diff --git a/src/fpu/fdivsqrt/fdivsqrt.sv b/src/fpu/fdivsqrt/fdivsqrt.sv
index f7a443639..1a1b893e0 100644
--- a/src/fpu/fdivsqrt/fdivsqrt.sv
+++ b/src/fpu/fdivsqrt/fdivsqrt.sv
@@ -26,15 +26,13 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
-`include "wally-config.vh"
-
-module fdivsqrt(
+module fdivsqrt import cvw::*; #(parameter cvw_t P) (
input logic clk,
input logic reset,
- input logic [`FMTBITS-1:0] FmtE,
+ input logic [P.FMTBITS-1:0] FmtE,
input logic XsE,
- input logic [`NF:0] XmE, YmE,
- input logic [`NE-1:0] XeE, YeE,
+ input logic [P.NF:0] XmE, YmE,
+ input logic [P.NE-1:0] XeE, YeE,
input logic XInfE, YInfE,
input logic XZeroE, YZeroE,
input logic XNaNE, YNaNE,
@@ -42,39 +40,39 @@ module fdivsqrt(
input logic StallM,
input logic FlushE,
input logic SqrtE, SqrtM,
- input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // these are the src outputs before the mux choosing between them and PCE to put in srcA/B
+ input logic [P.XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // these are the src outputs before the mux choosing between them and PCE to put in srcA/B
input logic [2:0] Funct3E, Funct3M,
input logic IntDivE, W64E,
output logic DivStickyM,
output logic FDivBusyE, IFDivStartE, FDivDoneE,
- output logic [`NE+1:0] QeM,
- output logic [`DIVb:0] QmM,
- output logic [`XLEN-1:0] FIntDivResultM
+ output logic [P.NE+1:0] QeM,
+ output logic [P.DIVb:0] QmM,
+ output logic [P.XLEN-1:0] FIntDivResultM
);
// Floating-point division and square root module, with optional integer division and remainder
// Computes X/Y, sqrt(X), A/B, or A%B
- logic [`DIVb+3:0] WS, WC; // Partial remainder components
- logic [`DIVb+3:0] X; // Iterator Initial Value (from dividend)
- logic [`DIVb+3:0] D; // Iterator Divisor
- logic [`DIVb:0] FirstU, FirstUM; // Intermediate result values
- logic [`DIVb+1:0] FirstC; // Step tracker
+ logic [P.DIVb+3:0] WS, WC; // Partial remainder components
+ logic [P.DIVb+3:0] X; // Iterator Initial Value (from dividend)
+ logic [P.DIVb+3:0] D; // Iterator Divisor
+ logic [P.DIVb:0] FirstU, FirstUM; // Intermediate result values
+ logic [P.DIVb+1:0] FirstC; // Step tracker
logic Firstun; // Quotient selection
logic WZeroE; // Early termination flag
- logic [`DURLEN-1:0] CyclesE; // FSM cycles
+ logic [P.DURLEN-1:0] CyclesE; // FSM cycles
logic SpecialCaseM; // Divide by zero, square root of negative, etc.
logic DivStartE; // Enable signal for flops during stall
// Integer div/rem signals
logic BZeroM; // Denominator is zero
logic IntDivM; // Integer operation
- logic [`DIVBLEN:0] nM, mM; // Shift amounts
+ logic [P.DIVBLEN:0] nM, mM; // Shift amounts
logic NegQuotM, ALTBM, AsM, W64M; // Special handling for postprocessor
- logic [`XLEN-1:0] AM; // Original Numerator for postprocessor
+ logic [P.XLEN-1:0] AM; // Original Numerator for postprocessor
logic ISpecialCaseE; // Integer div/remainder special cases
- fdivsqrtpreproc fdivsqrtpreproc( // Preprocessor
+ fdivsqrtpreproc #(P) fdivsqrtpreproc( // Preprocessor
.clk, .IFDivStartE, .Xm(XmE), .Ym(YmE), .Xe(XeE), .Ye(YeE),
.FmtE, .SqrtE, .XZeroE, .Funct3E, .QeM, .X, .D, .CyclesE,
// Int-specific
@@ -82,18 +80,18 @@ module fdivsqrt(
.BZeroM, .nM, .mM, .AM,
.IntDivM, .W64M, .NegQuotM, .ALTBM, .AsM);
- fdivsqrtfsm fdivsqrtfsm( // FSM
+ fdivsqrtfsm #(P) fdivsqrtfsm( // FSM
.clk, .reset, .XInfE, .YInfE, .XZeroE, .YZeroE, .XNaNE, .YNaNE,
.FDivStartE, .XsE, .SqrtE, .WZeroE, .FlushE, .StallM,
.FDivBusyE, .IFDivStartE, .FDivDoneE, .SpecialCaseM, .CyclesE,
// Int-specific
.IDivStartE, .ISpecialCaseE, .IntDivE);
- fdivsqrtiter fdivsqrtiter( // CSA Iterator
+ fdivsqrtiter #(P) fdivsqrtiter( // CSA Iterator
.clk, .IFDivStartE, .FDivBusyE, .SqrtE, .X, .D,
.FirstU, .FirstUM, .FirstC, .Firstun, .FirstWS(WS), .FirstWC(WC));
- fdivsqrtpostproc fdivsqrtpostproc( // Postprocessor
+ fdivsqrtpostproc #(P) fdivsqrtpostproc( // Postprocessor
.clk, .reset, .StallM, .WS, .WC, .D, .FirstU, .FirstUM, .FirstC,
.SqrtE, .Firstun, .SqrtM, .SpecialCaseM,
.QmM, .WZeroE, .DivStickyM,
diff --git a/src/fpu/fdivsqrt/fdivsqrtcycles.sv b/src/fpu/fdivsqrt/fdivsqrtcycles.sv
index 2e17cc25b..ea89ce7c6 100644
--- a/src/fpu/fdivsqrt/fdivsqrtcycles.sv
+++ b/src/fpu/fdivsqrt/fdivsqrtcycles.sv
@@ -26,51 +26,49 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
-`include "wally-config.vh"
-
-module fdivsqrtcycles(
- input logic [`FMTBITS-1:0] FmtE,
+module fdivsqrtcycles import cvw::*; #(parameter cvw_t P) (
+ input logic [P.FMTBITS-1:0] FmtE,
input logic SqrtE,
input logic IntDivE,
- input logic [`DIVBLEN:0] nE,
- output logic [`DURLEN-1:0] CyclesE
+ input logic [P.DIVBLEN:0] nE,
+ output logic [P.DURLEN-1:0] CyclesE
);
- logic [`DURLEN+1:0] Nf, fbits; // number of fractional bits
- // DIVN = `NF+3
+ logic [P.DURLEN+1:0] Nf, fbits; // number of fractional bits
+ // DIVN = P.NF+3
// NS = NF + 1
// N = NS or NS+2 for div/sqrt.
