Merge branch 'main' of github.com:davidharrishmc/riscv-wally into main

This commit is contained in:
Ross Thompson 2021-12-30 18:10:36 -06:00
commit 2096d45c23
2 changed files with 63 additions and 176 deletions

View File

@ -27,48 +27,11 @@
///////////////////////////////////////////
`include "wally-config.vh"
// Ben 06/17/21: I brought in MTIME, MTIMECMP from CLINT. *** this probably isn't perfect though because it doesn't yet provide the ability to change these through CSR writes; overall this whole thing might need some rethinking
module csrc #(parameter
MCYCLE = 12'hB00,
MTIME = 12'hB01, // address not specified in privileged spec. Consider moving to CLINT to match SiFive
MTIMECMP = 12'hB21, // not specified in privileged spec. Move to CLINT
MINSTRET = 12'hB02,
MHPMCOUNTERBASE = 12'hB00,
//MHPMCOUNTER3 = 12'hB03,
//MHPMCOUNTER4 = 12'hB04,
// ... more counters
//MHPMCOUNTER31 = 12'hB1F,
MCYCLEH = 12'hB80,
MTIMEH = 12'hB81, // address not specified in privileged spec. Consider moving to CLINT to match SiFive
MTIMECMPH = 12'hBA1, // not specified in privileged spec. Move to CLINT
MINSTRETH = 12'hB82,
MHPMCOUNTERHBASE = 12'hB80,
//MHPMCOUNTER3H = 12'hB83,
//MHPMCOUNTER4H = 12'hB84,
// ... more counters
//MHPMCOUNTER31H = 12'hB9F,
MCOUNTERINHIBIT = 12'h320,
MHPMEVENTBASE = 12'h320,
//MHPMEVENT3 = 12'h323,
//MHPMEVENT4 = 12'h324,
// ... more counters
//MHPMEVENT31 = 12'h33F,
CYCLE = 12'hC00,
TIME = 12'hC01,
INSTRET = 12'hC02,
HPMCOUNTERBASE = 12'hC00,
//HPMCOUNTER3 = 12'hC03,
//HPMCOUNTER4 = 12'hC04,
// ...more counters
//HPMCOUNTER31 = 12'hC1F,
CYCLEH = 12'hC80,
TIMEH = 12'hC81, // not specified
INSTRETH = 12'hC82,
HPMCOUNTERHBASE = 12'hC80
//HPMCOUNTER3H = 12'hC83,
//HPMCOUNTER4H = 12'hC84,
// ... more counters
//HPMCOUNTER31H = 12'hC9F
) (
input logic clk, reset,
input logic StallE, StallM, StallW,
@ -97,43 +60,28 @@ module csrc #(parameter
logic [`XLEN-1:0] NextCYCLEM, NextINSTRETM;
logic WriteCYCLEM, WriteINSTRETM;
logic [4:0] CounterNumM;
logic [`XLEN-1:0] HPMCOUNTER_REGW [`COUNTERS-1:3];
logic [`XLEN-1:0] HPMCOUNTERH_REGW [`COUNTERS-1:3];
logic [`XLEN-1:0] HPMCOUNTER_REGW[`COUNTERS-1:0];
logic [`XLEN-1:0] HPMCOUNTERH_REGW[`COUNTERS-1:0];
logic InstrValidNotFlushedM;
logic LoadStallE, LoadStallM;
logic [`COUNTERS-1:0] WriteHPMCOUNTERM;
logic [`COUNTERS-1:0] CounterEvent;
logic [63:0] HPMCOUNTERPlusM[`COUNTERS-1:0];
logic [`XLEN-1:0] NextHPMCOUNTERM[`COUNTERS-1:0];
genvar i;
// Interface signals
flopenrc #(1) LoadStallEReg(.clk, .reset, .clear(1'b0), .en(~StallE), .d(LoadStallD), .q(LoadStallE)); // don't flush the load stall during a load stall.
