = ENVCFG_STCE ? STimerInt : MIP_REGW_writeable[5];
end else begin
assign MIP_WRITE_MASK = 12'h222; // SEIP, STIP, SSIP are writeable in MIP (20210108-draft 3.1.9)
assign STIP = MIP_REGW_writeable[5];

View File

@ -48,12 +48,11 @@ module csrm import cvw::*; #(parameter cvw_t P) (
output var logic [P.PA_BITS-3:0] PMPADDR_ARRAY_REGW [P.PMP_ENTRIES-1:0],
output logic WriteMSTATUSM, WriteMSTATUSHM,
output logic IllegalCSRMAccessM, IllegalCSRMWriteReadonlyM,
output logic MENVCFG_STCE
output logic [63:0] MENVCFG_REGW
);
logic [P.XLEN-1:0] MISA_REGW, MHARTID_REGW;
logic [P.XLEN-1:0] MSCRATCH_REGW, MTVAL_REGW, MCAUSE_REGW;
logic [63:0] MENVCFG_REGW;
logic [P.XLEN-1:0] MENVCFGH_REGW;
logic [63:0] MENVCFG_PreWriteValM, MENVCFG_WriteValM;
logic WriteMTVECM, WriteMEDELEGM, WriteMIDELEGM;
@ -193,15 +192,6 @@ module csrm import cvw::*; #(parameter cvw_t P) (
assign MENVCFGH_REGW = MENVCFG_REGW[63:32];
end
// Extract bit fields
assign MENVCFG_STCE = MENVCFG_REGW[63];
// Uncomment these other fields when they are defined
// assign MENVCFG_PBMTE = MENVCFG_REGW[62];
// assign MENVCFG_CBZE = MENVCFG_REGW[7];
// assign MENVCFG_CBCFE = MENVCFG_REGW[6];
// assign MENVCFG_CBIE = MENVCFG_REGW[5:4];
// assign MENVCFG_FIOM = MENVCFG_REGW[0];
// Read machine mode CSRs
// verilator lint_off WIDTH
logic [5:0] entry;

View File

@ -44,10 +44,12 @@ module csrs import cvw::*; #(parameter cvw_t P) (
output logic [P.XLEN-1:0] SATP_REGW,
input logic [11:0] MIP_REGW, MIE_REGW, MIDELEG_REGW,
input logic [63:0] MTIME_CLINT,
input logic MENVCFG_STCE,
input logic STCE,
output logic WriteSSTATUSM,
output logic IllegalCSRSAccessM,
output logic STimerInt
output logic STimerInt,
output logic [P.XLEN-1:0] SENVCFG_REGW
);
// Supervisor CSRs
@ -75,7 +77,6 @@ module csrs import cvw::*; #(parameter cvw_t P) (
logic WriteSENVCFGM;
logic [P.XLEN-1:0] SSCRATCH_REGW, STVAL_REGW, SCAUSE_REGW;
logic [P.XLEN-1:0] SENVCFG_REGW;
logic [P.XLEN-1:0] SENVCFG_WriteValM;
logic [63:0] STIMECMP_REGW;
@ -90,8 +91,8 @@ module csrs import cvw::*; #(parameter cvw_t P) (
assign WriteSATPM = CSRSWriteM & (CSRAdrM == SATP) & (PrivilegeModeW == P.M_MODE | ~STATUS_TVM);
assign WriteSCOUNTERENM = CSRSWriteM & (CSRAdrM == SCOUNTEREN);
assign WriteSENVCFGM = CSRSWriteM & (CSRAdrM == SENVCFG);
assign WriteSTIMECMPM = CSRSWriteM & (CSRAdrM == STIMECMP) & (PrivilegeModeW == P.M_MODE | (MCOUNTEREN_TM & MENVCFG_STCE));
assign WriteSTIMECMPHM = CSRSWriteM & (CSRAdrM == STIMECMPH) & (PrivilegeModeW == P.M_MODE | (MCOUNTEREN_TM & MENVCFG_STCE)) & (P.XLEN == 32);
assign WriteSTIMECMPM = CSRSWriteM & (CSRAdrM == STIMECMP) & STCE;
assign WriteSTIMECMPHM = CSRSWriteM & (CSRAdrM == STIMECMPH) & STCE & (P.XLEN == 32);
// CSRs
flopenr #(P.XLEN) STVECreg(clk, reset, WriteSTVECM, {CSRWriteValM[P.XLEN-1:2], 1'b0, CSRWriteValM[0]}, STVEC_REGW);
@ -125,18 +126,10 @@ module csrs import cvw::*; #(parameter cvw_t P) (
CSRWriteValM[7] & P.ZICBOZ_SUPPORTED,
CSRWriteValM[6:4] & {3{P.ZICBOM_SUPPORTED}},
3'b0,
CSRWriteValM[0] & P.S_SUPPORTED & P.VIRTMEM_SUPPORTED
CSRWriteValM[0] & P.VIRTMEM_SUPPORTED
};
flopenr #(P.XLEN) SENVCFGreg(clk, reset, WriteSENVCFGM, SENVCFG_WriteValM, SENVCFG_REGW);
// Extract bit fields
// Uncomment these other fields when they are defined
// assign SENVCFG_PBMTE = SENVCFG_REGW[62];
// assign SENVCFG_CBZE = SENVCFG_REGW[7];
// assign SENVCFG_CBCFE = SENVCFG_REGW[6];
// assign SENVCFG_CBIE = SENVCFG_REGW[5:4];
// assign SENVCFG_FIOM = SENVCFG_REGW[0];
// CSR Reads
always_comb begin:csrr
@ -157,13 +150,13 @@ module csrs import cvw::*; #(parameter cvw_t P) (
end
SCOUNTEREN:CSRSReadValM = {{(P.XLEN-32){1'b0}}, SCOUNTEREN_REGW};
SENVCFG: CSRSReadValM = SENVCFG_REGW;
STIMECMP: if (P.SSTC_SUPPORTED & (PrivilegeModeW == P.M_MODE | (MCOUNTEREN_TM && MENVCFG_STCE)))
STIMECMP: if (STCE)
CSRSReadValM = STIMECMP_REGW[P.XLEN-1:0];
else begin
CSRSReadValM = 0;
IllegalCSRSAccessM = 1;
end
STIMECMPH: if (P.SSTC_SUPPORTED & (P.XLEN == 32) & (PrivilegeModeW == P.M_MODE | (MCOUNTEREN_TM && MENVCFG_STCE)))
STIMECMPH: if (STCE)
CSRSReadValM[31:0] = STIMECMP_REGW[63:32];
else begin // not supported for RV64
CSRSReadValM = 0;