/* verilator lint_off WIDTH */
- if (`FPSIZES == 1)
- assign Nf = `NF;
- else if (`FPSIZES == 2)
+ if (P.FPSIZES == 1)
+ assign Nf = P.NF;
+ else if (P.FPSIZES == 2)
always_comb
case (FmtE)
- 1'b0: Nf = `NF1;
- 1'b1: Nf = `NF;
+ 1'b0: Nf = P.NF1;
+ 1'b1: Nf = P.NF;
endcase
- else if (`FPSIZES == 3)
+ else if (P.FPSIZES == 3)
always_comb
case (FmtE)
- `FMT: Nf = `NF;
- `FMT1: Nf = `NF1;
- `FMT2: Nf = `NF2;
+ P.FMT: Nf = P.NF;
+ P.FMT1: Nf = P.NF1;
+ P.FMT2: Nf = P.NF2;
endcase
- else if (`FPSIZES == 4)
+ else if (P.FPSIZES == 4)
always_comb
case(FmtE)
- `S_FMT: Nf = `S_NF;
- `D_FMT: Nf = `D_NF;
- `H_FMT: Nf = `H_NF;
- `Q_FMT: Nf = `Q_NF;
+ P.S_FMT: Nf = P.S_NF;
+ P.D_FMT: Nf = P.D_NF;
+ P.H_FMT: Nf = P.H_NF;
+ P.Q_FMT: Nf = P.Q_NF;
endcase
always_comb begin
if (SqrtE) fbits = Nf + 2 + 2; // Nf + two fractional bits for round/guard + 2 for right shift by up to 2
- else fbits = Nf + 2 + `LOGR; // Nf + two fractional bits for round/guard + integer bits - try this when placing results in msbs
- if (`IDIV_ON_FPU) CyclesE = IntDivE ? ((nE + 1)/`DIVCOPIES) : (fbits + (`LOGR*`DIVCOPIES)-1)/(`LOGR*`DIVCOPIES);
- else CyclesE = (fbits + (`LOGR*`DIVCOPIES)-1)/(`LOGR*`DIVCOPIES);
+ else fbits = Nf + 2 + P.LOGR; // Nf + two fractional bits for round/guard + integer bits - try this when placing results in msbs
+ if (P.IDIV_ON_FPU) CyclesE = IntDivE ? ((nE + 1)/P.DIVCOPIES) : (fbits + (P.LOGR*P.DIVCOPIES)-1)/(P.LOGR*P.DIVCOPIES);
+ else CyclesE = (fbits + (P.LOGR*P.DIVCOPIES)-1)/(P.LOGR*P.DIVCOPIES);
end
/* verilator lint_on WIDTH */
-endmodule
\ No newline at end of file
+endmodule
diff --git a/src/fpu/fdivsqrt/fdivsqrtexpcalc.sv b/src/fpu/fdivsqrt/fdivsqrtexpcalc.sv
index aa8ae051d..adc1d6bf5 100644
--- a/src/fpu/fdivsqrt/fdivsqrtexpcalc.sv
+++ b/src/fpu/fdivsqrt/fdivsqrtexpcalc.sv
@@ -26,49 +26,47 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
-`include "wally-config.vh"
-
-module fdivsqrtexpcalc(
- input logic [`FMTBITS-1:0] Fmt,
- input logic [`NE-1:0] Xe, Ye,
+module fdivsqrtexpcalc import cvw::*; #(parameter cvw_t P) (
+ input logic [P.FMTBITS-1:0] Fmt,
+ input logic [P.NE-1:0] Xe, Ye,
input logic Sqrt,
input logic XZero,
- input logic [`DIVBLEN:0] ell, m,
- output logic [`NE+1:0] Qe
+ input logic [P.DIVBLEN:0] ell, m,
+ output logic [P.NE+1:0] Qe
);
- logic [`NE-2:0] Bias;
- logic [`NE+1:0] SXExp;
- logic [`NE+1:0] SExp;
- logic [`NE+1:0] DExp;
+ logic [P.NE-2:0] Bias;
+ logic [P.NE+1:0] SXExp;
+ logic [P.NE+1:0] SExp;
+ logic [P.NE+1:0] DExp;
- if (`FPSIZES == 1) begin
- assign Bias = (`NE-1)'(`BIAS);
+ if (P.FPSIZES == 1) begin
+ assign Bias = (P.NE-1)'(P.BIAS);
- end else if (`FPSIZES == 2) begin
- assign Bias = Fmt ? (`NE-1)'(`BIAS) : (`NE-1)'(`BIAS1);
+ end else if (P.FPSIZES == 2) begin
+ assign Bias = Fmt ? (P.NE-1)'(P.BIAS) : (P.NE-1)'(P.BIAS1);
- end else if (`FPSIZES == 3) begin
+ end else if (P.FPSIZES == 3) begin
always_comb
case (Fmt)
- `FMT: Bias = (`NE-1)'(`BIAS);
- `FMT1: Bias = (`NE-1)'(`BIAS1);
- `FMT2: Bias = (`NE-1)'(`BIAS2);
+ P.FMT: Bias = (P.NE-1)'(P.BIAS);
+ P.FMT1: Bias = (P.NE-1)'(P.BIAS1);
+ P.FMT2: Bias = (P.NE-1)'(P.BIAS2);
default: Bias = 'x;
endcase
- end else if (`FPSIZES == 4) begin
+ end else if (P.FPSIZES == 4) begin
always_comb
case (Fmt)
- 2'h3: Bias = (`NE-1)'(`Q_BIAS);
- 2'h1: Bias = (`NE-1)'(`D_BIAS);
- 2'h0: Bias = (`NE-1)'(`S_BIAS);
- 2'h2: Bias = (`NE-1)'(`H_BIAS);
+ 2'h3: Bias = (P.NE-1)'(P.Q_BIAS);
+ 2'h1: Bias = (P.NE-1)'(P.D_BIAS);
+ 2'h0: Bias = (P.NE-1)'(P.S_BIAS);
+ 2'h2: Bias = (P.NE-1)'(P.H_BIAS);
endcase
end
- assign SXExp = {2'b0, Xe} - {{(`NE+1-`DIVBLEN){1'b0}}, ell} - (`NE+2)'(`BIAS);
- assign SExp = {SXExp[`NE+1], SXExp[`NE+1:1]} + {2'b0, Bias};
+ assign SXExp = {2'b0, Xe} - {{(P.NE+1-P.DIVBLEN){1'b0}}, ell} - (P.NE+2)'(P.BIAS);
+ assign SExp = {SXExp[P.NE+1], SXExp[P.NE+1:1]} + {2'b0, Bias};
// correct exponent for subnormal input's normalization shifts
- assign DExp = ({2'b0, Xe} - {{(`NE+1-`DIVBLEN){1'b0}}, ell} - {2'b0, Ye} + {{(`NE+1-`DIVBLEN){1'b0}}, m} + {3'b0, Bias});
+ assign DExp = ({2'b0, Xe} - {{(P.NE+1-P.DIVBLEN){1'b0}}, ell} - {2'b0, Ye} + {{(P.NE+1-P.DIVBLEN){1'b0}}, m} + {3'b0, Bias});
assign Qe = Sqrt ? SExp : DExp;
endmodule
diff --git a/src/fpu/fdivsqrt/fdivsqrtfgen2.sv b/src/fpu/fdivsqrt/fdivsqrtfgen2.sv
index 250fb4fbd..73afeb527 100644
--- a/src/fpu/fdivsqrt/fdivsqrtfgen2.sv
+++ b/src/fpu/fdivsqrt/fdivsqrtfgen2.sv
@@ -26,14 +26,12 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
-`include "wally-config.vh"
-
-module fdivsqrtfgen2 (
+module fdivsqrtfgen2 import cvw::*; #(parameter cvw_t P) (
input logic up, uz,
- input logic [`DIVb+3:0] C, U, UM,
- output logic [`DIVb+3:0] F
+ input logic [P.DIVb+3:0] C, U, UM,
+ output logic [P.DIVb+3:0] F
);
- logic [`DIVb+3:0] FP, FN, FZ;
+ logic [P.DIVb+3:0] FP, FN, FZ;
// Generate for both positive and negative bits
assign FP = ~(U << 1) & C;
diff --git a/src/fpu/fdivsqrt/fdivsqrtfgen4.sv b/src/fpu/fdivsqrt/fdivsqrtfgen4.sv