flopenrc #(1) LoadStallMReg(.clk, .reset, .clear(FlushM), .en(~StallM), .d(LoadStallE), .q(LoadStallM));
assign InstrValidNotFlushedM = InstrValidM & ~StallW & ~FlushW;
// Write enables
assign WriteCYCLEM = CSRMWriteM && (CSRAdrM == MCYCLE);
assign WriteINSTRETM = CSRMWriteM && (CSRAdrM == MINSTRET);
// Counter adders with inhibits for power savings
assign CYCLEPlusM = CYCLE_REGW + {63'b0, ~MCOUNTINHIBIT_REGW[0]};
assign INSTRETPlusM = INSTRET_REGW + {63'b0, InstrValidNotFlushedM & ~MCOUNTINHIBIT_REGW[2]};
assign NextCYCLEM = WriteCYCLEM ? CSRWriteValM : CYCLEPlusM[`XLEN-1:0];
assign NextINSTRETM = WriteINSTRETM ? CSRWriteValM : INSTRETPlusM[`XLEN-1:0];
// parameterized number of additional counters
if (`COUNTERS > 3) begin:cntarry
logic [`COUNTERS-1:3] WriteHPMCOUNTERM;
logic [`COUNTERS-1:0] CounterEvent;
logic [63:0] /*HPMCOUNTER_REGW[`COUNTERS-1:3], */ HPMCOUNTERPlusM[`COUNTERS-1:3];
logic [`XLEN-1:0] NextHPMCOUNTERM[`COUNTERS-1:3];
genvar i;
// could replace special counters 0-2 with this loop for all counters
assign CounterEvent[0] = 1'b1;
assign CounterEvent[1] = 1'b0;
if(`QEMU) begin
assign CounterEvent[`COUNTERS-1:2] = 0;
end else begin
logic LoadStallE, LoadStallM;
flopenrc #(1) LoadStallEReg(.clk, .reset, .clear(1'b0), .en(~StallE), .d(LoadStallD), .q(LoadStallE)); // don't flush the load stall during a load stall.
flopenrc #(1) LoadStallMReg(.clk, .reset, .clear(FlushM), .en(~StallM), .d(LoadStallE), .q(LoadStallM));
assign CounterEvent[2] = InstrValidNotFlushedM;
// Determine when to increment each counter
assign CounterEvent[0] = 1'b1; // MCYCLE always increments
assign CounterEvent[1] = 1'b0; // Counter 0 doesn't exist
assign CounterEvent[2] = InstrValidNotFlushedM;
if(`QEMU) begin // No other performance counters in QEMU
assign CounterEvent[`COUNTERS-1:3] = 0;
end else begin // User-defined counters
assign CounterEvent[3] = LoadStallM; // don't want to suppress on flush as this only happens if flushed.