View File

@ -82,6 +82,7 @@ module privileged import cvw::*; #(parameter cvw_t P) (
output var logic [7:0] PMPCFG_ARRAY_REGW[P.PMP_ENTRIES-1:0], // PMP configuration entries to MMU
output var logic [P.PA_BITS-3:0] PMPADDR_ARRAY_REGW [P.PMP_ENTRIES-1:0], // PMP address entries to MMU
output logic [2:0] FRM_REGW, // FPU rounding mode
output logic [3:0] ENVCFG_CBE, // Cache block operation enables
// PC logic output in privileged unit
output logic [P.XLEN-1:0] UnalignedPCNextF, // Next PC from trap/return PC logic
// control outputs
@ -136,7 +137,7 @@ module privileged import cvw::*; #(parameter cvw_t P) (
.STATUS_MIE, .STATUS_SIE, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_TW, .STATUS_FS,
.MEDELEG_REGW, .MIP_REGW, .MIE_REGW, .MIDELEG_REGW,
.SATP_REGW, .PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW,
.SetFflagsM, .FRM_REGW,
.SetFflagsM, .FRM_REGW, .ENVCFG_CBE,
.CSRReadValW,.UnalignedPCNextF, .IllegalCSRAccessM, .BigEndianM);
// pipeline early-arriving trap sources

