Simplified cycle count logic

This commit is contained in:
David Harris 2023-11-10 14:00:27 -08:00
parent 8f87860146
commit 2903791820
2 changed files with 22 additions and 18 deletions

View File

@ -30,12 +30,12 @@ module fdivsqrtcycles import cvw::*; #(parameter cvw_t P) (
input logic [P.FMTBITS-1:0] FmtE, input logic [P.FMTBITS-1:0] FmtE,
input logic SqrtE, input logic SqrtE,
input logic IntDivE, input logic IntDivE,
input logic [P.DIVBLEN:0] nE, input logic [P.DIVBLEN:0] IntResultBits,
output logic [P.DURLEN-1:0] CyclesE output logic [P.DURLEN-1:0] CyclesE
); );
logic [P.DURLEN+1:0] Nf, fbits; // number of fractional bits logic [P.DURLEN+1:0] Nf, FPResultBits; // number of fractional bits
logic [P.DURLEN-1:0] fpcycles; // number of cycles for floating-point operation logic [P.DIVBLEN:0] ResultBits; // number of result bits;
// DIVN = P.NF+3 // DIVN = P.NF+3
// NS = NF + 1 // NS = NF + 1
@ -68,13 +68,13 @@ module fdivsqrtcycles import cvw::*; #(parameter cvw_t P) (
endcase endcase
always_comb begin always_comb begin
if (SqrtE) fbits = Nf + 2 + 1; // Nf + two fractional bits for round/guard + 2 for right shift by up to 2 *** unclear why it works with just +1; is it related to DIVCOPIES logic below? if (SqrtE) FPResultBits = Nf + 2 + 1; // Nf + two fractional bits for round/guard + 2 for right shift by up to 2 *** unclear why it works with just +1 rather than +2; is it related to DIVCOPIES logic below?
// if (SqrtE) fbits = Nf + 2 + 2; // Nf + two fractional bits for round/guard + 2 for right shift by up to 2 else FPResultBits = Nf + 2 + P.LOGR; // Nf + two fractional bits for round/guard + integer bits - try this when placing results in msbs
else fbits = Nf + 2 + P.LOGR; // Nf + two fractional bits for round/guard + integer bits - try this when placing results in msbs
assign fpcycles = (fbits-1)/(P.RK) + 1;
if (P.IDIV_ON_FPU) CyclesE = IntDivE ? ((nE + 1)/P.DIVCOPIES) : fpcycles; if (P.IDIV_ON_FPU) ResultBits = IntDivE ? IntResultBits : FPResultBits;
else CyclesE = fpcycles; else ResultBits = FPResultBits;
assign CyclesE = (ResultBits-1)/(P.RK) + 1;
end end
/* verilator lint_on WIDTH */ /* verilator lint_on WIDTH */

View File

@ -54,6 +54,7 @@ module fdivsqrtpreproc import cvw::*; #(parameter cvw_t P) (
logic [P.NE+1:0] UeE; // Result Exponent (FP only) logic [P.NE+1:0] UeE; // Result Exponent (FP only)
logic [P.DIVb:0] IFX, IFD; // Correctly-sized inputs for iterator, selected from int or fp input logic [P.DIVb:0] IFX, IFD; // Correctly-sized inputs for iterator, selected from int or fp input
logic [P.DIVBLEN:0] mE, nE, ell; // Leading zeros of inputs logic [P.DIVBLEN:0] mE, nE, ell; // Leading zeros of inputs
logic [P.DIVBLEN:0] IntResultBits; // bits in integer result
logic NumerZeroE; // Numerator is zero (X or A) logic NumerZeroE; // Numerator is zero (X or A)
logic AZeroE, BZeroE; // A or B is Zero for integer division logic AZeroE, BZeroE; // A or B is Zero for integer division
logic SignedDivE; // signed division logic SignedDivE; // signed division
@ -124,6 +125,10 @@ module fdivsqrtpreproc import cvw::*; #(parameter cvw_t P) (
assign ALTBE = ZeroDiff[P.DIVBLEN]; // A less than B (A has more leading zeros) assign ALTBE = ZeroDiff[P.DIVBLEN]; // A less than B (A has more leading zeros)
mux2 #(P.DIVBLEN+1) pmux(ZeroDiff, '0, ALTBE, p); mux2 #(P.DIVBLEN+1) pmux(ZeroDiff, '0, ALTBE, p);
/* verilator lint_off WIDTH */
assign IntResultBits = P.LOGR + p; // Total number of result bits (r integer bits plus p fractional bits)
/* verilator lint_on WIDTH */
// Integer special cases (terminate immediately) // Integer special cases (terminate immediately)
assign ISpecialCaseE = BZeroE | ALTBE; assign ISpecialCaseE = BZeroE | ALTBE;
@ -131,14 +136,13 @@ module fdivsqrtpreproc import cvw::*; #(parameter cvw_t P) (
if (P.LOGRK > 0) begin // more than 1 bit per cycle if (P.LOGRK > 0) begin // more than 1 bit per cycle
logic [P.LOGRK-1:0] IntTrunc, RightShiftX; logic [P.LOGRK-1:0] IntTrunc, RightShiftX;
logic [P.DIVBLEN:0] TotalIntBits, IntSteps; logic [P.DIVBLEN:0] IntSteps;
/* verilator lint_off WIDTH */ /* verilator lint_off WIDTH */
// n = k*ceil((r+p)/rk) - 1 // n = k*ceil((r+p)/rk) - 1
assign TotalIntBits = P.LOGR + p; // Total number of result bits (r integer bits plus p fractional bits) assign IntTrunc = IntResultBits % P.RK; // Truncation check for ceiling operator
assign IntTrunc = TotalIntBits % P.RK; // Truncation check for ceiling operator assign IntSteps = (IntResultBits >> P.LOGRK) + |IntTrunc; // Number of steps for int div
assign IntSteps = (TotalIntBits >> P.LOGRK) + |IntTrunc; // Number of steps for int div
assign nE = (IntSteps * P.DIVCOPIES) - 1; // Fractional digits = total digits - 1 integer digit assign nE = (IntSteps * P.DIVCOPIES) - 1; // Fractional digits = total digits - 1 integer digit
assign RightShiftX = P.RK - 1 - ((TotalIntBits - 1) % P.RK); // Right shift amount assign RightShiftX = P.RK - 1 - ((IntResultBits - 1) % P.RK); // Right shift amount
assign DivXShifted = DivX >> RightShiftX; // shift X by up to R*K-1 to complete in nE steps assign DivXShifted = DivX >> RightShiftX; // shift X by up to R*K-1 to complete in nE steps
/* verilator lint_on WIDTH */ /* verilator lint_on WIDTH */
end else begin // radix 2 1 copy doesn't require shifting end else begin // radix 2 1 copy doesn't require shifting
@ -192,7 +196,7 @@ module fdivsqrtpreproc import cvw::*; #(parameter cvw_t P) (
flopen #(P.NE+2) expreg(clk, IFDivStartE, UeE, UeM); flopen #(P.NE+2) expreg(clk, IFDivStartE, UeE, UeM);
// Number of FSM cycles (to FSM) // Number of FSM cycles (to FSM)
fdivsqrtcycles #(P) cyclecalc(.FmtE, .SqrtE, .IntDivE, .nE, .CyclesE); fdivsqrtcycles #(P) cyclecalc(.FmtE, .SqrtE, .IntDivE, .IntResultBits, .CyclesE);
if (P.IDIV_ON_FPU) begin:intpipelineregs if (P.IDIV_ON_FPU) begin:intpipelineregs
// pipeline registers // pipeline registers