assign CounterEvent[4] = BPPredDirWrongM & InstrValidNotFlushedM;
assign CounterEvent[5] = InstrClassM[0] & InstrValidNotFlushedM;
@ -147,119 +95,58 @@ module csrc #(parameter
assign CounterEvent[`COUNTERS-1:13] = 0; // eventually give these sources, including FP instructions, I$/D$ misses, branches and mispredictions
end
for (i = 3; i < `COUNTERS; i = i+1) begin
assign WriteHPMCOUNTERM[i] = CSRMWriteM && (CSRAdrM == MHPMCOUNTERBASE + i);
assign NextHPMCOUNTERM[i][`XLEN-1:0] = WriteHPMCOUNTERM[i] ? CSRWriteValM : HPMCOUNTERPlusM[i][`XLEN-1:0];
always @(posedge clk) //, posedge reset) // ModelSim doesn't like syntax of passing array element to flop
if (reset) HPMCOUNTER_REGW[i][`XLEN-1:0] <= #1 0;
else HPMCOUNTER_REGW[i][`XLEN-1:0] <= #1 NextHPMCOUNTERM[i];
// Counter update and write logic
for (i = 0; i < `COUNTERS; i = i+1) begin
assign WriteHPMCOUNTERM[i] = CSRMWriteM && (CSRAdrM == MHPMCOUNTERBASE + i);
assign NextHPMCOUNTERM[i][`XLEN-1:0] = WriteHPMCOUNTERM[i] ? CSRWriteValM : HPMCOUNTERPlusM[i][`XLEN-1:0];
always_ff @(posedge clk) //, posedge reset) // ModelSim doesn't like syntax of passing array element to flop
if (reset) HPMCOUNTER_REGW[i][`XLEN-1:0] <= #1 0;
else HPMCOUNTER_REGW[i][`XLEN-1:0] <= #1 NextHPMCOUNTERM[i];
if (`XLEN==32) begin
logic [`COUNTERS-1:3] WriteHPMCOUNTERHM;
logic [`XLEN-1:0] NextHPMCOUNTERHM[`COUNTERS-1:3];
assign HPMCOUNTERPlusM[i] = {HPMCOUNTERH_REGW[i], HPMCOUNTER_REGW[i]} + {63'b0, CounterEvent[i] & ~MCOUNTINHIBIT_REGW[i]};
assign WriteHPMCOUNTERHM[i] = CSRMWriteM && (CSRAdrM == MHPMCOUNTERHBASE + i);
assign NextHPMCOUNTERHM[i] = WriteHPMCOUNTERHM[i] ? CSRWriteValM : HPMCOUNTERPlusM[i][63:32];
always @(posedge clk) //, posedge reset) // ModelSim doesn't like syntax of passing array element to flop
if (reset) HPMCOUNTERH_REGW[i][`XLEN-1:0] <= #1 0;
else HPMCOUNTERH_REGW[i][`XLEN-1:0] <= #1 NextHPMCOUNTERHM[i];
end else begin
assign HPMCOUNTERPlusM[i] = HPMCOUNTER_REGW[i] + {63'b0, CounterEvent[i] & ~MCOUNTINHIBIT_REGW[i]};
end
end
end
if (`XLEN==32) begin // write high and low separately
logic [`COUNTERS-1:0] WriteHPMCOUNTERHM;
logic [`XLEN-1:0] NextHPMCOUNTERHM[`COUNTERS-1:0];
assign HPMCOUNTERPlusM[i] = {HPMCOUNTERH_REGW[i], HPMCOUNTER_REGW[i]} + {63'b0, CounterEvent[i] & ~MCOUNTINHIBIT_REGW[i]};
assign WriteHPMCOUNTERHM[i] = CSRMWriteM && (CSRAdrM == MHPMCOUNTERHBASE + i);
assign NextHPMCOUNTERHM[i] = WriteHPMCOUNTERHM[i] ? CSRWriteValM : HPMCOUNTERPlusM[i][63:32];
always_ff @(posedge clk) //, posedge reset) // ModelSim doesn't like syntax of passing array element to flop
if (reset) HPMCOUNTERH_REGW[i][`XLEN-1:0] <= #1 0;
else HPMCOUNTERH_REGW[i][`XLEN-1:0] <= #1 NextHPMCOUNTERHM[i];
end else begin // XLEN=64; write entire register
assign HPMCOUNTERPlusM[i] = HPMCOUNTER_REGW[i] + {63'b0, CounterEvent[i] & ~MCOUNTINHIBIT_REGW[i]};