View File

@ -78,6 +78,9 @@ module wallypipelinedcore import cvw::*; #(parameter cvw_t P) (
logic LoadStallD, StoreStallD, MDUStallD, CSRRdStallD;
logic SquashSCW;
logic MDUActiveE; // Mul/Div instruction being executed
logic [3:0] ENVCFG_CBE; // Cache Block operation enables
logic [3:0] CMOpM; // 1: cbo.inval; 2: cbo.flush; 4: cbo.clean; 8: cbo.zero
logic IFUPrefetchE, LSUPrefetchM; // instruction / data prefetch hints
// floating point unit signals
logic [2:0] FRM_REGW;
@ -188,10 +191,10 @@ module wallypipelinedcore import cvw::*; #(parameter cvw_t P) (
// integer execution unit: integer register file, datapath and controller
ieu #(P) ieu(.clk, .reset,
// Decode Stage interface
.InstrD, .IllegalIEUFPUInstrD, .IllegalBaseInstrD,
.InstrD, .STATUS_FS, .ENVCFG_CBE, .IllegalIEUFPUInstrD, .IllegalBaseInstrD,
// Execute Stage interface
.PCE, .PCLinkE, .FWriteIntE, .FCvtIntE, .IEUAdrE, .IntDivE, .W64E,
.Funct3E, .ForwardedSrcAE, .ForwardedSrcBE, .MDUActiveE,
.Funct3E, .ForwardedSrcAE, .ForwardedSrcBE, .MDUActiveE, .CMOpM, .IFUPrefetchE, .LSUPrefetchM,
// Memory stage interface
.SquashSCW, // from LSU
.MemRWM, // read/write control goes to LSU
@ -215,7 +218,7 @@ module wallypipelinedcore import cvw::*; #(parameter cvw_t P) (
.MemRWM, .Funct3M, .Funct7M(InstrM[31:25]), .AtomicM,
.CommittedM, .DCacheMiss, .DCacheAccess, .SquashSCW,
.FpLoadStoreM, .FWriteDataM, .IEUAdrE, .IEUAdrM, .WriteDataM,
.ReadDataW, .FlushDCacheM,
.ReadDataW, .FlushDCacheM, .CMOpM, .LSUPrefetchM,
// connected to ahb (all stay the same)
.LSUHADDR, .HRDATA, .LSUHWDATA, .LSUHWSTRB, .LSUHSIZE,
.LSUHBURST, .LSUHTRANS, .LSUHWRITE, .LSUHREADY,
@ -289,9 +292,9 @@ module wallypipelinedcore import cvw::*; #(parameter cvw_t P) (
.MTIME_CLINT, .IEUAdrM, .SetFflagsM,
.InstrAccessFaultF, .HPTWInstrAccessFaultF, .LoadAccessFaultM, .StoreAmoAccessFaultM, .SelHPTW,
.PrivilegeModeW, .SATP_REGW,
.STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP, .STATUS_FS,
.STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP, .STATUS_FS,
.PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW,
.FRM_REGW,.BreakpointFaultM, .EcallFaultM, .wfiM, .IntPendingM, .BigEndianM);
.FRM_REGW, .ENVCFG_CBE, .BreakpointFaultM, .EcallFaultM, .wfiM, .IntPendingM, .BigEndianM);
end else begin
assign CSRReadValW = 0;
assign UnalignedPCNextF = PC2NextF;

View File

@ -30,13 +30,14 @@ module instrNameDecTB(
logic [2:0] funct3;
logic [6:0] funct7;
logic [11:0] imm;
logic [4:0] rs2;
logic [4:0] rs2, rd;
assign op = instr[6:0];
assign funct3 = instr[14:12];
assign funct7 = instr[31:25];
assign imm = instr[31:20];
assign rs2 = instr[24:20];
assign rd = instr[11:7];
// it would be nice to add the operands to the name
// create another variable called decoded
@ -77,7 +78,10 @@ module instrNameDecTB(
else if (funct7[6:1] == 6'b010010) name = "BEXTI";
else if (funct7 == 7'b0010100 & rs2 == 5'b00111) name = "ORC.B";
else name = "ILLEGAL";
10'b0010011_110: name = "ORI";
10'b0010011_110: if (rd == 0 & rs2 == 0) name = "PREFETCH.I";
else if (rd == 0 & rs2 == 1) name = "PREFETCH.R";
else if (rd == 0 & rs2 == 3) name = "PREFETCH.W";
else name = "ORI";
10'b0010011_111: name = "ANDI";
10'b0010111_???: name = "AUIPC";
10'b0100011_000: name = "SB";
@ -215,7 +219,13 @@ module instrNameDecTB(
else if (funct7[6:2] == 5'b11000) name = "AMOMINU.D";
else if (funct7[6:2] == 5'b11100) name = "AMOMAXU.D";
else name = "ILLEGAL";
10'b0001111_???: name = "FENCE";
10'b0001111_000: name = "FENCE";
10'b0001111_001: name = "FENCE.I";
10'b0001111_010: if (instr[31:20] == 12'd0) name = "CBO.INVAL";
else if (instr[31:20] == 12'd1) name = "CBO.CLEAN";
else if (instr[31:20] == 12'd2) name = "CBO.FLUSH";
else if (instr[31:20] == 12'd4) name = "CBO.ZERO";
else name = "ILLEGAL";
10'b1000011_???: name = "FMADD";
10'b1000111_???: name = "FMSUB";
10'b1001011_???: name = "FNMSUB";

