mirror of
https://github.com/openhwgroup/cvw
synced 2025-02-11 06:05:49 +00:00
unpack.sv cleanup
This commit is contained in:
parent
e3d01c875b
commit
23adb2dd03
@ -175,7 +175,7 @@ module fpu (
|
||||
// unpack unit
|
||||
// - splits FP inputs into their various parts
|
||||
// - does some classifications (SNaN, NaN, Denorm, Norm, Zero, Infifnity)
|
||||
unpack unpack (.X(FSrcXE), .Y(FSrcYE), .Z(FSrcZE), .FOpCtrlE, .FmtE,
|
||||
unpack unpack (.X(FSrcXE), .Y(FSrcYE), .Z(FSrcZE), .FmtE,
|
||||
.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
|
||||
.XNaNE, .YNaNE, .ZNaNE, .XSNaNE, .YSNaNE, .ZSNaNE, .XDenormE, .YDenormE, .ZDenormE,
|
||||
.XZeroE, .YZeroE, .ZZeroE, .XInfE, .YInfE, .ZInfE, .XExpMaxE, .XNormE);
|
||||
|
@ -1,58 +1,83 @@
|
||||
`include "wally-config.vh"
|
||||
|
||||
module unpack (
|
||||
input logic [`FLEN-1:0] X, Y, Z,
|
||||
input logic [`FPSIZES/3:0] FmtE,
|
||||
input logic [2:0] FOpCtrlE,
|
||||
output logic XSgnE, YSgnE, ZSgnE,
|
||||
output logic [`NE-1:0] XExpE, YExpE, ZExpE,
|
||||
output logic [`NF:0] XManE, YManE, ZManE,
|
||||
output logic XNormE,
|
||||
output logic XNaNE, YNaNE, ZNaNE,
|
||||
output logic XSNaNE, YSNaNE, ZSNaNE,
|
||||
output logic XDenormE, YDenormE, ZDenormE,
|
||||
output logic XZeroE, YZeroE, ZZeroE,
|
||||
output logic XInfE, YInfE, ZInfE,
|
||||
output logic XExpMaxE
|
||||
input logic [`FLEN-1:0] X, Y, Z, // inputs from register file
|
||||
input logic [`FPSIZES/3:0] FmtE, // format signal 00 - single 10 - double 11 - quad 10 - half
|
||||
output logic XSgnE, YSgnE, ZSgnE, // sign bits of XYZ
|
||||
output logic [`NE-1:0] XExpE, YExpE, ZExpE, // exponents of XYZ (converted to largest supported precision)
|
||||
output logic [`NF:0] XManE, YManE, ZManE, // mantissas of XYZ (converted to largest supported precision)
|
||||
output logic XNormE, // is X a normalized number
|
||||
output logic XNaNE, YNaNE, ZNaNE, // is XYZ a NaN
|
||||
output logic XSNaNE, YSNaNE, ZSNaNE, // is XYZ a signaling NaN
|
||||
output logic XDenormE, YDenormE, ZDenormE, // is XYZ denormalized
|
||||
output logic XZeroE, YZeroE, ZZeroE, // is XYZ zero
|
||||
output logic XInfE, YInfE, ZInfE, // is XYZ infinity
|
||||
output logic XExpMaxE // does X have the maximum exponent (NaN or Inf)
|
||||
);
|
||||
|
||||
logic [`NF-1:0] XFracE, YFracE, ZFracE;
|
||||
logic XExpNonzero, YExpNonzero, ZExpNonzero;
|
||||
logic XFracZero, YFracZero, ZFracZero; // input fraction zero
|
||||
logic XExpZero, YExpZero, ZExpZero; // input exponent zero
|
||||
logic YExpMaxE, ZExpMaxE; // input exponent all 1s
|
||||
logic [`NF-1:0] XFracE, YFracE, ZFracE; //Fraction of XYZ
|
||||
logic XExpNonzero, YExpNonzero, ZExpNonzero; // is the exponent of XYZ non-zero
|
||||
logic XFracZero, YFracZero, ZFracZero; // is the fraction zero
|
||||
logic XExpZero, YExpZero, ZExpZero; // is the exponent zero
|
||||
logic YExpMaxE, ZExpMaxE; // is the exponent all 1s
|
||||
|
||||
if (`FPSIZES == 1) begin
|
||||
if (`FPSIZES == 1) begin // if there is only one floating point format supported
|
||||
|
||||
// sign bit
|
||||
assign XSgnE = X[`FLEN-1];
|
||||
assign YSgnE = Y[`FLEN-1];
|
||||
assign ZSgnE = Z[`FLEN-1];
|
||||
|
||||
// exponent
|
||||
assign XExpE = X[`FLEN-2:`NF];
|
||||
assign YExpE = Y[`FLEN-2:`NF];
|
||||
assign ZExpE = Z[`FLEN-2:`NF];
|
||||
|
||||
// fraction (no assumed 1)
|
||||
assign XFracE = X[`NF-1:0];
|
||||
assign YFracE = Y[`NF-1:0];
|
||||
assign ZFracE = Z[`NF-1:0];
|
||||
|
||||
// is the exponent non-zero
|
||||
assign XExpNonzero = |XExpE;
|
||||
assign YExpNonzero = |YExpE;
|
||||
assign ZExpNonzero = |ZExpE;
|
||||
|
||||
// is the exponent all 1's
|
||||
assign XExpMaxE = &XExpE;
|
||||
assign YExpMaxE = &YExpE;
|
||||
assign ZExpMaxE = &ZExpE;
|
||||
