mirror of
				https://github.com/openhwgroup/cvw
				synced 2025-02-11 06:05:49 +00:00 
			
		
		
		
	Merge branch 'main' of https://github.com/davidharrishmc/riscv-wally into main
This commit is contained in:
		
						commit
						13352eccda
					
				@ -35,7 +35,7 @@ add wave -hex /testbench/dut/hart/ieu/dp/SrcAE
 | 
				
			|||||||
add wave -hex /testbench/dut/hart/ieu/dp/SrcBE
 | 
					add wave -hex /testbench/dut/hart/ieu/dp/SrcBE
 | 
				
			||||||
add wave -hex /testbench/dut/hart/ieu/dp/ALUResultE
 | 
					add wave -hex /testbench/dut/hart/ieu/dp/ALUResultE
 | 
				
			||||||
#add wave /testbench/dut/hart/ieu/dp/PCSrcE
 | 
					#add wave /testbench/dut/hart/ieu/dp/PCSrcE
 | 
				
			||||||
add wave /testbench/dut/hart/mdu/genblk1/div/StartDivideE
 | 
					add wave /testbench/dut/hart/mdu/genblk1/div/DivStartE
 | 
				
			||||||
add wave /testbench/dut/hart/mdu/DivBusyE
 | 
					add wave /testbench/dut/hart/mdu/DivBusyE
 | 
				
			||||||
add wave -hex /testbench/dut/hart/mdu/genblk1/div/RemM
 | 
					add wave -hex /testbench/dut/hart/mdu/genblk1/div/RemM
 | 
				
			||||||
add wave -hex /testbench/dut/hart/mdu/genblk1/div/QuotM
 | 
					add wave -hex /testbench/dut/hart/mdu/genblk1/div/QuotM
 | 
				
			||||||
 | 
				
			|||||||
@ -31,104 +31,104 @@ module intdivrestoring (
 | 
				
			|||||||
  input  logic clk,
 | 
					  input  logic clk,
 | 
				
			||||||
  input  logic reset,
 | 
					  input  logic reset,
 | 
				
			||||||
  input  logic StallM, FlushM,
 | 
					  input  logic StallM, FlushM,
 | 
				
			||||||
  input  logic SignedDivideE, W64E,
 | 
					  input  logic DivSignedE, W64E,
 | 
				
			||||||
  input  logic StartDivideE,
 | 
					  input  logic DivE,
 | 
				
			||||||
  input  logic [`XLEN-1:0] SrcAE, SrcBE,
 | 
					  input  logic [`XLEN-1:0] SrcAE, SrcBE,
 | 
				
			||||||
  output logic BusyE, DivDoneM,
 | 
					  output logic DivBusyE, 
 | 
				
			||||||
  output logic [`XLEN-1:0] QuotM, RemM
 | 
					  output logic [`XLEN-1:0] QuotM, RemM
 | 
				
			||||||
 );
 | 
					 );
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  logic [`XLEN-1:0] WE[`DIV_BITSPERCYCLE:0];
 | 
					  logic [`XLEN-1:0] WM[`DIV_BITSPERCYCLE:0];
 | 
				
			||||||
  logic [`XLEN-1:0] XQE[`DIV_BITSPERCYCLE:0];
 | 
					  logic [`XLEN-1:0] XQM[`DIV_BITSPERCYCLE:0];
 | 
				
			||||||
  logic [`XLEN-1:0] DSavedE, XSavedE, XSavedM, DinE, XinE, DnE, DAbsBE, XnE, XInitE, WM, XQM, WnM, XQnM;
 | 
					  logic [`XLEN-1:0] DinE, XinE, DnE, DAbsBE, DAbsBM, XnE, XInitE, WnM, XQnM;
 | 
				
			||||||
  localparam STEPBITS = $clog2(`XLEN/`DIV_BITSPERCYCLE);
 | 
					  localparam STEPBITS = $clog2(`XLEN/`DIV_BITSPERCYCLE);
 | 
				
			||||||
  logic [STEPBITS:0] step;
 | 
					  logic [STEPBITS:0] step;
 | 
				
			||||||
  logic Div0E, Div0M;
 | 
					  logic Div0E, Div0M;
 | 
				
			||||||
  logic DivInitE, SignXE, SignXM, SignDE, SignDM, NegWM, NegQM;
 | 
					  logic DivStartE, SignXE, SignXM, SignDE, SignDM, NegWM, NegQM;
 | 
				