View File

@ -0,0 +1,45 @@
///////////////////////////////////////////
// ramxdetector.sv
//
// Written: David_Harris@hmc.edu
// Modified: 2 July 2023
//
// Purpose: Detects if the processor is attempting to read unitialized RAM
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
module ramxdetector #(parameter XLEN, LLEN) (
input logic clk,
input logic MemReadM,
input logic LSULoadAccessFaultM,
input logic [LLEN-1:0] ReadDataM,
input logic [XLEN-1:0] PCM,
input logic [31:0] InstrM,
input logic [XLEN-1:0] IEUAdrM,
input string InstrMName
);
always_ff @(posedge clk)
if (MemReadM & ~LSULoadAccessFaultM & (ReadDataM === 'bx)) begin
$display("WARNING: Attempting to read from unitialized RAM. Processor may go haywire if it uses x value. But this is normal in WALLY-mmu tests.");
$display(" PCM = %x InstrM = %x (%s), IEUAdrM = %x", PCM, InstrM, InstrMName, IEUAdrM);
//$stop;
end
endmodule

View File

@ -58,6 +58,9 @@ module riscvassertions import cvw::*; #(parameter cvw_t P);
assert ((P.ZMMUL_SUPPORTED == 0) || (P.M_SUPPORTED ==0)) else $error("At most one of ZMMUL_SUPPORTED and M_SUPPORTED can be enabled");
assert ((P.ZICNTR_SUPPORTED == 0) || (P.ZICSR_SUPPORTED == 1)) else $error("ZICNTR_SUPPORTED requires ZICSR_SUPPORTED");
assert ((P.ZIHPM_SUPPORTED == 0) || (P.ZICNTR_SUPPORTED == 1)) else $error("ZIPHM_SUPPORTED requires ZICNTR_SUPPORTED");
assert ((P.ZICBOM_SUPPORTED == 0) || (P.DCACHE_SUPPORTED == 1)) else $error("ZICBOM required DCACHE_SUPPORTED");
assert ((P.ZICBOZ_SUPPORTED == 0) || (P.DCACHE_SUPPORTED == 1)) else $error("ZICBOZ required DCACHE_SUPPORTED");
assert ((P.ZICBOP_SUPPORTED == 0) || (P.DCACHE_SUPPORTED == 1)) else $error("ZICBOP required DCACHE_SUPPORTED");
end
endmodule

File diff suppressed because it is too large Load Diff

View File

@ -409,7 +409,20 @@ module testbench;
// Support logic
////////////////////////////////////////////////////////////////////////////////
// Track names of instructions
string InstrFName, InstrDName, InstrEName, InstrMName, InstrWName;
logic [31:0] InstrW;
flopenr #(32) InstrWReg(clk, reset, ~dut.core.ieu.dp.StallW, dut.core.ifu.InstrM, InstrW);
instrTrackerTB it(clk, reset, dut.core.ieu.dp.FlushE,
dut.core.ifu.InstrRawF[31:0],
dut.core.ifu.InstrD, dut.core.ifu.InstrE,
dut.core.ifu.InstrM, InstrW,
InstrFName, InstrDName, InstrEName, InstrMName, InstrWName);
// watch for problems such as lockup, reading unitialized memory, bad configs
watchdog #(P.XLEN, 1000000) watchdog(.clk, .reset); // check if PCW is stuck
ramxdetector #(P.XLEN, P.LLEN) ramxdetector(clk, dut.core.lsu.MemRWM[1], dut.core.lsu.LSULoadAccessFaultM, dut.core.lsu.ReadDataM,
dut.core.ifu.PCM, dut.core.ifu.InstrM, dut.core.lsu.IEUAdrM, InstrMName);
riscvassertions #(P) riscvassertions(); // check assertions for a legal configuration
loggers #(P, TEST, PrintHPMCounters, I_CACHE_ADDR_LOGGER, D_CACHE_ADDR_LOGGER, BPRED_LOGGER)
loggers (clk, reset, DCacheFlushStart, DCacheFlushDone, memfilename);
@ -420,15 +433,6 @@ module testbench;
.clk(clk), .ProgramAddrMapFile(ProgramAddrMapFile), .ProgramLabelMapFile(ProgramLabelMapFile));
end
// Track names of instructions
string InstrFName, InstrDName, InstrEName, InstrMName, InstrWName;
logic [31:0] InstrW;
flopenr #(32) InstrWReg(clk, reset, ~dut.core.ieu.dp.StallW, dut.core.ifu.InstrM, InstrW);
instrTrackerTB it(clk, reset, dut.core.ieu.dp.FlushE,
dut.core.ifu.InstrRawF[31:0],
dut.core.ifu.InstrD, dut.core.ifu.InstrE,
dut.core.ifu.InstrM, InstrW,
InstrFName, InstrDName, InstrEName, InstrMName, InstrWName);
// Termination condition
// terminate on a specific ECALL after li x3,1 for old Imperas tests, *** remove this when old imperas tests are removed