|
||||
|
||||
end else if (`FPSIZES == 2) begin
|
||||
end else if (`FPSIZES == 2) begin // if there are 2 floating point formats supported
|
||||
|
||||
logic [`LEN1-1:0] XLen1, YLen1, ZLen1; // Bottom half or NaN, if not properly NaN boxed
|
||||
//***need better names for these constants
|
||||
// largest format | smaller format
|
||||
//----------------------------------
|
||||
// `FLEN | `LEN1 length of floating point number
|
||||
// `NE | `NE1 length of exponent
|
||||
// `NF | `NF1 length of fraction
|
||||
// `BIAS | `BIAS1 exponent's bias value
|
||||
// `FMT | `FMT1 precision's format value - Q=11 D=01 S=00 H=10
|
||||
|
||||
// Possible combinantions specified by spec:
|
||||
// double and single
|
||||
// single and half
|
||||
|
||||
// Not needed but can also handle:
|
||||
// quad and double
|
||||
// quad and single
|
||||
// quad and half
|
||||
// double and half
|
||||
|
||||
logic [`LEN1-1:0] XLen1, YLen1, ZLen1; // Remove NaN boxing or NaN, if not properly NaN boxed
|
||||
|
||||
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN
|
||||
assign XLen1 = &X[`FLEN-1:`LEN1] ? X[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
|
||||
assign YLen1 = &Y[`FLEN-1:`LEN1] ? Y[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
|
||||
assign ZLen1 = &Z[`FLEN-1:`LEN1] ? Z[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
|
||||
|
||||
// choose sign bit depending on format - 1=larger precsion 0=smaller precision
|
||||
assign XSgnE = FmtE ? X[`FLEN-1] : XLen1[`LEN1-1];
|
||||
assign YSgnE = FmtE ? Y[`FLEN-1] : YLen1[`LEN1-1];
|
||||
assign ZSgnE = FmtE ? Z[`FLEN-1] : ZLen1[`LEN1-1];
|
||||
@ -64,63 +89,94 @@ module unpack (
|
||||
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
|
||||
// dexp = 0bdd dbbb bbbb
|
||||
// also need to take into account possible zero/denorm/inf/NaN values
|
||||
|
||||
// extract the exponent, converting the smaller exponent into the larger precision if nessisary
|
||||
assign XExpE = FmtE ? X[`FLEN-2:`NF] : {XLen1[`LEN1-2], {`NE-`NE1{~XLen1[`LEN1-2]&~XExpZero|XExpMaxE}}, XLen1[`LEN1-3:`NF1]};
|
||||
assign YExpE = FmtE ? Y[`FLEN-2:`NF] : {YLen1[`LEN1-2], {`NE-`NE1{~YLen1[`LEN1-2]&~YExpZero|YExpMaxE}}, YLen1[`LEN1-3:`NF1]};
|
||||
assign ZExpE = FmtE ? Z[`FLEN-2:`NF] : {ZLen1[`LEN1-2], {`NE-`NE1{~ZLen1[`LEN1-2]&~ZExpZero|ZExpMaxE}}, ZLen1[`LEN1-3:`NF1]};
|
||||
|
||||
// extract the fraction, add trailing zeroes to the mantissa if nessisary
|
||||
assign XFracE = FmtE ? X[`NF-1:0] : {XLen1[`NF1-1:0], (`NF-`NF1)'(0)};
|
||||
assign YFracE = FmtE ? Y[`NF-1:0] : {YLen1[`NF1-1:0], (`NF-`NF1)'(0)};
|
||||
assign ZFracE = FmtE ? Z[`NF-1:0] : {ZLen1[`NF1-1:0], (`NF-`NF1)'(0)};
|
||||
|
||||
// is the exponent non-zero
|
||||
assign XExpNonzero = FmtE ? |X[`FLEN-2:`NF] : |XLen1[`LEN1-2:`NF1];
|
||||
assign YExpNonzero = FmtE ? |Y[`FLEN-2:`NF] : |YLen1[`LEN1-2:`NF1];
|
||||
assign ZExpNonzero = FmtE ? |Z[`FLEN-2:`NF] : |ZLen1[`LEN1-2:`NF1];
|
||||
|
||||
// is the exponent all 1's
|
||||
assign XExpMaxE = FmtE ? &X[`FLEN-2:`NF] : &XLen1[`LEN1-2:`NF1];
|
||||
assign YExpMaxE = FmtE ? &Y[`FLEN-2:`NF] : &YLen1[`LEN1-2:`NF1];
|
||||
assign ZExpMaxE = FmtE ? &Z[`FLEN-2:`NF] : &ZLen1[`LEN1-2:`NF1];
|
||||
|
||||
|
||||
end else if (`FPSIZES == 3) begin
|
||||
logic [`LEN1-1:0] XLen1, YLen1, ZLen1; // Bottom half or NaN, if not properly NaN boxed
|
||||
logic [`LEN2-1:0] XLen2, YLen2, ZLen2; // Bottom half or NaN, if not properly NaN boxed
|
||||
end else if (`FPSIZES == 3) begin // three floating point precsions supported
|
||||
|
||||
//***need better names for these constants
|
||||
// largest format | larger format | smallest format
|
||||
//---------------------------------------------------
|
||||
// `FLEN | `LEN1 | `LEN2 length of floating point number