			||||||
  logic SignedDivideM;
 | 
					  logic BusyE, DivDoneM;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  logic [`XLEN-1:0] WNextE, XQNextE;
 | 
				
			||||||
 
 | 
					 
 | 
				
			||||||
  // save inputs on the negative edge of the execute clock.  
 | 
					  //////////////////////////////
 | 
				
			||||||
  // This is unusual practice, but the inputs are not guaranteed to be stable due to some hazard and forwarding logic.
 | 
					  // Execute Stage: prepare for division calculation with control logic, W logic and absolute values, initialize W and XQ
 | 
				
			||||||
  // Saving the inputs is the most hardware-efficient way to fix the issue.
 | 
					  //////////////////////////////
 | 
				
			||||||
  flopen #(`XLEN) xsavereg(~clk, StartDivideE, SrcAE, XSavedE);
 | 
					
 | 
				
			||||||
  flopen #(`XLEN) dsavereg(~clk, StartDivideE, SrcBE, DSavedE); 
 | 
					  // Divider control signals
 | 
				
			||||||
 | 
					  assign DivStartE = DivE & ~BusyE & ~DivDoneM & ~StallM; 
 | 
				
			||||||
 | 
					  assign DivBusyE = BusyE | DivStartE;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Handle sign extension for W-type instructions
 | 
					  // Handle sign extension for W-type instructions
 | 
				
			||||||
  generate
 | 
					  generate
 | 
				
			||||||
    if (`XLEN == 64) begin // RV64 has W-type instructions
 | 
					    if (`XLEN == 64) begin // RV64 has W-type instructions
 | 
				
			||||||
      mux2 #(`XLEN) xinmux(XSavedE, {XSavedE[31:0], 32'b0}, W64E, XinE);
 | 
					      mux2 #(`XLEN) xinmux(SrcAE, {SrcAE[31:0], 32'b0}, W64E, XinE);
 | 
				
			||||||
      mux2 #(`XLEN) dinmux(DSavedE, {{32{DSavedE[31]&SignedDivideE}}, DSavedE[31:0]}, W64E, DinE);
 | 
					      mux2 #(`XLEN) dinmux(SrcBE, {{32{SrcBE[31]&DivSignedE}}, SrcBE[31:0]}, W64E, DinE);
 | 
				
			||||||
	end else begin // RV32 has no W-type instructions
 | 
						  end else begin // RV32 has no W-type instructions
 | 
				
			||||||
      assign XinE = XSavedE;
 | 
					      assign XinE = SrcAE;
 | 
				
			||||||
      assign DinE = DSavedE;	    
 | 
					      assign DinE = SrcBE;	    
 | 
				
			||||||
    end   
 | 
					    end   
 | 
				
			||||||
  endgenerate 
 | 
					  endgenerate 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Extract sign bits and check fo division by zero
 | 
					  // Extract sign bits and check fo division by zero
 | 
				
			||||||
  assign SignDE = DinE[`XLEN-1]; 
 | 
					  assign SignDE = DivSignedE & DinE[`XLEN-1]; 
 | 
				
			||||||
  assign SignXE = XinE[`XLEN-1];
 | 
					  assign SignXE = DivSignedE & XinE[`XLEN-1];
 | 
				
			||||||
  assign Div0E = (DinE == 0);
 | 
					  assign Div0E = (DinE == 0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // pipeline registers
 | 
					 | 
				
			||||||
  flopenrc #(1) SignedDivideMReg(clk, reset, FlushM, ~StallM, SignedDivideE, SignedDivideM);
 | 
					 | 
				
			||||||
  flopenrc #(1) Div0eMReg(clk, reset, FlushM, ~StallM, Div0E, Div0M);
 | 
					 | 
				
			||||||
  flopenrc #(1) SignDMReg(clk, reset, FlushM, ~StallM, SignDE, SignDM);
 | 
					 | 
				
			||||||
  flopenrc #(1) SignXMReg(clk, reset, FlushM, ~StallM, SignXE, SignXM);
 | 
					 | 
				
			||||||
  flopenrc #(`XLEN) XSavedMReg(clk, reset, FlushM, ~StallM, XSavedE, XSavedM); // is this truly necessary?
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
  // Take absolute value for signed operations, and negate D to handle subtraction in divider stages
 | 
					  // Take absolute value for signed operations, and negate D to handle subtraction in divider stages
 | 
				