View File

@ -2031,8 +2031,8 @@ string arch64zbs[] = '{
"rv32i_m/privilege/src/WALLY-mie-01.S",
"rv32i_m/privilege/src/WALLY-minfo-01.S",
"rv32i_m/privilege/src/WALLY-misa-01.S",
// "rv32i_m/privilege/src/WALLY-mmu-sv32-01.S",
"rv32i_m/privilege/src/WALLY-mmu-sv32-svadu-01.S",
// "rv32i_m/privilege/src/WALLY-mmu-sv32-01.S", // run this if SVADU_SUPPORTED = 0
"rv32i_m/privilege/src/WALLY-mmu-sv32-svadu-01.S", // run this if SVADU_SUPPORTED = 1
"rv32i_m/privilege/src/WALLY-mtvec-01.S",
"rv32i_m/privilege/src/WALLY-pma-01.S",
"rv32i_m/privilege/src/WALLY-pmp-01.S",

View File

@ -1,7 +1,7 @@
#! /usr/bin/python3
# author: Alessandro Maiuolo
# contact: amaiuolo@g.hmc.edu
# author: Alessandro Maiuolo, Kevin Kim
# contact: amaiuolo@g.hmc.edu, kekim@hmc.edu
# date created: 3-29-2023
# extract all arch test vectors
@ -77,7 +77,7 @@ def create_vectors(my_config):
rounding_mode = "X"
flags = "XX"
# use name to create our new tv
dest_file = open("{}cvw_{}_{}.tv".format(dest_dir, my_config.bits, vector1[:-2]), 'a')
dest_file = open("{}cvw_{}_{}.tv".format(dest_dir, my_config.bits, vector1[:-2]), 'w')
# open vectors
src_file1 = open(source_dir1 + vector1,'r')
src_file2 = open(source_dir2 + vector2,'r')
@ -144,7 +144,7 @@ def create_vectors(my_config):
answer2 = src_file2.readline().strip()
answer1 = src_file2.readline().strip()
answer = answer1 + answer2
# print(answer1,answer2)
#print(answer1,answer2)
if not (answer2 == "e7d4b281" and answer1 == "6f5ca309"): # if there is still stuff to read
# parse through .S file
detected = False
@ -179,13 +179,56 @@ def create_vectors(my_config):
else:
# print("read false")
reading = False
elif my_config.letter == "M" and my_config.bits == 32:
reading = True
while reading:
# print("trigger 64M")
# get answer from Ref...signature
# answers span two lines and are reversed
answer = src_file2.readline().strip()
print(f"Answer: {answer}")
#print(answer1,answer2)
if not (answer == "6f5ca309"): # if there is still stuff to read
# parse through .S file
detected = False
done = False
op1val = "0"
op2val = "0"
while not (detected or done):
# print("det1")
line = src_file1.readline()
# print(line)
if "op1val" in line:
# print("det2")
# parse line
op1val = line.split("op1val")[1].split("x")[1].split(";")[0]
if "-" in line.split("op1val")[1].split("x")[0]: # neg sign handling
op1val = twos_comp(my_config.bits, op1val)
if my_config.op != "fsqrt": # sqrt doesn't have two input vals, unnec here but keeping for later
op2val = line.split("op2val")[1].split("x")[1].strip()
if op2val[-1] == ";": op2val = op2val[:-1] # remove ; if it's there
if "-" in line.split("op2val")[1].split("x")[0]: # neg sign handling
op2val = twos_comp(my_config.bits, op2val)
# go to next test in vector
detected = True
elif "RVTEST_CODE_END" in line:
done = True
# ints don't have flags
flags = "XX"
# put it all together
if not done:
translation = "{}_{}_{}_{}_{}_{}".format(operation, ext_bits(op1val), ext_bits(op2val), ext_bits(answer.strip()), flags.strip(), rounding_mode)
dest_file.write(translation + "\n")
else:
# print("read false")
reading = False
else:
while reading:
# get answer and flags from Ref...signature
answer = src_file2.readline()
# print(answer)
print(answer)
packed = src_file2.readline()[6:]
# print(packed)
print("Packed: ", packed)
if len(packed.strip())>0: # if there is still stuff to read
# print("packed")
# parse through .S file
@ -229,7 +272,7 @@ def create_vectors(my_config):
src_file2.close()
config_list = [
Config(32, "M", "div", "div_", 0),
Config(32, "M", "div", "div-", 0),
Config(32, "F", "fdiv", "fdiv", 1),
Config(32, "F", "fsqrt", "fsqrt", 2),
Config(32, "M", "rem", "rem-", 3),