|
||||
// `NE | `NE1 | `NE2 length of exponent
|
||||
// `NF | `NF1 | `NF2 length of fraction
|
||||
// `BIAS | `BIAS1 | `BIAS2 exponent's bias value
|
||||
// `FMT | `FMT1 | `FMT2 precision's format value - Q=11 D=01 S=00 H=10
|
||||
|
||||
// Possible combinantions specified by spec:
|
||||
// quad and double and single
|
||||
// double and single and half
|
||||
|
||||
// Not needed but can also handle:
|
||||
// quad and double and half
|
||||
// quad and single and half
|
||||
|
||||
logic [`LEN1-1:0] XLen1, YLen1, ZLen1; // Remove NaN boxing or NaN, if not properly NaN boxed for larger percision
|
||||
logic [`LEN2-1:0] XLen2, YLen2, ZLen2; // Remove NaN boxing or NaN, if not properly NaN boxed for smallest precision
|
||||
|
||||
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN
|
||||
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for larger precision
|
||||
assign XLen1 = &X[`FLEN-1:`LEN1] ? X[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
|
||||
assign YLen1 = &Y[`FLEN-1:`LEN1] ? Y[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
|
||||
assign ZLen1 = &Z[`FLEN-1:`LEN1] ? Z[`LEN1-1:0] : {1'b0, {`NE1+1{1'b1}}, (`NF1-1)'(0)};
|
||||
|
||||
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for smaller precision
|
||||
assign XLen2 = &X[`FLEN-1:`LEN2] ? X[`LEN2-1:0] : {1'b0, {`NE2+1{1'b1}}, (`NF2-1)'(0)};
|
||||
assign YLen2 = &Y[`FLEN-1:`LEN2] ? Y[`LEN2-1:0] : {1'b0, {`NE2+1{1'b1}}, (`NF2-1)'(0)};
|
||||
assign ZLen2 = &Z[`FLEN-1:`LEN2] ? Z[`LEN2-1:0] : {1'b0, {`NE2+1{1'b1}}, (`NF2-1)'(0)};
|
||||
|
||||
always_comb begin
|
||||
case (FmtE)
|
||||
`FMT: begin
|
||||
assign XSgnE = X[`FLEN-1];
|
||||
assign YSgnE = Y[`FLEN-1];
|
||||
assign ZSgnE = Z[`FLEN-1];
|
||||
`FMT: begin // if input is largest precision (`FLEN - ie quad or double)
|
||||
// extract the sign bit
|
||||
XSgnE = X[`FLEN-1];
|
||||
YSgnE = Y[`FLEN-1];
|
||||
ZSgnE = Z[`FLEN-1];
|
||||
|
||||
assign XExpE = X[`FLEN-2:`NF];
|
||||
assign YExpE = Y[`FLEN-2:`NF];
|
||||
assign ZExpE = Z[`FLEN-2:`NF];
|
||||
// extract the exponent
|
||||
XExpE = X[`FLEN-2:`NF];
|
||||
YExpE = Y[`FLEN-2:`NF];
|
||||
ZExpE = Z[`FLEN-2:`NF];
|
||||
|
||||
assign XFracE = X[`NF-1:0];
|
||||
assign YFracE = Y[`NF-1:0];
|
||||
assign ZFracE = Z[`NF-1:0];
|
||||
// extract the fraction
|
||||
XFracE = X[`NF-1:0];
|
||||
YFracE = Y[`NF-1:0];
|
||||
ZFracE = Z[`NF-1:0];
|
||||
|
||||
assign XExpNonzero = |X[`FLEN-2:`NF];
|
||||
assign YExpNonzero = |Y[`FLEN-2:`NF];
|
||||
assign ZExpNonzero = |Z[`FLEN-2:`NF];
|
||||
// is the exponent non-zero
|
||||
XExpNonzero = |X[`FLEN-2:`NF];
|
||||
YExpNonzero = |Y[`FLEN-2:`NF];
|
||||
ZExpNonzero = |Z[`FLEN-2:`NF];
|
||||
|
||||
assign XExpMaxE = &X[`FLEN-2:`NF];
|
||||
assign YExpMaxE = &Y[`FLEN-2:`NF];
|
||||
assign ZExpMaxE = &Z[`FLEN-2:`NF];
|
||||
// is the exponent all 1's
|
||||
XExpMaxE = &X[`FLEN-2:`NF];
|
||||
YExpMaxE = &Y[`FLEN-2:`NF];
|
||||
ZExpMaxE = &Z[`FLEN-2:`NF];
|
||||
end
|
||||
`FMT1: begin
|
||||
assign XSgnE = XLen1[`LEN1-1];
|
||||
assign YSgnE = YLen1[`LEN1-1];
|
||||
assign ZSgnE = ZLen1[`LEN1-1];
|
||||
`FMT1: begin // if input is larger precsion (`LEN1 - double or single)
|
||||
|
||||
// extract the sign bit
|
||||
XSgnE = XLen1[`LEN1-1];
|
||||
YSgnE = YLen1[`LEN1-1];
|
||||
ZSgnE = ZLen1[`LEN1-1];
|
||||
|
||||
// example double to single conversion:
|
||||
// 1023 = 0011 1111 1111
|
||||
@ -129,26 +185,33 @@ module unpack (
|
||||
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
|
||||
// dexp = 0bdd dbbb bbbb
|
||||
// also need to take into account possible zero/denorm/inf/NaN values
|
||||
assign XExpE = {XLen1[`LEN1-2], {`NE-`NE1{~XLen1[`LEN1-2]&~XExpZero|XExpMaxE}}, XLen1[`LEN1-3:`NF1]};
|
||||