index a07e504f4..e0f19957e 100644
--- a/src/fpu/fdivsqrt/fdivsqrtfgen4.sv
+++ b/src/fpu/fdivsqrt/fdivsqrtfgen4.sv
@@ -26,14 +26,12 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
-`include "wally-config.vh"
-
-module fdivsqrtfgen4 (
+module fdivsqrtfgen4 import cvw::*; #(parameter cvw_t P) (
input logic [3:0] udigit,
- input logic [`DIVb+3:0] C, U, UM,
- output logic [`DIVb+3:0] F
+ input logic [P.DIVb+3:0] C, U, UM,
+ output logic [P.DIVb+3:0] F
);
- logic [`DIVb+3:0] F2, F1, F0, FN1, FN2;
+ logic [P.DIVb+3:0] F2, F1, F0, FN1, FN2;
// Generate for both positive and negative bits
assign F2 = (~U << 2) & (C << 2);
@@ -49,4 +47,4 @@ module fdivsqrtfgen4 (
else if (udigit[1]) F = FN1;
else if (udigit[0]) F = FN2;
else F = F0;
-endmodule
\ No newline at end of file
+endmodule
diff --git a/src/fpu/fdivsqrt/fdivsqrtfsm.sv b/src/fpu/fdivsqrt/fdivsqrtfsm.sv
index ba0758ee6..a10c9f6c9 100644
--- a/src/fpu/fdivsqrt/fdivsqrtfsm.sv
+++ b/src/fpu/fdivsqrt/fdivsqrtfsm.sv
@@ -26,9 +26,7 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
-`include "wally-config.vh"
-
-module fdivsqrtfsm(
+module fdivsqrtfsm import cvw::*; #(parameter cvw_t P) (
input logic clk, reset,
input logic XInfE, YInfE,
input logic XZeroE, YZeroE,
@@ -39,7 +37,7 @@ module fdivsqrtfsm(
input logic StallM, FlushE,
input logic IntDivE,
input logic ISpecialCaseE,
- input logic [`DURLEN-1:0] CyclesE,
+ input logic [P.DURLEN-1:0] CyclesE,
output logic IFDivStartE,
output logic FDivBusyE, FDivDoneE,
output logic SpecialCaseM
@@ -49,16 +47,16 @@ module fdivsqrtfsm(
statetype state;
logic SpecialCaseE, FSpecialCaseE;
- logic [`DURLEN-1:0] step;
+ logic [P.DURLEN-1:0] step;
// FDivStartE and IDivStartE come from fctrl, reflecitng the start of floating-point and possibly integer division
- assign IFDivStartE = (FDivStartE | (IDivStartE & `IDIV_ON_FPU)) & (state == IDLE) & ~StallM;
+ assign IFDivStartE = (FDivStartE | (IDivStartE & P.IDIV_ON_FPU)) & (state == IDLE) & ~StallM;
assign FDivDoneE = (state == DONE);
assign FDivBusyE = (state == BUSY) | IFDivStartE;
// terminate immediately on special cases
assign FSpecialCaseE = XZeroE | | XInfE | XNaNE | (XsE&SqrtE) | (YZeroE | YInfE | YNaNE)&~SqrtE;
- if (`IDIV_ON_FPU) assign SpecialCaseE = IntDivE ? ISpecialCaseE : FSpecialCaseE;
+ if (P.IDIV_ON_FPU) assign SpecialCaseE = IntDivE ? ISpecialCaseE : FSpecialCaseE;
else assign SpecialCaseE = FSpecialCaseE;
flopenr #(1) SpecialCaseReg(clk, reset, IFDivStartE, SpecialCaseE, SpecialCaseM); // save SpecialCase for checking in fdivsqrtpostproc
@@ -78,4 +76,4 @@ module fdivsqrtfsm(
end
end
-endmodule
\ No newline at end of file
+endmodule
diff --git a/src/fpu/fdivsqrt/fdivsqrtiter.sv b/src/fpu/fdivsqrt/fdivsqrtiter.sv
index aeb4bcc4d..0d9600ad5 100644
--- a/src/fpu/fdivsqrt/fdivsqrtiter.sv
+++ b/src/fpu/fdivsqrt/fdivsqrtiter.sv
@@ -26,38 +26,36 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
-`include "wally-config.vh"
-
-module fdivsqrtiter(
+module fdivsqrtiter import cvw::*; #(parameter cvw_t P) (
input logic clk,
input logic IFDivStartE,
input logic FDivBusyE,
input logic SqrtE,
- input logic [`DIVb+3:0] X, D,
- output logic [`DIVb:0] FirstU, FirstUM,
- output logic [`DIVb+1:0] FirstC,
+ input logic [P.DIVb+3:0] X, D,
+ output logic [P.DIVb:0] FirstU, FirstUM,
+ output logic [P.DIVb+1:0] FirstC,
output logic Firstun,
- output logic [`DIVb+3:0] FirstWS, FirstWC
+ output logic [P.DIVb+3:0] FirstWS, FirstWC
);
/* verilator lint_off UNOPTFLAT */
- logic [`DIVb+3:0] WSNext[`DIVCOPIES-1:0]; // Q4.b
- logic [`DIVb+3:0] WCNext[`DIVCOPIES-1:0]; // Q4.b
- logic [`DIVb+3:0] WS[`DIVCOPIES:0]; // Q4.b
- logic [`DIVb+3:0] WC[`DIVCOPIES:0]; // Q4.b
- logic [`DIVb:0] U[`DIVCOPIES:0]; // U1.b
- logic [`DIVb:0] UM[`DIVCOPIES:0]; // U1.b
- logic [`DIVb:0] UNext[`DIVCOPIES-1:0]; // U1.b
- logic [`DIVb:0] UMNext[`DIVCOPIES-1:0]; // U1.b
- logic [`DIVb+1:0] C[`DIVCOPIES:0]; // Q2.b
- logic [`DIVb+1:0] initC; // Q2.b
- logic [`DIVCOPIES-1:0] un;
+ logic [P.DIVb+3:0] WSNext[P.DIVCOPIES-1:0]; // Q4.b
+ logic [P.DIVb+3:0] WCNext[P.DIVCOPIES-1:0]; // Q4.b
+ logic [P.DIVb+3:0] WS[P.DIVCOPIES:0]; // Q4.b
+ logic [P.DIVb+3:0] WC[P.DIVCOPIES:0]; // Q4.b
+ logic [P.DIVb:0] U[P.DIVCOPIES:0]; // U1.b
+ logic [P.DIVb:0] UM[P.DIVCOPIES:0]; // U1.b
+ logic [P.DIVb:0] UNext[P.DIVCOPIES-1:0]; // U1.b
+ logic [P.DIVb:0] UMNext[P.DIVCOPIES-1:0]; // U1.b
+ logic [P.DIVb+1:0] C[P.DIVCOPIES:0]; // Q2.b
+ logic [P.DIVb+1:0] initC; // Q2.b
+ logic [P.DIVCOPIES-1:0] un;
- logic [`DIVb+3:0] WSN, WCN; // Q4.b
- logic [`DIVb+3:0] DBar, D2, DBar2; // Q4.b
- logic [`DIVb+1:0] NextC;
- logic [`DIVb:0] UMux, UMMux;
- logic [`DIVb:0] initU, initUM;
+ logic [P.DIVb+3:0] WSN, WCN; // Q4.b
+ logic [P.DIVb+3:0] DBar, D2, DBar2; // Q4.b
+ logic [P.DIVb+1:0] NextC;
+ logic [P.DIVb:0] UMux, UMMux;
+ logic [P.DIVb:0] initU, initUM;
/* verilator lint_on UNOPTFLAT */
// Top Muxes and Registers
@@ -66,36 +64,36 @@ module fdivsqrtiter(
// are fed back for the next iteration.