end
end
// Write / update counters
// Only the Machine mode versions of the counter CSRs are writable
if (`XLEN==64) begin:cntreg// 64-bit counters
flopr #(64) CYCLEreg(clk, reset, NextCYCLEM, CYCLE_REGW);
flopr #(64) INSTRETreg(clk, reset, NextINSTRETM, INSTRET_REGW);
end else begin:cntreg // 32-bit low and high counters
logic WriteTIMEHM, WriteTIMECMPHM, WriteCYCLEHM, WriteINSTRETHM;
logic [`XLEN-1:0] NextCYCLEHM, NextTIMEHM, NextINSTRETHM;
// Write Enables
assign WriteCYCLEHM = CSRMWriteM && (CSRAdrM == MCYCLEH);
assign WriteINSTRETHM = CSRMWriteM && (CSRAdrM == MINSTRETH);
assign NextCYCLEHM = WriteCYCLEM ? CSRWriteValM : CYCLEPlusM[63:32];
assign NextINSTRETHM = WriteINSTRETHM ? CSRWriteValM : INSTRETPlusM[63:32];
// Counter CSRs
flopr #(32) CYCLEreg(clk, reset, NextCYCLEM, CYCLE_REGW[31:0]);
flopr #(32) INSTRETreg(clk, reset, NextINSTRETM, INSTRET_REGW[31:0]);
flopr #(32) CYCLEHreg(clk, reset, NextCYCLEHM, CYCLE_REGW[63:32]);
flopr #(32) INSTRETHreg(clk, reset, NextINSTRETHM, INSTRET_REGW[63:32]);
end
// eventually move TIME and TIMECMP to the CLINT -- Ben 06/17/21: sure let's give that a shot!
// run TIME off asynchronous reference clock
// synchronize write enable to TIME
// four phase handshake to synchronize reads from TIME
// interrupt on timer compare
// ability to disable optional CSRs
// Read Counters, or cause excepiton if insufficient privilege in light of COUNTEREN flags
assign CounterNumM = CSRAdrM[4:0]; // which counter to read?
if (`XLEN==64) // 64-bit counter reads
always_comb
if (PrivilegeModeW == `M_MODE ||
MCOUNTEREN_REGW[CounterNumM] && (PrivilegeModeW == `S_MODE || SCOUNTEREN_REGW[CounterNumM])) begin
IllegalCSRCAccessM = 0;
if (CSRAdrM >= MHPMCOUNTERBASE+3 && CSRAdrM < MHPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM-MHPMCOUNTERBASE];
else if (CSRAdrM >= HPMCOUNTERBASE+3 && CSRAdrM < HPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM-HPMCOUNTERBASE];
else case (CSRAdrM)
MTIME: CSRCReadValM = MTIME_CLINT;
MTIMECMP: CSRCReadValM = MTIMECMP_CLINT;
MCYCLE: CSRCReadValM = CYCLE_REGW;
MINSTRET: CSRCReadValM = INSTRET_REGW;
TIME: CSRCReadValM = MTIME_CLINT;
CYCLE: CSRCReadValM = CYCLE_REGW;
INSTRET: CSRCReadValM = INSTRET_REGW;
default: begin
CSRCReadValM = 0;
IllegalCSRCAccessM = 1;
end
endcase
end else begin
IllegalCSRCAccessM = 1; // no privileges for this csr
CSRCReadValM = 0;
always_comb
if (PrivilegeModeW == `M_MODE ||
MCOUNTEREN_REGW[CounterNumM] && (!`S_SUPPORTED || PrivilegeModeW == `S_MODE || SCOUNTEREN_REGW[CounterNumM])) begin
IllegalCSRCAccessM = 0;
if (`XLEN==64) begin // 64-bit counter reads
if (CSRAdrM >= MHPMCOUNTERBASE && CSRAdrM < MHPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CounterNumM];
else if (CSRAdrM >= HPMCOUNTERBASE && CSRAdrM < HPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CounterNumM];