assign YExpE = {YLen1[`LEN1-2], {`NE-`NE1{~YLen1[`LEN1-2]&~YExpZero|YExpMaxE}}, YLen1[`LEN1-3:`NF1]};
|
||||
assign ZExpE = {ZLen1[`LEN1-2], {`NE-`NE1{~ZLen1[`LEN1-2]&~ZExpZero|ZExpMaxE}}, ZLen1[`LEN1-3:`NF1]};
|
||||
|
||||
assign XFracE = {XLen1[`NF1-1:0], (`NF-`NF1)'(0)};
|
||||
assign YFracE = {YLen1[`NF1-1:0], (`NF-`NF1)'(0)};
|
||||
assign ZFracE = {ZLen1[`NF1-1:0], (`NF-`NF1)'(0)};
|
||||
// convert the larger precision's exponent to use the largest precision's bias
|
||||
XExpE = {XLen1[`LEN1-2], {`NE-`NE1{~XLen1[`LEN1-2]&~XExpZero|XExpMaxE}}, XLen1[`LEN1-3:`NF1]};
|
||||
YExpE = {YLen1[`LEN1-2], {`NE-`NE1{~YLen1[`LEN1-2]&~YExpZero|YExpMaxE}}, YLen1[`LEN1-3:`NF1]};
|
||||
ZExpE = {ZLen1[`LEN1-2], {`NE-`NE1{~ZLen1[`LEN1-2]&~ZExpZero|ZExpMaxE}}, ZLen1[`LEN1-3:`NF1]};
|
||||
|
||||
assign XExpNonzero = |XLen1[`LEN1-2:`NF1];
|
||||
assign YExpNonzero = |YLen1[`LEN1-2:`NF1];
|
||||
assign ZExpNonzero = |ZLen1[`LEN1-2:`NF1];
|
||||
// extract the fraction and add the nessesary trailing zeros
|
||||
XFracE = {XLen1[`NF1-1:0], (`NF-`NF1)'(0)};
|
||||
YFracE = {YLen1[`NF1-1:0], (`NF-`NF1)'(0)};
|
||||
ZFracE = {ZLen1[`NF1-1:0], (`NF-`NF1)'(0)};
|
||||
|
||||
assign XExpMaxE = &XLen1[`LEN1-2:`NF1];
|
||||
assign YExpMaxE = &YLen1[`LEN1-2:`NF1];
|
||||
assign ZExpMaxE = &ZLen1[`LEN1-2:`NF1];
|
||||
// is the exponent non-zero
|
||||
XExpNonzero = |XLen1[`LEN1-2:`NF1];
|
||||
YExpNonzero = |YLen1[`LEN1-2:`NF1];
|
||||
ZExpNonzero = |ZLen1[`LEN1-2:`NF1];
|
||||
|
||||
// is the exponent all 1's
|
||||
XExpMaxE = &XLen1[`LEN1-2:`NF1];
|
||||
YExpMaxE = &YLen1[`LEN1-2:`NF1];
|
||||
ZExpMaxE = &ZLen1[`LEN1-2:`NF1];
|
||||
end
|
||||
`FMT2: begin
|
||||
assign XSgnE = XLen2[`LEN2-1];
|
||||
assign YSgnE = YLen2[`LEN2-1];
|
||||
assign ZSgnE = ZLen2[`LEN2-1];
|
||||
`FMT2: begin // if input is smallest precsion (`LEN2 - single or half)
|
||||
|
||||
// exctract the sign bit
|
||||
XSgnE = XLen2[`LEN2-1];
|
||||
YSgnE = YLen2[`LEN2-1];
|
||||
ZSgnE = ZLen2[`LEN2-1];
|
||||
|
||||
// example double to single conversion:
|
||||
// 1023 = 0011 1111 1111
|
||||
@ -157,87 +220,110 @@ module unpack (
|
||||
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
|
||||
// dexp = 0bdd dbbb bbbb
|
||||
// also need to take into account possible zero/denorm/inf/NaN values
|
||||
assign XExpE = {XLen2[`LEN2-2], {`NE-`NE2{~XLen2[`LEN2-2]&~XExpZero|XExpMaxE}}, XLen2[`LEN2-3:`NF2]};
|
||||
assign YExpE = {YLen2[`LEN2-2], {`NE-`NE2{~YLen2[`LEN2-2]&~YExpZero|YExpMaxE}}, YLen2[`LEN2-3:`NF2]};
|
||||
assign ZExpE = {ZLen2[`LEN2-2], {`NE-`NE2{~ZLen2[`LEN2-2]&~ZExpZero|ZExpMaxE}}, ZLen2[`LEN2-3:`NF2]};
|
||||
|
||||
// convert the smallest precision's exponent to use the largest precision's bias
|
||||
XExpE = {XLen2[`LEN2-2], {`NE-`NE2{~XLen2[`LEN2-2]&~XExpZero|XExpMaxE}}, XLen2[`LEN2-3:`NF2]};
|
||||
YExpE = {YLen2[`LEN2-2], {`NE-`NE2{~YLen2[`LEN2-2]&~YExpZero|YExpMaxE}}, YLen2[`LEN2-3:`NF2]};
|
||||
ZExpE = {ZLen2[`LEN2-2], {`NE-`NE2{~ZLen2[`LEN2-2]&~ZExpZero|ZExpMaxE}}, ZLen2[`LEN2-3:`NF2]};
|
||||
|
||||
assign XFracE = {XLen2[`NF2-1:0], (`NF-`NF2)'(0)};
|
||||
assign YFracE = {YLen2[`NF2-1:0], (`NF-`NF2)'(0)};
|
||||
assign ZFracE = {ZLen2[`NF2-1:0], (`NF-`NF2)'(0)};
|
||||
// extract the fraction and add the nessesary trailing zeros
|
||||
XFracE = {XLen2[`NF2-1:0], (`NF-`NF2)'(0)};
|
||||
YFracE = {YLen2[`NF2-1:0], (`NF-`NF2)'(0)};
|
||||
ZFracE = {ZLen2[`NF2-1:0], (`NF-`NF2)'(0)};
|
||||
|
||||
assign XExpNonzero = |XLen2[`LEN2-2:`NF2];
|
||||
assign YExpNonzero = |YLen2[`LEN2-2:`NF2];
|
||||
assign ZExpNonzero = |ZLen2[`LEN2-2:`NF2];
|
||||
// is the exponent non-zero
|
||||
XExpNonzero = |XLen2[`LEN2-2:`NF2];
|
||||
YExpNonzero = |YLen2[`LEN2-2:`NF2];
|
||||
ZExpNonzero = |ZLen2[`LEN2-2:`NF2];
|
||||
|
||||