			||||||
  neg #(`XLEN) negd(DinE, DnE);
 | 
					  neg #(`XLEN) negd(DinE, DnE);
 | 
				
			||||||
  mux2 #(`XLEN) dabsmux(DnE, DinE, SignedDivideE & SignDE, DAbsBE);  // take absolute value for signed operations, and negate for subtraction setp
 | 
					  mux2 #(`XLEN) dabsmux(DnE, DinE, SignDE, DAbsBE);  // take absolute value for signed operations, and negate for subtraction setp
 | 
				
			||||||
  neg #(`XLEN) negx(XinE, XnE);
 | 
					  neg #(`XLEN) negx(XinE, XnE);
 | 
				
			||||||
  mux2 #(`XLEN) xabsmux(XinE, XnE, SignedDivideE & SignXE, XInitE);  // need original X as remainder if doing divide by 0
 | 
					  mux3 #(`XLEN) xabsmux(XinE, XnE, SrcAE, {Div0E, SignXE}, XInitE);  // take absolute value for signed operations, or keep original value for divide by 0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // initialization multiplexers on first cycle of operation (one cycle after start is asserted)
 | 
					  // initialization multiplexers on first cycle of operation
 | 
				
			||||||
  mux2 #(`XLEN) wmux(WM, {`XLEN{1'b0}}, DivInitE, WE[0]);
 | 
					  mux2 #(`XLEN) wmux(WM[`DIV_BITSPERCYCLE], {`XLEN{1'b0}}, DivStartE, WNextE);
 | 
				
			||||||
  mux2 #(`XLEN) xmux(XQM, XInitE, DivInitE, XQE[0]);
 | 
					  mux2 #(`XLEN) xmux(XQM[`DIV_BITSPERCYCLE], XInitE, DivStartE, XQNextE);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  //////////////////////////////
 | 
				
			||||||
 | 
					  // Memory Stage: division iterations, output sign correction
 | 
				
			||||||
 | 
					  //////////////////////////////
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  // registers before division steps
 | 
				
			||||||
 | 
					  flopen #(`XLEN) wreg(clk, DivBusyE, WNextE, WM[0]); 
 | 
				
			||||||
 | 
					  flopen #(`XLEN) xreg(clk, DivBusyE, XQNextE, XQM[0]);
 | 
				
			||||||
 | 
					  flopen #(`XLEN) dabsreg(clk, DivStartE, DAbsBE, DAbsBM);
 | 
				
			||||||
 | 
					  flopen #(3) Div0eMReg(clk, DivStartE, {Div0E, SignDE, SignXE}, {Div0M, SignDM, SignXM});
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
  // one copy of divstep for each bit produced per cycle
 | 
					  // one copy of divstep for each bit produced per cycle
 | 
				
			||||||
  generate
 | 
					  generate
 | 
				
			||||||
      genvar i;
 | 
					      genvar i;
 | 
				
			||||||
      for (i=0; i<`DIV_BITSPERCYCLE; i = i+1)
 | 
					      for (i=0; i<`DIV_BITSPERCYCLE; i = i+1)
 | 
				
			||||||
        intdivrestoringstep divstep(WE[i], XQE[i], DAbsBE, WE[i+1], XQE[i+1]);
 | 
					        intdivrestoringstep divstep(WM[i], XQM[i], DAbsBM, WM[i+1], XQM[i+1]);
 | 
				
			||||||
  endgenerate
 | 
					  endgenerate
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // registers after division steps
 | 
					  // On final setp of signed operations, negate outputs as needed to get correct sign
 | 
				
			||||||
  flopen #(`XLEN) wreg(clk, BusyE, WE[`DIV_BITSPERCYCLE], WM); 
 | 
					  assign NegWM = SignXM; // Remainder should have same sign as X 
 | 
				
			||||||
  flopen #(`XLEN) xreg(clk, BusyE, XQE[`DIV_BITSPERCYCLE], XQM);
 | 
					  assign NegQM = SignXM ^ SignDM; // Quotient should be negative if one operand is positive and the other is negative
 | 
				
			||||||
 | 
					  neg #(`XLEN) qneg(XQM[0], XQnM);
 | 
				
			||||||
  // Output selection logic in Memory Stage
 | 
					  neg #(`XLEN) wneg(WM[0], WnM);
 | 
				