// Residual WS/SC registers/initializaiton mux
- mux2 #(`DIVb+4) wsmux(WS[`DIVCOPIES], X, IFDivStartE, WSN);
- mux2 #(`DIVb+4) wcmux(WC[`DIVCOPIES], '0, IFDivStartE, WCN);
- flopen #(`DIVb+4) wsreg(clk, FDivBusyE, WSN, WS[0]);
- flopen #(`DIVb+4) wcreg(clk, FDivBusyE, WCN, WC[0]);
+ mux2 #(P.DIVb+4) wsmux(WS[P.DIVCOPIES], X, IFDivStartE, WSN);
+ mux2 #(P.DIVb+4) wcmux(WC[P.DIVCOPIES], '0, IFDivStartE, WCN);
+ flopen #(P.DIVb+4) wsreg(clk, FDivBusyE, WSN, WS[0]);
+ flopen #(P.DIVb+4) wcreg(clk, FDivBusyE, WCN, WC[0]);
// UOTFC Result U and UM registers/initialization mux
// Initialize U to 1.0 and UM to 0 for square root; U to 0 and UM to -1 otherwise
- assign initU = {SqrtE, {(`DIVb){1'b0}}};
- assign initUM = {~SqrtE, {(`DIVb){1'b0}}};
- mux2 #(`DIVb+1) Umux(UNext[`DIVCOPIES-1], initU, IFDivStartE, UMux);
- mux2 #(`DIVb+1) UMmux(UMNext[`DIVCOPIES-1], initUM, IFDivStartE, UMMux);
- flopen #(`DIVb+1) UReg(clk, FDivBusyE, UMux, U[0]);
- flopen #(`DIVb+1) UMReg(clk, FDivBusyE, UMMux, UM[0]);
+ assign initU = {SqrtE, {(P.DIVb){1'b0}}};
+ assign initUM = {~SqrtE, {(P.DIVb){1'b0}}};
+ mux2 #(P.DIVb+1) Umux(UNext[P.DIVCOPIES-1], initU, IFDivStartE, UMux);
+ mux2 #(P.DIVb+1) UMmux(UMNext[P.DIVCOPIES-1], initUM, IFDivStartE, UMMux);
+ flopen #(P.DIVb+1) UReg(clk, FDivBusyE, UMux, U[0]);
+ flopen #(P.DIVb+1) UMReg(clk, FDivBusyE, UMMux, UM[0]);
// C register/initialization mux
// Initialize C to -1 for sqrt and -R for division
logic [1:0] initCUpper;
- if(`RADIX == 4) begin
+ if(P.RADIX == 4) begin
mux2 #(2) cuppermux4(2'b00, 2'b11, SqrtE, initCUpper);
end else begin
mux2 #(2) cuppermux2(2'b10, 2'b11, SqrtE, initCUpper);
end
- assign initC = {initCUpper, {`DIVb{1'b0}}};
- mux2 #(`DIVb+2) cmux(C[`DIVCOPIES], initC, IFDivStartE, NextC);
- flopen #(`DIVb+2) creg(clk, FDivBusyE, NextC, C[0]);
+ assign initC = {initCUpper, {P.DIVb{1'b0}}};
+ mux2 #(P.DIVb+2) cmux(C[P.DIVCOPIES], initC, IFDivStartE, NextC);
+ flopen #(P.DIVb+2) creg(clk, FDivBusyE, NextC, C[0]);
// Divisor Selections
assign DBar = ~D; // for -D
- if(`RADIX == 4) begin : d2
+ if(P.RADIX == 4) begin : d2
assign D2 = D << 1; // for 2D, only used in R4
assign DBar2 = ~D2; // for -2D, only used in R4
end
@@ -103,15 +101,15 @@ module fdivsqrtiter(
// k=DIVCOPIES of the recurrence logic
genvar i;
generate
- for(i=0; $unsigned(i)<`DIVCOPIES; i++) begin : iterations
- if (`RADIX == 2) begin: stage
- fdivsqrtstage2 fdivsqrtstage(.D, .DBar, .SqrtE,
+ for(i=0; $unsigned(i)
>> `LOGR;
+ assign W = $signed(Sum) >>> P.LOGR;
assign UnsignedQuotM = {3'b000, PreQmM};
// Integer remainder: sticky and sign correction muxes
- mux2 #(`DIVb+4) normremdmux(W, W+D, NegStickyM, NormRemDM);
- mux2 #(`DIVb+4) normremsmux(NormRemDM, -NormRemDM, AsM, NormRemM);
- mux2 #(`DIVb+4) quotresmux(UnsignedQuotM, -UnsignedQuotM, NegQuotM, NormQuotM);
+ mux2 #(P.DIVb+4) normremdmux(W, W+D, NegStickyM, NormRemDM);
+ mux2 #(P.DIVb+4) normremsmux(NormRemDM, -NormRemDM, AsM, NormRemM);
+ mux2 #(P.DIVb+4) quotresmux(UnsignedQuotM, -UnsignedQuotM, NegQuotM, NormQuotM);
// Select quotient or remainder and do normalization shift
- mux2 #(`DIVBLEN+1) normshiftmux(((`DIVBLEN+1)'(`DIVb) - (nM * (`DIVBLEN+1)'(`LOGR))), (mM + (`DIVBLEN+1)'(`DIVa)), RemOpM, NormShiftM);
- mux2 #(`DIVb+4) presresultmux(NormQuotM, NormRemM, RemOpM, PreResultM);
+ mux2 #(P.DIVBLEN+1) normshiftmux(((P.DIVBLEN+1)'(P.DIVb) - (nM * (P.DIVBLEN+1)'(P.LOGR))), (mM + (P.DIVBLEN+1)'(P.DIVa)), RemOpM, NormShiftM);
+ mux2 #(P.DIVb+4) presresultmux(NormQuotM, NormRemM, RemOpM, PreResultM);
assign PreIntResultM = $signed(PreResultM >>> NormShiftM);
// special case logic
@@ -119,18 +117,18 @@ module fdivsqrtpostproc(
always_comb
if (BZeroM) begin // Divide by zero
if (RemOpM) IntDivResultM = AM;
- else IntDivResultM = {(`XLEN){1'b1}};
+ else IntDivResultM = {(P.XLEN){1'b1}};
end else if (ALTBM) begin // Numerator is zero
if (RemOpM) IntDivResultM = AM;
else IntDivResultM = '0;
- end else IntDivResultM = PreIntResultM[`XLEN-1:0];
+ end else IntDivResultM = PreIntResultM[P.XLEN-1:0];
// sign extend result for W64
- if (`XLEN==64) begin
- mux2 #(64) resmux(IntDivResultM[`XLEN-1:0],
- {{(`XLEN-32){IntDivResultM[31]}}, IntDivResultM[31:0]}, // Sign extending in case of W64
+ if (P.XLEN==64) begin
+ mux2 #(64) resmux(IntDivResultM[P.XLEN-1:0],
+ {{(P.XLEN-32){IntDivResultM[31]}}, IntDivResultM[31:0]}, // Sign extending in case of W64
W64M, FIntDivResultM);
end else
- assign FIntDivResultM = IntDivResultM[`XLEN-1:0];
+ assign FIntDivResultM = IntDivResultM[P.XLEN-1:0];
end
endmodule
diff --git a/src/fpu/fdivsqrt/fdivsqrtpreproc.sv b/src/fpu/fdivsqrt/fdivsqrtpreproc.sv
index 3de4b252e..2d50b9299 100644
--- a/src/fpu/fdivsqrt/fdivsqrtpreproc.sv