assign XExpMaxE = &XLen2[`LEN2-2:`NF2];
|
||||
assign YExpMaxE = &YLen2[`LEN2-2:`NF2];
|
||||
assign ZExpMaxE = &ZLen2[`LEN2-2:`NF2];
|
||||
// is the exponent all 1's
|
||||
XExpMaxE = &XLen2[`LEN2-2:`NF2];
|
||||
YExpMaxE = &YLen2[`LEN2-2:`NF2];
|
||||
ZExpMaxE = &ZLen2[`LEN2-2:`NF2];
|
||||
end
|
||||
default: begin
|
||||
assign XSgnE = 0;
|
||||
assign YSgnE = 0;
|
||||
assign ZSgnE = 0;
|
||||
assign XExpE = 0;
|
||||
assign YExpE = 0;
|
||||
assign ZExpE = 0;
|
||||
assign XFracE = 0;
|
||||
assign YFracE = 0;
|
||||
assign ZFracE = 0;
|
||||
assign XExpNonzero = 0;
|
||||
assign YExpNonzero = 0;
|
||||
assign ZExpNonzero = 0;
|
||||
assign XExpMaxE = 0;
|
||||
assign YExpMaxE = 0;
|
||||
assign ZExpMaxE = 0;
|
||||
XSgnE = 0;
|
||||
YSgnE = 0;
|
||||
ZSgnE = 0;
|
||||
XExpE = 0;
|
||||
YExpE = 0;
|
||||
ZExpE = 0;
|
||||
XFracE = 0;
|
||||
YFracE = 0;
|
||||
ZFracE = 0;
|
||||
XExpNonzero = 0;
|
||||
YExpNonzero = 0;
|
||||
ZExpNonzero = 0;
|
||||
XExpMaxE = 0;
|
||||
YExpMaxE = 0;
|
||||
ZExpMaxE = 0;
|
||||
end
|
||||
endcase
|
||||
end
|
||||
|
||||
end else begin
|
||||
logic [`LEN1-1:0] XLen1, YLen1, ZLen1; // Bottom half or NaN, if not properly NaN boxed
|
||||
logic [`LEN2-1:0] XLen2, YLen2, ZLen2; // Bottom half or NaN, if not properly NaN boxed
|
||||
logic [`LEN2-1:0] XLen3, YLen3, ZLen3; // Bottom half or NaN, if not properly NaN boxed
|
||||
end else begin // if all precsisons are supported - quad, double, single, and half
|
||||
|
||||
// quad | double | single | half
|
||||
//-------------------------------------------------------------------
|
||||
// `Q_LEN | `D_LEN | `S_LEN | `H_LEN length of floating point number
|
||||
// `Q_NE | `D_NE | `S_NE | `H_NE length of exponent
|
||||
// `Q_NF | `D_NF | `S_NF | `H_NF length of fraction
|
||||
// `Q_BIAS | `D_BIAS | `S_BIAS | `H_BIAS exponent's bias value
|
||||
// `Q_FMT | `D_FMT | `S_FMT | `H_FMT precision's format value - Q=11 D=01 S=00 H=10
|
||||
|
||||
|
||||
logic [`LEN1-1:0] XLen1, YLen1, ZLen1; // Remove NaN boxing or NaN, if not properly NaN boxed for double percision
|
||||
logic [`LEN2-1:0] XLen2, YLen2, ZLen2; // Remove NaN boxing or NaN, if not properly NaN boxed for single percision
|
||||
logic [`LEN2-1:0] XLen3, YLen3, ZLen3; // Remove NaN boxing or NaN, if not properly NaN boxed for half percision
|
||||
|
||||
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN
|
||||
assign XLen1 = &X[`FLEN-1:`D_LEN] ? X[`D_LEN-1:0] : {1'b0, {`D_NE+1{1'b1}}, (`D_NF-1)'(0)};
|
||||
assign YLen1 = &Y[`FLEN-1:`D_LEN] ? Y[`D_LEN-1:0] : {1'b0, {`D_NE+1{1'b1}}, (`D_NF-1)'(0)};
|
||||
assign ZLen1 = &Z[`FLEN-1:`D_LEN] ? Z[`D_LEN-1:0] : {1'b0, {`D_NE+1{1'b1}}, (`D_NF-1)'(0)};
|
||||
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for double precision
|
||||
assign XLen1 = &X[`Q_LEN-1:`D_LEN] ? X[`D_LEN-1:0] : {1'b0, {`D_NE+1{1'b1}}, (`D_NF-1)'(0)};
|
||||
assign YLen1 = &Y[`Q_LEN-1:`D_LEN] ? Y[`D_LEN-1:0] : {1'b0, {`D_NE+1{1'b1}}, (`D_NF-1)'(0)};
|
||||
assign ZLen1 = &Z[`Q_LEN-1:`D_LEN] ? Z[`D_LEN-1:0] : {1'b0, {`D_NE+1{1'b1}}, (`D_NF-1)'(0)};
|
||||
|
||||
assign XLen2 = &X[`FLEN-1:`S_LEN] ? X[`S_LEN-1:0] : {1'b0, {`S_NE+1{1'b1}}, (`S_NF-1)'(0)};
|
||||
assign YLen2 = &Y[`FLEN-1:`S_LEN] ? Y[`S_LEN-1:0] : {1'b0, {`S_NE+1{1'b1}}, (`S_NF-1)'(0)};
|
||||
assign ZLen2 = &Z[`FLEN-1:`S_LEN] ? Z[`S_LEN-1:0] : {1'b0, {`S_NE+1{1'b1}}, (`S_NF-1)'(0)};
|
||||
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for single precision
|
||||
assign XLen2 = &X[`Q_LEN-1:`S_LEN] ? X[`S_LEN-1:0] : {1'b0, {`S_NE+1{1'b1}}, (`S_NF-1)'(0)};
|
||||
assign YLen2 = &Y[`Q_LEN-1:`S_LEN] ? Y[`S_LEN-1:0] : {1'b0, {`S_NE+1{1'b1}}, (`S_NF-1)'(0)};
|
||||
assign ZLen2 = &Z[`Q_LEN-1:`S_LEN] ? Z[`S_LEN-1:0] : {1'b0, {`S_NE+1{1'b1}}, (`S_NF-1)'(0)};
|