else begin
CSRCReadValM = 0;
IllegalCSRCAccessM = 1; // requested CSR doesn't exist
end
else // 32-bit counter reads
always_comb
if (PrivilegeModeW == `M_MODE || MCOUNTEREN_REGW[CounterNumM] && (PrivilegeModeW == `S_MODE || SCOUNTEREN_REGW[CounterNumM])) begin
IllegalCSRCAccessM = 0;
if (CSRAdrM >= MHPMCOUNTERBASE+3 && CSRAdrM < MHPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM-MHPMCOUNTERBASE];
else if (CSRAdrM >= HPMCOUNTERBASE+3 && CSRAdrM < HPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM-HPMCOUNTERBASE];
else if (CSRAdrM >= MHPMCOUNTERHBASE+3 && CSRAdrM < MHPMCOUNTERHBASE+`COUNTERS) CSRCReadValM = HPMCOUNTERH_REGW[CSRAdrM-MHPMCOUNTERHBASE];
else if (CSRAdrM >= HPMCOUNTERHBASE+3 && CSRAdrM < HPMCOUNTERHBASE+`COUNTERS) CSRCReadValM = HPMCOUNTERH_REGW[CSRAdrM-HPMCOUNTERHBASE];
else case (CSRAdrM)
MTIME: CSRCReadValM = MTIME_CLINT[31:0];
MTIMECMP: CSRCReadValM = MTIMECMP_CLINT[31:0];
MCYCLE: CSRCReadValM = CYCLE_REGW[31:0];
MINSTRET: CSRCReadValM = INSTRET_REGW[31:0];
TIME: CSRCReadValM = MTIME_CLINT[31:0];
CYCLE: CSRCReadValM = CYCLE_REGW[31:0];
INSTRET: CSRCReadValM = INSTRET_REGW[31:0];
MTIMEH: CSRCReadValM = MTIME_CLINT[63:32];
MTIMECMPH: CSRCReadValM = MTIMECMP_CLINT[63:32];
MCYCLEH: CSRCReadValM = CYCLE_REGW[63:32];
MINSTRETH: CSRCReadValM = INSTRET_REGW[63:32];
TIMEH: CSRCReadValM = MTIME_CLINT[63:32];
CYCLEH: CSRCReadValM = CYCLE_REGW[63:32];
INSTRETH: CSRCReadValM = INSTRET_REGW[63:32];
default: begin
CSRCReadValM = 0;
IllegalCSRCAccessM = 1;
end
endcase
end else begin
IllegalCSRCAccessM = 1; // no privileges for this csr
end else begin // 32-bit counter reads
if (CSRAdrM >= MHPMCOUNTERBASE && CSRAdrM < MHPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CounterNumM];
else if (CSRAdrM >= HPMCOUNTERBASE && CSRAdrM < HPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CounterNumM];
else if (CSRAdrM >= MHPMCOUNTERHBASE && CSRAdrM < MHPMCOUNTERHBASE+`COUNTERS) CSRCReadValM = HPMCOUNTERH_REGW[CounterNumM];
else if (CSRAdrM >= HPMCOUNTERHBASE && CSRAdrM < HPMCOUNTERHBASE+`COUNTERS) CSRCReadValM = HPMCOUNTERH_REGW[CounterNumM];
else begin
CSRCReadValM = 0;
end
IllegalCSRCAccessM = 1; // requested CSR doesn't exist
end
end
end else begin
CSRCReadValM = 0;
IllegalCSRCAccessM = 1; // no privileges for this csr
end
end else begin
assign CSRCReadValM = 0;
assign IllegalCSRCAccessM = 1;
assign IllegalCSRCAccessM = 1; // counters aren't enabled
end
endgenerate
endmodule

View File

@ -210,7 +210,7 @@ module testbench();
`define STATUS_SIE `CSR_BASE.csrsr.STATUS_SIE
`define STATUS_UIE `CSR_BASE.csrsr.STATUS_UIE
`define PRIV dut.hart.priv.priv.privmodereg.q
`define INSTRET dut.hart.priv.priv.csr.counters.counters.cntreg.INSTRETreg.q
`define INSTRET dut.hart.priv.priv.csr.counters.counters.HPMCOUNTER_REGW[2]
// Common Macros
`define checkCSR(CSR) \
begin \