+++ b/src/fpu/fdivsqrt/fdivsqrtpreproc.sv
@@ -26,56 +26,54 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
-`include "wally-config.vh"
-
-module fdivsqrtpreproc (
+module fdivsqrtpreproc import cvw::*; #(parameter cvw_t P) (
input logic clk,
input logic IFDivStartE,
- input logic [`NF:0] Xm, Ym,
- input logic [`NE-1:0] Xe, Ye,
- input logic [`FMTBITS-1:0] FmtE,
+ input logic [P.NF:0] Xm, Ym,
+ input logic [P.NE-1:0] Xe, Ye,
+ input logic [P.FMTBITS-1:0] FmtE,
input logic SqrtE,
input logic XZeroE,
input logic [2:0] Funct3E,
- output logic [`NE+1:0] QeM,
- output logic [`DIVb+3:0] X, D,
+ output logic [P.NE+1:0] QeM,
+ output logic [P.DIVb+3:0] X, D,
// Int-specific
- input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // *** these are the src outputs before the mux choosing between them and PCE to put in srcA/B
+ input logic [P.XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // *** these are the src outputs before the mux choosing between them and PCE to put in srcA/B
input logic IntDivE, W64E,
output logic ISpecialCaseE,
- output logic [`DURLEN-1:0] CyclesE,
- output logic [`DIVBLEN:0] nM, mM,
+ output logic [P.DURLEN-1:0] CyclesE,
+ output logic [P.DIVBLEN:0] nM, mM,
output logic NegQuotM, ALTBM, IntDivM, W64M,
output logic AsM, BZeroM,
- output logic [`XLEN-1:0] AM
+ output logic [P.XLEN-1:0] AM
);
- logic [`DIVb-1:0] Xfract, Dfract;
- logic [`DIVb:0] PreSqrtX;
- logic [`DIVb+3:0] DivX, DivXShifted, SqrtX, PreShiftX; // Variations of dividend, to be muxed
- logic [`NE+1:0] QeE; // Quotient Exponent (FP only)
- logic [`DIVb-1:0] IFX, IFD; // Correctly-sized inputs for iterator, selected from int or fp input
- logic [`DIVBLEN:0] mE, nE, ell; // Leading zeros of inputs
+ logic [P.DIVb-1:0] Xfract, Dfract;
+ logic [P.DIVb:0] PreSqrtX;
+ logic [P.DIVb+3:0] DivX, DivXShifted, SqrtX, PreShiftX; // Variations of dividend, to be muxed
+ logic [P.NE+1:0] QeE; // Quotient Exponent (FP only)
+ logic [P.DIVb-1:0] IFX, IFD; // Correctly-sized inputs for iterator, selected from int or fp input
+ logic [P.DIVBLEN:0] mE, nE, ell; // Leading zeros of inputs
logic NumerZeroE; // Numerator is zero (X or A)
logic AZeroE, BZeroE; // A or B is Zero for integer division
logic SignedDivE; // signed division
logic NegQuotE; // Integer quotient is negative
logic AsE, BsE; // Signs of integer inputs
- logic [`XLEN-1:0] AE; // input A after W64 adjustment
+ logic [P.XLEN-1:0] AE; // input A after W64 adjustment
logic ALTBE;
//////////////////////////////////////////////////////
// Integer Preprocessing
//////////////////////////////////////////////////////
- if (`IDIV_ON_FPU) begin:intpreproc // Int Supported
- logic [`XLEN-1:0] BE, PosA, PosB;
+ if (P.IDIV_ON_FPU) begin:intpreproc // Int Supported
+ logic [P.XLEN-1:0] BE, PosA, PosB;
// Extract inputs, signs, zero, depending on W64 mode if applicable
assign SignedDivE = ~Funct3E[0];
// Source handling
- if (`XLEN==64) begin // 64-bit, supports W64
+ if (P.XLEN==64) begin // 64-bit, supports W64
mux2 #(64) amux(ForwardedSrcAE, {{32{ForwardedSrcAE[31] & SignedDivE}}, ForwardedSrcAE[31:0]}, W64E, AE);
mux2 #(64) bmux(ForwardedSrcBE, {{32{ForwardedSrcBE[31] & SignedDivE}}, ForwardedSrcBE[31:0]}, W64E, BE);
end else begin // 32 bits only
@@ -84,21 +82,21 @@ module fdivsqrtpreproc (
end
assign AZeroE = ~(|AE);
assign BZeroE = ~(|BE);
- assign AsE = AE[`XLEN-1] & SignedDivE;
- assign BsE = BE[`XLEN-1] & SignedDivE;
+ assign AsE = AE[P.XLEN-1] & SignedDivE;
+ assign BsE = BE[P.XLEN-1] & SignedDivE;
assign NegQuotE = AsE ^ BsE; // Integer Quotient is negative
// Force integer inputs to be postiive
- mux2 #(`XLEN) posamux(AE, -AE, AsE, PosA);
- mux2 #(`XLEN) posbmux(BE, -BE, BsE, PosB);
+ mux2 #(P.XLEN) posamux(AE, -AE, AsE, PosA);
+ mux2 #(P.XLEN) posbmux(BE, -BE, BsE, PosB);
// Select integer or floating point inputs
- mux2 #(`DIVb) ifxmux({Xm, {(`DIVb-`NF-1){1'b0}}}, {PosA, {(`DIVb-`XLEN){1'b0}}}, IntDivE, IFX);
- mux2 #(`DIVb) ifdmux({Ym, {(`DIVb-`NF-1){1'b0}}}, {PosB, {(`DIVb-`XLEN){1'b0}}}, IntDivE, IFD);
+ mux2 #(P.DIVb) ifxmux({Xm, {(P.DIVb-P.NF-1){1'b0}}}, {PosA, {(P.DIVb-P.XLEN){1'b0}}}, IntDivE, IFX);
+ mux2 #(P.DIVb) ifdmux({Ym, {(P.DIVb-P.NF-1){1'b0}}}, {PosB, {(P.DIVb-P.XLEN){1'b0}}}, IntDivE, IFD);
mux2 #(1) numzmux(XZeroE, AZeroE, IntDivE, NumerZeroE);
end else begin // Int not supported
- assign IFX = {Xm, {(`DIVb-`NF-1){1'b0}}};
- assign IFD = {Ym, {(`DIVb-`NF-1){1'b0}}};
+ assign IFX = {Xm, {(P.DIVb-P.NF-1){1'b0}}};
+ assign IFD = {Ym, {(P.DIVb-P.NF-1){1'b0}}};
assign NumerZeroE = XZeroE;
end
@@ -107,8 +105,8 @@ module fdivsqrtpreproc (
//////////////////////////////////////////////////////
// count leading zeros for Subnorm FP and to normalize integer inputs
- lzc #(`DIVb) lzcX (IFX, ell);