||||
|
||||
assign XLen3 = &X[`FLEN-1:`H_LEN] ? X[`H_LEN-1:0] : {1'b0, {`H_NE+1{1'b1}}, (`H_NF-1)'(0)};
|
||||
assign YLen3 = &Y[`FLEN-1:`H_LEN] ? Y[`H_LEN-1:0] : {1'b0, {`H_NE+1{1'b1}}, (`H_NF-1)'(0)};
|
||||
assign ZLen3 = &Z[`FLEN-1:`H_LEN] ? Z[`H_LEN-1:0] : {1'b0, {`H_NE+1{1'b1}}, (`H_NF-1)'(0)};
|
||||
// Check NaN boxing, If the value is not properly NaN boxed, set the value to a quiet NaN - for half precision
|
||||
assign XLen3 = &X[`Q_LEN-1:`H_LEN] ? X[`H_LEN-1:0] : {1'b0, {`H_NE+1{1'b1}}, (`H_NF-1)'(0)};
|
||||
assign YLen3 = &Y[`Q_LEN-1:`H_LEN] ? Y[`H_LEN-1:0] : {1'b0, {`H_NE+1{1'b1}}, (`H_NF-1)'(0)};
|
||||
assign ZLen3 = &Z[`Q_LEN-1:`H_LEN] ? Z[`H_LEN-1:0] : {1'b0, {`H_NE+1{1'b1}}, (`H_NF-1)'(0)};
|
||||
|
||||
always_comb begin
|
||||
case (FmtE)
|
||||
2'b11: begin
|
||||
assign XSgnE = X[`FLEN-1];
|
||||
assign YSgnE = Y[`FLEN-1];
|
||||
assign ZSgnE = Z[`FLEN-1];
|
||||
`Q_BIAS: begin // if input is quad percision
|
||||
// extract sign bit
|
||||
XSgnE = X[`Q_LEN-1];
|
||||
YSgnE = Y[`Q_LEN-1];
|
||||
ZSgnE = Z[`Q_LEN-1];
|
||||
|
||||
assign XExpE = X[`FLEN-2:`NF];
|
||||
assign YExpE = Y[`FLEN-2:`NF];
|
||||
assign ZExpE = Z[`FLEN-2:`NF];
|
||||
// extract the exponent
|
||||
XExpE = X[`Q_LEN-2:`Q_NF];
|
||||
YExpE = Y[`Q_LEN-2:`Q_NF];
|
||||
ZExpE = Z[`Q_LEN-2:`Q_NF];
|
||||
|
||||
assign XFracE = X[`NF-1:0];
|
||||
assign YFracE = Y[`NF-1:0];
|
||||
assign ZFracE = Z[`NF-1:0];
|
||||
// extract the fraction
|
||||
XFracE = X[`Q_NF-1:0];
|
||||
YFracE = Y[`Q_NF-1:0];
|
||||
ZFracE = Z[`Q_NF-1:0];
|
||||
|
||||
assign XExpNonzero = |X[`FLEN-2:`NF];
|
||||
assign YExpNonzero = |Y[`FLEN-2:`NF];
|
||||
assign ZExpNonzero = |Z[`FLEN-2:`NF];
|
||||
// is the exponent non-zero
|
||||
XExpNonzero = |X[`Q_LEN-2:`Q_NF];
|
||||
YExpNonzero = |Y[`Q_LEN-2:`Q_NF];
|
||||
ZExpNonzero = |Z[`Q_LEN-2:`Q_NF];
|
||||
|
||||
assign XExpMaxE = &X[`FLEN-2:`NF];
|
||||
assign YExpMaxE = &Y[`FLEN-2:`NF];
|
||||
assign ZExpMaxE = &Z[`FLEN-2:`NF];
|
||||
// is the exponent all 1's
|
||||
XExpMaxE = &X[`Q_LEN-2:`Q_NF];
|
||||
YExpMaxE = &Y[`Q_LEN-2:`Q_NF];
|
||||
ZExpMaxE = &Z[`Q_LEN-2:`Q_NF];
|
||||
end
|
||||
2'b01: begin
|
||||
assign XSgnE = XLen1[`LEN1-1];
|
||||
assign YSgnE = YLen1[`LEN1-1];
|
||||
assign ZSgnE = ZLen1[`LEN1-1];
|
||||
`D_BIAS: begin // if input is double percision
|
||||
// extract sign bit
|
||||
XSgnE = XLen1[`D_LEN-1];
|
||||
YSgnE = YLen1[`D_LEN-1];
|
||||
ZSgnE = ZLen1[`D_LEN-1];
|
||||
|
||||
// example double to single conversion:
|
||||
// 1023 = 0011 1111 1111
|
||||
@ -246,26 +332,32 @@ module unpack (
|
||||
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
|
||||
// dexp = 0bdd dbbb bbbb
|
||||
// also need to take into account possible zero/denorm/inf/NaN values
|
||||
assign XExpE = {XLen1[`D_LEN-2], {`NE-`D_NE{~XLen1[`D_LEN-2]&~XExpZero|XExpMaxE}}, XLen1[`D_LEN-3:`D_NF]};
|
||||
assign YExpE = {YLen1[`D_LEN-2], {`NE-`D_NE{~YLen1[`D_LEN-2]&~YExpZero|YExpMaxE}}, YLen1[`D_LEN-3:`D_NF]};
|
||||
assign ZExpE = {ZLen1[`D_LEN-2], {`NE-`D_NE{~ZLen1[`D_LEN-2]&~ZExpZero|ZExpMaxE}}, ZLen1[`D_LEN-3:`D_NF]};
|
||||
|
||||
// convert the double precsion exponent into quad precsion
|
||||
XExpE = {XLen1[`D_LEN-2], {`Q_NE-`D_NE{~XLen1[`D_LEN-2]&~XExpZero|XExpMaxE}}, XLen1[`D_LEN-3:`D_NF]};
|
||||
YExpE = {YLen1[`D_LEN-2], {`Q_NE-`D_NE{~YLen1[`D_LEN-2]&~YExpZero|YExpMaxE}}, YLen1[`D_LEN-3:`D_NF]};
|
||||
ZExpE = {ZLen1[`D_LEN-2], {`Q_NE-`D_NE{~ZLen1[`D_LEN-2]&~ZExpZero|ZExpMaxE}}, ZLen1[`D_LEN-3:`D_NF]};
|
||||
|
||||
assign XFracE = {XLen1[`D_NE-1:0], (`NF-`D_NE)'(0)};
|
||||
assign YFracE = {YLen1[`D_NE-1:0], (`NF-`D_NE)'(0)};
|
||||
assign ZFracE = {ZLen1[`D_NE-1:0], (`NF-`D_NE)'(0)};
|
||||
// extract the fraction and add the nessesary trailing zeros
|
||||
XFracE = {XLen1[`D_NE-1:0], (`Q_NF-`D_NE)'(0)};
|
||||
YFracE = {YLen1[`D_NE-1:0], (`Q_NF-`D_NE)'(0)};
|
||||
ZFracE = {ZLen1[`D_NE-1:0], (`Q_NF-`D_NE)'(0)};
|
||||
|
||||
assign XExpNonzero = |XLen1[`D_LEN-2:`D_NE];
|
||||
assign YExpNonzero = |YLen1[`D_LEN-2:`D_NE];
|
||||
assign ZExpNonzero = |ZLen1[`D_LEN-2:`D_NE];
|
||||
// is the exponent non-zero
|
||||
XExpNonzero = |XLen1[`D_LEN-2:`D_NE];
|
||||
YExpNonzero = |YLen1[`D_LEN-2:`D_NE];
|
||||
ZExpNonzero = |ZLen1[`D_LEN-2:`D_NE];
|
||||
|
||||
assign XExpMaxE = &XLen1[`D_LEN-2:`D_NE];
|
||||
assign YExpMaxE = &YLen1[`D_LEN-2:`D_NE];
|
||||
assign ZExpMaxE = &ZLen1[`D_LEN-2:`D_NE];
|
||||
// is the exponent all 1's
|
||||
XExpMaxE = &XLen1[`D_LEN-2:`D_NE];
|
||||
YExpMaxE = &YLen1[`D_LEN-2:`D_NE];
|
||||
ZExpMaxE = &ZLen1[`D_LEN-2:`D_NE];
|
||||
end
|
||||
2'b00: begin
|
||||
assign XSgnE = XLen2[`S_LEN-1];
|
||||
assign YSgnE = YLen2[`S_LEN-1];
|
||||
assign ZSgnE = ZLen2[`S_LEN-1];
|
||||
`S_BIAS: begin // if input is single percision
|
||||
// extract sign bit
|
||||
XSgnE = XLen2[`S_LEN-1];
|
||||
YSgnE = YLen2[`S_LEN-1];
|
||||
ZSgnE = ZLen2[`S_LEN-1];
|
||||
|
||||
// example double to single conversion:
|
||||
// 1023 = 0011 1111 1111
|
||||
@ -274,26 +366,32 @@ module unpack (
|
||||
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
|
||||
// dexp = 0bdd dbbb bbbb
|
||||
// also need to take into account possible zero/denorm/inf/NaN values
|
||||
assign XExpE = {XLen2[`S_LEN-2], {`NE-`S_NE{~XLen2[`S_LEN-2]&~XExpZero|XExpMaxE}}, XLen2[`S_LEN-3:`S_NF]};
|
||||
assign YExpE = {YLen2[`S_LEN-2], {`NE-`S_NE{~YLen2[`S_LEN-2]&~YExpZero|YExpMaxE}}, YLen2[`S_LEN-3:`S_NF]};
|
||||
assign ZExpE = {ZLen2[`S_LEN-2], {`NE-`S_NE{~ZLen2[`S_LEN-2]&~ZExpZero|ZExpMaxE}}, ZLen2[`S_LEN-3:`S_NF]};
|
||||
|
||||
// convert the single precsion exponent into quad precsion
|
||||
XExpE = {XLen2[`S_LEN-2], {`Q_NE-`S_NE{~XLen2[`S_LEN-2]&~XExpZero|XExpMaxE}}, XLen2[`S_LEN-3:`S_NF]};
|
||||
YExpE = {YLen2[`S_LEN-2], {`Q_NE-`S_NE{~YLen2[`S_LEN-2]&~YExpZero|YExpMaxE}}, YLen2[`S_LEN-3:`S_NF]};
|
||||
ZExpE = {ZLen2[`S_LEN-2], {`Q_NE-`S_NE{~ZLen2[`S_LEN-2]&~ZExpZero|ZExpMaxE}}, ZLen2[`S_LEN-3:`S_NF]};
|
||||
|
||||
assign XFracE = {XLen2[`S_NF-1:0], (`NF-`S_NF)'(0)};
|
||||
assign YFracE = {YLen2[`S_NF-1:0], (`NF-`S_NF)'(0)};
|
||||
assign ZFracE = {ZLen2[`S_NF-1:0], (`NF-`S_NF)'(0)};
|
||||
// extract the fraction and add the nessesary trailing zeros
|
||||
XFracE = {XLen2[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
|
||||
YFracE = {YLen2[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
|
||||
ZFracE = {ZLen2[`S_NF-1:0], (`Q_NF-`S_NF)'(0)};
|
||||
|
||||
assign XExpNonzero = |XLen2[`S_LEN-2:`S_NF];
|
||||
assign YExpNonzero = |YLen2[`S_LEN-2:`S_NF];
|
||||
assign ZExpNonzero = |ZLen2[`S_LEN-2:`S_NF];
|
||||
// is the exponent non-zero
|
||||
XExpNonzero = |XLen2[`S_LEN-2:`S_NF];
|
||||
YExpNonzero = |YLen2[`S_LEN-2:`S_NF];
|
||||
ZExpNonzero = |ZLen2[`S_LEN-2:`S_NF];
|
||||
|
||||
assign XExpMaxE = &XLen2[`S_LEN-2:`S_NF];
|
||||
assign YExpMaxE = &YLen2[`S_LEN-2:`S_NF];
|
||||
assign ZExpMaxE = &ZLen2[`S_LEN-2:`S_NF];
|
||||
// is the exponent all 1's
|
||||
XExpMaxE = &XLen2[`S_LEN-2:`S_NF];
|
||||
YExpMaxE = &YLen2[`S_LEN-2:`S_NF];
|
||||
ZExpMaxE = &ZLen2[`S_LEN-2:`S_NF];
|
||||
end
|
||||
2'b10: begin
|
||||
assign XSgnE = XLen3[`H_LEN-1];
|
||||
assign YSgnE = YLen3[`H_LEN-1];
|
||||
assign ZSgnE = ZLen3[`H_LEN-1];
|
||||
`H_BIAS: begin // if input is half percision
|
||||
// extract sign bit
|
||||
XSgnE = XLen3[`H_LEN-1];
|
||||
YSgnE = YLen3[`H_LEN-1];
|
||||
ZSgnE = ZLen3[`H_LEN-1];
|
||||
|
||||
// example double to single conversion:
|
||||
// 1023 = 0011 1111 1111
|
||||
@ -302,58 +400,72 @@ module unpack (
|
||||