- lzc #(`DIVb) lzcY (IFD, mE);
+ lzc #(P.DIVb) lzcX (IFX, ell);
+ lzc #(P.DIVb) lzcY (IFD, mE);
// Normalization shift: shift off leading one
assign Xfract = (IFX << ell) << 1;
@@ -122,28 +120,28 @@ module fdivsqrtpreproc (
// and nE (number of fractional digits)
//////////////////////////////////////////////////////
- if (`IDIV_ON_FPU) begin:intrightshift // Int Supported
- logic [`DIVBLEN:0] ZeroDiff, p;
+ if (P.IDIV_ON_FPU) begin:intrightshift // Int Supported
+ logic [P.DIVBLEN:0] ZeroDiff, p;
// calculate number of fractional bits p
assign ZeroDiff = mE - ell; // Difference in number of leading zeros
- assign ALTBE = ZeroDiff[`DIVBLEN]; // A less than B (A has more leading zeros)
- mux2 #(`DIVBLEN+1) pmux(ZeroDiff, '0, ALTBE, p);
+ assign ALTBE = ZeroDiff[P.DIVBLEN]; // A less than B (A has more leading zeros)
+ mux2 #(P.DIVBLEN+1) pmux(ZeroDiff, '0, ALTBE, p);
// Integer special cases (terminate immediately)
assign ISpecialCaseE = BZeroE | ALTBE;
// calculate number of fractional digits nE and right shift amount RightShiftX to complete in discrete number of steps
- if (`LOGRK > 0) begin // more than 1 bit per cycle
- logic [`LOGRK-1:0] IntTrunc, RightShiftX;
- logic [`DIVBLEN:0] TotalIntBits, IntSteps;
+ if (P.LOGRK > 0) begin // more than 1 bit per cycle
+ logic [P.LOGRK-1:0] IntTrunc, RightShiftX;
+ logic [P.DIVBLEN:0] TotalIntBits, IntSteps;
/* verilator lint_off WIDTH */
- assign TotalIntBits = `LOGR + p; // Total number of result bits (r integer bits plus p fractional bits)
- assign IntTrunc = TotalIntBits % `RK; // Truncation check for ceiling operator
- assign IntSteps = (TotalIntBits >> `LOGRK) + |IntTrunc; // Number of steps for int div
- assign nE = (IntSteps * `DIVCOPIES) - 1; // Fractional digits
- assign RightShiftX = `RK - 1 - ((TotalIntBits - 1) % `RK); // Right shift amount
+ assign TotalIntBits = P.LOGR + p; // Total number of result bits (r integer bits plus p fractional bits)
+ assign IntTrunc = TotalIntBits % P.RK; // Truncation check for ceiling operator
+ assign IntSteps = (TotalIntBits >> P.LOGRK) + |IntTrunc; // Number of steps for int div
+ assign nE = (IntSteps * P.DIVCOPIES) - 1; // Fractional digits
+ assign RightShiftX = P.RK - 1 - ((TotalIntBits - 1) % P.RK); // Right shift amount
assign DivXShifted = DivX >> RightShiftX; // shift X by up to R*K-1 to complete in nE steps
/* verilator lint_on WIDTH */
end else begin // radix 2 1 copy doesn't require shifting
@@ -167,42 +165,42 @@ module fdivsqrtpreproc (
assign DivX = {3'b000, ~NumerZeroE, Xfract};
// Sqrt is initialized on step one as R(X-1), so depends on Radix
- mux2 #(`DIVb+1) sqrtxmux({~XZeroE, Xfract}, {1'b0, ~XZeroE, Xfract[`DIVb-1:1]}, (Xe[0] ^ ell[0]), PreSqrtX);
- if (`RADIX == 2) assign SqrtX = {3'b111, PreSqrtX};
+ mux2 #(P.DIVb+1) sqrtxmux({~XZeroE, Xfract}, {1'b0, ~XZeroE, Xfract[P.DIVb-1:1]}, (Xe[0] ^ ell[0]), PreSqrtX);
+ if (P.RADIX == 2) assign SqrtX = {3'b111, PreSqrtX};
else assign SqrtX = {2'b11, PreSqrtX, 1'b0};
- mux2 #(`DIVb+4) prexmux(DivX, SqrtX, SqrtE, PreShiftX);
+ mux2 #(P.DIVb+4) prexmux(DivX, SqrtX, SqrtE, PreShiftX);
//////////////////////////////////////////////////////
// Selet integer or floating-point operands
//////////////////////////////////////////////////////
- if (`IDIV_ON_FPU) begin
- mux2 #(`DIVb+4) xmux(PreShiftX, DivXShifted, IntDivE, X);
+ if (P.IDIV_ON_FPU) begin
+ mux2 #(P.DIVb+4) xmux(PreShiftX, DivXShifted, IntDivE, X);
end else begin
assign X = PreShiftX;
end
// Divisior register
- flopen #(`DIVb+4) dreg(clk, IFDivStartE, {4'b0001, Dfract}, D);
+ flopen #(P.DIVb+4) dreg(clk, IFDivStartE, {4'b0001, Dfract}, D);
// Floating-point exponent
- fdivsqrtexpcalc expcalc(.Fmt(FmtE), .Xe, .Ye, .Sqrt(SqrtE), .XZero(XZeroE), .ell, .m(mE), .Qe(QeE));
- flopen #(`NE+2) expreg(clk, IFDivStartE, QeE, QeM);
+ fdivsqrtexpcalc #(P) expcalc(.Fmt(FmtE), .Xe, .Ye, .Sqrt(SqrtE), .XZero(XZeroE), .ell, .m(mE), .Qe(QeE));
+ flopen #(P.NE+2) expreg(clk, IFDivStartE, QeE, QeM);
// Number of FSM cycles (to FSM)
- fdivsqrtcycles cyclecalc(.FmtE, .SqrtE, .IntDivE, .nE, .CyclesE);
+ fdivsqrtcycles #(P) cyclecalc(.FmtE, .SqrtE, .IntDivE, .nE, .CyclesE);
- if (`IDIV_ON_FPU) begin:intpipelineregs
+ if (P.IDIV_ON_FPU) begin:intpipelineregs
// pipeline registers
flopen #(1) mdureg(clk, IFDivStartE, IntDivE, IntDivM);
flopen #(1) altbreg(clk, IFDivStartE, ALTBE, ALTBM);
flopen #(1) negquotreg(clk, IFDivStartE, NegQuotE, NegQuotM);
flopen #(1) bzeroreg(clk, IFDivStartE, BZeroE, BZeroM);
flopen #(1) asignreg(clk, IFDivStartE, AsE, AsM);
- flopen #(`DIVBLEN+1) nreg(clk, IFDivStartE, nE, nM);
- flopen #(`DIVBLEN+1) mreg(clk, IFDivStartE, mE, mM);
- flopen #(`XLEN) srcareg(clk, IFDivStartE, AE, AM);
- if (`XLEN==64)