// sexp = 0000 bbbb bbbb (add this) b = bit d = ~b
|
||||
// dexp = 0bdd dbbb bbbb
|
||||
// also need to take into account possible zero/denorm/inf/NaN values
|
||||
assign XExpE = {XLen3[`H_LEN-2], {`NE-`H_NE{~XLen3[`H_LEN-2]&~XExpZero|XExpMaxE}}, XLen3[`H_LEN-3:`H_NF]};
|
||||
assign YExpE = {YLen3[`H_LEN-2], {`NE-`H_NE{~YLen3[`H_LEN-2]&~YExpZero|YExpMaxE}}, YLen3[`H_LEN-3:`H_NF]};
|
||||
assign ZExpE = {ZLen3[`H_LEN-2], {`NE-`H_NE{~ZLen3[`H_LEN-2]&~ZExpZero|ZExpMaxE}}, ZLen3[`H_LEN-3:`H_NF]};
|
||||
|
||||
// convert the half precsion exponent into quad precsion
|
||||
XExpE = {XLen3[`H_LEN-2], {`Q_NE-`H_NE{~XLen3[`H_LEN-2]&~XExpZero|XExpMaxE}}, XLen3[`H_LEN-3:`H_NF]};
|
||||
YExpE = {YLen3[`H_LEN-2], {`Q_NE-`H_NE{~YLen3[`H_LEN-2]&~YExpZero|YExpMaxE}}, YLen3[`H_LEN-3:`H_NF]};
|
||||
ZExpE = {ZLen3[`H_LEN-2], {`Q_NE-`H_NE{~ZLen3[`H_LEN-2]&~ZExpZero|ZExpMaxE}}, ZLen3[`H_LEN-3:`H_NF]};
|
||||
|
||||
assign XFracE = {XLen3[`H_NF-1:0], (`NF-`H_NF)'(0)};
|
||||
assign YFracE = {YLen3[`H_NF-1:0], (`NF-`H_NF)'(0)};
|
||||
assign ZFracE = {ZLen3[`H_NF-1:0], (`NF-`H_NF)'(0)};
|
||||
// extract the fraction and add the nessesary trailing zeros
|
||||
XFracE = {XLen3[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
|
||||
YFracE = {YLen3[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
|
||||
ZFracE = {ZLen3[`H_NF-1:0], (`Q_NF-`H_NF)'(0)};
|
||||
|
||||
assign XExpNonzero = |XLen3[`H_LEN-2:`H_NF];
|
||||
assign YExpNonzero = |YLen3[`H_LEN-2:`H_NF];
|
||||
assign ZExpNonzero = |ZLen3[`H_LEN-2:`H_NF];
|
||||
// is the exponent non-zero
|
||||
XExpNonzero = |XLen3[`H_LEN-2:`H_NF];
|
||||
YExpNonzero = |YLen3[`H_LEN-2:`H_NF];
|
||||
ZExpNonzero = |ZLen3[`H_LEN-2:`H_NF];
|
||||
|
||||
assign XExpMaxE = &XLen3[`H_LEN-2:`H_NF];
|
||||
assign YExpMaxE = &YLen3[`H_LEN-2:`H_NF];
|
||||
assign ZExpMaxE = &ZLen3[`H_LEN-2:`H_NF];
|
||||
// is the exponent all 1's
|
||||
XExpMaxE = &XLen3[`H_LEN-2:`H_NF];
|
||||
YExpMaxE = &YLen3[`H_LEN-2:`H_NF];
|
||||
ZExpMaxE = &ZLen3[`H_LEN-2:`H_NF];
|
||||
end
|
||||
endcase
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
// is the exponent all 0's
|
||||
assign XExpZero = ~XExpNonzero;
|
||||
assign YExpZero = ~YExpNonzero;
|
||||
assign ZExpZero = ~ZExpNonzero;
|
||||
|
||||
// is the fraction zero
|
||||
assign XFracZero = ~|XFracE;
|
||||
assign YFracZero = ~|YFracE;
|
||||
assign ZFracZero = ~|ZFracE;
|
||||
|
||||
// add the assumed one (or zero if denormal or zero) to create the mantissa
|
||||
assign XManE = {XExpNonzero, XFracE};
|
||||
assign YManE = {YExpNonzero, YFracE};
|
||||
assign ZManE = {ZExpNonzero, ZFracE};
|
||||
|
||||
// is X normalized
|
||||
assign XNormE = ~(XExpMaxE|XExpZero);
|
||||
|
||||
// force single precision input to be a NaN if it isn't properly Nan Boxed
|
||||
// is the input a NaN
|
||||
// - force to be a NaN if it isn't properly Nan Boxed
|
||||
assign XNaNE = XExpMaxE & ~XFracZero;
|
||||
assign YNaNE = YExpMaxE & ~YFracZero;
|
||||
assign ZNaNE = ZExpMaxE & ~ZFracZero;
|
||||
|
||||
// is the input a singnaling NaN
|
||||
assign XSNaNE = XNaNE&~XFracE[`NF-1];
|
||||
assign YSNaNE = YNaNE&~YFracE[`NF-1];
|
||||
assign ZSNaNE = ZNaNE&~ZFracE[`NF-1];
|
||||
|
||||
// is the input denormalized
|
||||
assign XDenormE = XExpZero & ~XFracZero;
|
||||
assign YDenormE = YExpZero & ~YFracZero;
|
||||
assign ZDenormE = ZExpZero & ~ZFracZero;
|
||||
|
||||
// is the input infinity
|
||||
assign XInfE = XExpMaxE & XFracZero;
|
||||
assign YInfE = YExpMaxE & YFracZero;
|
||||
assign ZInfE = ZExpMaxE & ZFracZero;
|
||||
|
||||
// is the input zero
|
||||
assign XZeroE = XExpZero & XFracZero;
|
||||
assign YZeroE = YExpZero & YFracZero;
|
||||
assign ZZeroE = ZExpZero & ZFracZero;
|
||||
|
Loading…
Reference in New Issue
Block a user