+ flopen #(P.DIVBLEN+1) nreg(clk, IFDivStartE, nE, nM);
+ flopen #(P.DIVBLEN+1) mreg(clk, IFDivStartE, mE, mM);
+ flopen #(P.XLEN) srcareg(clk, IFDivStartE, AE, AM);
+ if (P.XLEN==64)
flopen #(1) w64reg(clk, IFDivStartE, W64E, W64M);
end
diff --git a/src/fpu/fdivsqrt/fdivsqrtqsel2.sv b/src/fpu/fdivsqrt/fdivsqrtqsel2.sv
index 18c577b97..fe32924e1 100644
--- a/src/fpu/fdivsqrt/fdivsqrtqsel2.sv
+++ b/src/fpu/fdivsqrt/fdivsqrtqsel2.sv
@@ -26,8 +26,6 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
-`include "wally-config.vh"
-
module fdivsqrtqsel2 (
input logic [3:0] ps, pc,
output logic up, uz, un
diff --git a/src/fpu/fdivsqrt/fdivsqrtqsel4.sv b/src/fpu/fdivsqrt/fdivsqrtqsel4.sv
index 7a0db24d8..de520bef2 100644
--- a/src/fpu/fdivsqrt/fdivsqrtqsel4.sv
+++ b/src/fpu/fdivsqrt/fdivsqrtqsel4.sv
@@ -26,8 +26,6 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
-`include "wally-config.vh"
-
module fdivsqrtqsel4 (
input logic [2:0] Dmsbs,
input logic [4:0] Smsbs,
diff --git a/src/fpu/fdivsqrt/fdivsqrtqsel4cmp.sv b/src/fpu/fdivsqrt/fdivsqrtqsel4cmp.sv
index e508a6d7c..8a3d535d3 100644
--- a/src/fpu/fdivsqrt/fdivsqrtqsel4cmp.sv
+++ b/src/fpu/fdivsqrt/fdivsqrtqsel4cmp.sv
@@ -26,8 +26,6 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
-`include "wally-config.vh"
-
module fdivsqrtqsel4cmp (
input logic [2:0] Dmsbs,
input logic [4:0] Smsbs,
diff --git a/src/fpu/fdivsqrt/fdivsqrtstage2.sv b/src/fpu/fdivsqrt/fdivsqrtstage2.sv
index be62f8aa6..bb8d87234 100644
--- a/src/fpu/fdivsqrt/fdivsqrtstage2.sv
+++ b/src/fpu/fdivsqrt/fdivsqrtstage2.sv
@@ -26,27 +26,26 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
-`include "wally-config.vh"
/* verilator lint_off UNOPTFLAT */
-module fdivsqrtstage2 (
- input logic [`DIVb+3:0] D, DBar,
- input logic [`DIVb:0] U, UM,
- input logic [`DIVb+3:0] WS, WC,
- input logic [`DIVb+1:0] C,
+module fdivsqrtstage2 import cvw::*; #(parameter cvw_t P) (
+ input logic [P.DIVb+3:0] D, DBar,
+ input logic [P.DIVb:0] U, UM,
+ input logic [P.DIVb+3:0] WS, WC,
+ input logic [P.DIVb+1:0] C,
input logic SqrtE,
output logic un,
- output logic [`DIVb+1:0] CNext,
- output logic [`DIVb:0] UNext, UMNext,
- output logic [`DIVb+3:0] WSNext, WCNext
+ output logic [P.DIVb+1:0] CNext,
+ output logic [P.DIVb:0] UNext, UMNext,
+ output logic [P.DIVb+3:0] WSNext, WCNext
);
/* verilator lint_on UNOPTFLAT */
- logic [`DIVb+3:0] Dsel;
+ logic [P.DIVb+3:0] Dsel;
logic up, uz;
- logic [`DIVb+3:0] F;
- logic [`DIVb+3:0] AddIn;
- logic [`DIVb+3:0] WSA, WCA;
+ logic [P.DIVb+3:0] F;
+ logic [P.DIVb+3:0] AddIn;
+ logic [P.DIVb+3:0] WSA, WCA;
// Qmient Selection logic
// Given partial remainder, select digit of +1, 0, or -1 (up, uz, un)
@@ -56,10 +55,10 @@ module fdivsqrtstage2 (
// 0000 = 0
// 0010 = -1
// 0001 = -2
- fdivsqrtqsel2 qsel2(WS[`DIVb+3:`DIVb], WC[`DIVb+3:`DIVb], up, uz, un);
+ fdivsqrtqsel2 qsel2(WS[P.DIVb+3:P.DIVb], WC[P.DIVb+3:P.DIVb], up, uz, un);
// Sqrt F generation. Extend C, U, UM to Q4.k
- fdivsqrtfgen2 fgen2(.up, .uz, .C({2'b11, CNext}), .U({3'b000, U}), .UM({3'b000, UM}), .F);
+ fdivsqrtfgen2 #(P) fgen2(.up, .uz, .C({2'b11, CNext}), .U({3'b000, U}), .UM({3'b000, UM}), .F);
// Divisor multiple
always_comb
@@ -69,16 +68,16 @@ module fdivsqrtstage2 (
// Partial Product Generation
// WSA, WCA = WS + WC - qD
- mux2 #(`DIVb+4) addinmux(Dsel, F, SqrtE, AddIn);
- csa #(`DIVb+4) csa(WS, WC, AddIn, up&~SqrtE, WSA, WCA);
+ mux2 #(P.DIVb+4) addinmux(Dsel, F, SqrtE, AddIn);
+ csa #(P.DIVb+4) csa(WS, WC, AddIn, up&~SqrtE, WSA, WCA);
assign WSNext = WSA << 1;
assign WCNext = WCA << 1;
// Shift thermometer code C
- assign CNext = {1'b1, C[`DIVb+1:1]};
+ assign CNext = {1'b1, C[P.DIVb+1:1]};
// Unified On-The-Fly Converter to accumulate result
- fdivsqrtuotfc2 uotfc2(.up, .un, .C(CNext), .U, .UM, .UNext, .UMNext);
+ fdivsqrtuotfc2 #(P) uotfc2(.up, .un, .C(CNext), .U, .UM, .UNext, .UMNext);
endmodule
diff --git a/src/fpu/fdivsqrt/fdivsqrtstage4.sv b/src/fpu/fdivsqrt/fdivsqrtstage4.sv
index 9464e6a88..c6477ec68 100644
--- a/src/fpu/fdivsqrt/fdivsqrtstage4.sv
+++ b/src/fpu/fdivsqrt/fdivsqrtstage4.sv
@@ -26,29 +26,27 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
-`include "wally-config.vh"
-
-module fdivsqrtstage4 (
- input logic [`DIVb+3:0] D, DBar, D2, DBar2,
- input logic [`DIVb:0] U,UM,
- input logic [`DIVb+3:0] WS, WC,
- input logic [`DIVb+1:0] C,
+module fdivsqrtstage4 import cvw::*; #(parameter cvw_t P) (
+ input logic [P.DIVb+3:0] D, DBar, D2, DBar2,
+ input logic [P.DIVb:0] U,UM,
+ input logic [P.DIVb+3:0] WS, WC,
+ input logic [P.DIVb+1:0] C,
input logic SqrtE, j1,
- output logic [`DIVb+1:0] CNext,
+ output logic [P.DIVb+1:0] CNext,
output logic un,
- output logic [`DIVb:0] UNext, UMNext,
- output logic [`DIVb+3:0] WSNext, WCNext
+ output logic [P.DIVb:0] UNext, UMNext,
+ output logic [P.DIVb+3:0] WSNext, WCNext
);
- logic [`DIVb+3:0] Dsel;
+ logic [P.DIVb+3:0] Dsel;
logic [3:0] udigit;
- logic [`DIVb+3:0] F;
- logic [`DIVb+3:0] AddIn;
+ logic [P.DIVb+3:0] F;
+ logic [P.DIVb+3:0] AddIn;
logic [4:0] Smsbs;
logic [2:0] Dmsbs;
logic [7:0] WCmsbs, WSmsbs;
logic CarryIn;
- logic [`DIVb+3:0] WSA, WCA;
+ logic [P.DIVb+3:0] WSA, WCA;
// Digit Selection logic
// u encoding:
@@ -57,16 +55,16 @@ module fdivsqrtstage4 (
// 0000 = 0
// 0010 = -1
// 0001 = -2
- assign Smsbs = U[`DIVb:`DIVb-4];
- assign Dmsbs = D[`DIVb-1:`DIVb-3];
- assign WCmsbs = WC[`DIVb+3:`DIVb-4];
- assign WSmsbs = WS[`DIVb+3:`DIVb-4];
+ assign Smsbs = U[P.DIVb:P.DIVb-4];
+ assign Dmsbs = D[P.DIVb-1:P.DIVb-3];
+ assign WCmsbs = WC[P.DIVb+3:P.DIVb-4];
+ assign WSmsbs = WS[P.DIVb+3:P.DIVb-4];
fdivsqrtqsel4cmp qsel4(.Dmsbs, .Smsbs, .WSmsbs, .WCmsbs, .SqrtE, .j1, .udigit);
assign un = 1'b0; // unused for radix 4
// F generation logic
- fdivsqrtfgen4 fgen4(.udigit, .C({2'b11, CNext}), .U({3'b000, U}), .UM({3'b000, UM}), .F);
+ fdivsqrtfgen4 #(P) fgen4(.udigit, .C({2'b11, CNext}), .U({3'b000, U}), .UM({3'b000, UM}), .F);
// Divisor multiple logic
always_comb
@@ -83,15 +81,15 @@ module fdivsqrtstage4 (
// {WS, WC}}Next = (WS + WC - qD or F) << 2
assign AddIn = SqrtE ? F : Dsel;
assign CarryIn = ~SqrtE & (udigit[3] | udigit[2]); // +1 for 2's complement of -D and -2D
- csa #(`DIVb+4) csa(WS, WC, AddIn, CarryIn, WSA, WCA);
+ csa #(P.DIVb+4) csa(WS, WC, AddIn, CarryIn, WSA, WCA);
assign WSNext = WSA << 2;
assign WCNext = WCA << 2;
// Shift thermometer code C
- assign CNext = {2'b11, C[`DIVb+1:2]};
+ assign CNext = {2'b11, C[P.DIVb+1:2]};
// On-the-fly converter to accumulate result
- fdivsqrtuotfc4 fdivsqrtuotfc4(.udigit, .C(CNext[`DIVb:0]), .U, .UM, .UNext, .UMNext);
+ fdivsqrtuotfc4 #(P) fdivsqrtuotfc4(.udigit, .C(CNext[P.DIVb:0]), .U, .UM, .UNext, .UMNext);
endmodule
diff --git a/src/fpu/fdivsqrt/fdivsqrtuotfc2.sv b/src/fpu/fdivsqrt/fdivsqrtuotfc2.sv
index 33956a0fd..bde28cfba 100644
--- a/src/fpu/fdivsqrt/fdivsqrtuotfc2.sv
+++ b/src/fpu/fdivsqrt/fdivsqrtuotfc2.sv
@@ -26,22 +26,20 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
-`include "wally-config.vh"
-
///////////////////////////////
// Unified OTFC, Radix 2 //
///////////////////////////////
-module fdivsqrtuotfc2(
+module fdivsqrtuotfc2 import cvw::*; #(parameter cvw_t P) (
input logic up, un,
- input logic [`DIVb+1:0] C,
- input logic [`DIVb:0] U, UM,
- output logic [`DIVb:0] UNext, UMNext
+ input logic [P.DIVb+1:0] C,
+ input logic [P.DIVb:0] U, UM,
+ output logic [P.DIVb:0] UNext, UMNext
);
// The on-the-fly converter transfers the divsqrt
// bits to the quotient as they come.
- logic [`DIVb:0] K;
+ logic [P.DIVb:0] K;
- assign K = (C[`DIVb:0] & ~(C[`DIVb:0] << 1)); // Thermometer to one hot encoding
+ assign K = (C[P.DIVb:0] & ~(C[P.DIVb:0] << 1)); // Thermometer to one hot encoding
always_comb begin
if (up) begin
diff --git a/src/fpu/fdivsqrt/fdivsqrtuotfc4.sv b/src/fpu/fdivsqrt/fdivsqrtuotfc4.sv
index 57298b4c8..403ccf051 100644
--- a/src/fpu/fdivsqrt/fdivsqrtuotfc4.sv
+++ b/src/fpu/fdivsqrt/fdivsqrtuotfc4.sv
@@ -26,19 +26,17 @@
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
-`include "wally-config.vh"
-
-module fdivsqrtuotfc4(
+module fdivsqrtuotfc4 import cvw::*; #(parameter cvw_t P) (
input logic [3:0] udigit,
- input logic [`DIVb:0] U, UM,
- input logic [`DIVb:0] C,
- output logic [`DIVb:0] UNext, UMNext
+ input logic [P.DIVb:0] U, UM,
+ input logic [P.DIVb:0] C,
+ output logic [P.DIVb:0] UNext, UMNext
);
// The on-the-fly converter transfers the square root
// bits to the quotient as they come.
// Use this otfc for division and square root.
- logic [`DIVb:0] K1, K2, K3;
+ logic [P.DIVb:0] K1, K2, K3;
assign K1 = (C&~(C << 1)); // K
assign K2 = ((C << 1)&~(C << 2)); // 2K
assign K3 = (C & ~(C << 2)); // 3K
diff --git a/src/fpu/fpu.sv b/src/fpu/fpu.sv
index 338aa78a6..22d2da35b 100755
--- a/src/fpu/fpu.sv
+++ b/src/fpu/fpu.sv
@@ -238,7 +238,7 @@ module fpu import cvw::*; #(parameter cvw_t P) (
.As(AsE), .Ps(PsE), .Ss(SsE), .Se(SeE), .Sm(SmE), .InvA(InvAE), .SCnt(SCntE), .ASticky(FmaAStickyE));
// divide and square root: fdiv, fsqrt, optionally integer division
- fdivsqrt fdivsqrt(.clk, .reset, .FmtE, .XmE, .YmE, .XeE, .YeE, .SqrtE(OpCtrlE[0]), .SqrtM(OpCtrlM[0]),
+ fdivsqrt #(P) fdivsqrt(.clk, .reset, .FmtE, .XmE, .YmE, .XeE, .YeE, .SqrtE(OpCtrlE[0]), .SqrtM(OpCtrlM[0]),
.XInfE, .YInfE, .XZeroE, .YZeroE, .XNaNE, .YNaNE, .FDivStartE, .IDivStartE, .XsE,
.ForwardedSrcAE, .ForwardedSrcBE, .Funct3E, .Funct3M, .IntDivE, .W64E,
.StallM, .FlushE, .DivStickyM, .FDivBusyE, .IFDivStartE, .FDivDoneE, .QeM,