			||||||
  // On final setp of signed operations, negate outputs as needed
 | 
					 | 
				
			||||||
  assign NegWM = SignedDivideM & SignXM; // Remainder should have same sign as X 
 | 
					 | 
				
			||||||
  assign NegQM = SignedDivideM & (SignXM ^ SignDM); // Quotient should be negative if one operand is positive and the other is negative
 | 
					 | 
				
			||||||
  neg #(`XLEN) wneg(WM, WnM);
 | 
					 | 
				
			||||||
  neg #(`XLEN) qneg(XQM, XQnM);
 | 
					 | 
				
			||||||
  // Select appropriate output: normal, negated, or for divide by zero
 | 
					  // Select appropriate output: normal, negated, or for divide by zero
 | 
				
			||||||
  mux3 #(`XLEN) qmux(XQM, XQnM, {`XLEN{1'b1}}, {Div0M, NegQM}, QuotM); // Q taken from XQ register, negated if necessary, or all 1s when dividing by zero
 | 
					  mux3 #(`XLEN) qmux(XQM[0], XQnM, {`XLEN{1'b1}}, {Div0M, NegQM}, QuotM); // Q taken from XQ register, negated if necessary, or all 1s when dividing by zero
 | 
				
			||||||
  mux3 #(`XLEN) remmux(WM, WnM, XSavedM, {Div0M, NegWM}, RemM); // REM taken from W register, negated if necessary, or from X when dividing by zero
 | 
					  mux3 #(`XLEN) remmux(WM[0], WnM, XQM[0], {Div0M, NegWM}, RemM); // REM taken from W register, negated if necessary, or from X when dividing by zero
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Divider FSM to sequence Init, Busy, and Done
 | 
					  //////////////////////////////
 | 
				
			||||||
  always_ff @(posedge clk) 
 | 
					  // Divider FSM to sequence Busy and Done
 | 
				
			||||||
 | 
					  //////////////////////////////
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 always_ff @(posedge clk) 
 | 
				
			||||||
    if (reset) begin
 | 
					    if (reset) begin
 | 
				
			||||||
        BusyE = 0; DivDoneM = 0; step = 0; DivInitE = 0;
 | 
					        BusyE = 0; DivDoneM = 0; step = 0; 
 | 
				
			||||||
    end else if (StartDivideE & ~StallM) begin 
 | 
					    end else if (DivStartE) begin 
 | 
				
			||||||
 | 
					        step = 0;
 | 
				
			||||||
        if (Div0E) DivDoneM = 1;
 | 
					        if (Div0E) DivDoneM = 1;
 | 
				
			||||||
        else begin
 | 
					        else       BusyE = 1;
 | 
				
			||||||
            BusyE = 1; step = 0; DivInitE = 1;
 | 
					    end else if (BusyE) begin // pause one cycle at beginning of signed operations for absolute value
 | 
				
			||||||
        end
 | 
					 | 
				
			||||||
    end else if (BusyE & ~DivDoneM) begin // pause one cycle at beginning of signed operations for absolute value
 | 
					 | 
				
			||||||
        DivInitE = 0;
 | 
					 | 
				
			||||||
        step = step + 1;
 | 
					        step = step + 1;
 | 
				
			||||||
        if (step[STEPBITS] | (`XLEN==64) & W64E & step[STEPBITS-1]) begin // complete in half the time for W-type instructions
 | 
					        if (step[STEPBITS] | (`XLEN==64) & W64E & step[STEPBITS-1]) begin // complete in half the time for W-type instructions
 | 
				
			||||||
            step = 0;
 | 
					 | 
				
			||||||
            BusyE = 0;
 | 
					            BusyE = 0;
 | 
				
			||||||
            DivDoneM = 1;
 | 
					            DivDoneM = 1;
 | 
				
			||||||
        end
 | 
					        end
 | 
				
			||||||
    end else if (DivDoneM) begin
 | 
					    end else if (DivDoneM) begin
 | 
				
			||||||
        DivDoneM = StallM;
 | 
					        DivDoneM = StallM;
 | 
				
			||||||
        BusyE = 0;
 | 
					 | 
				
			||||||
    end 
 | 
					    end 
 | 
				
			||||||
 | 
					 | 
				
			||||||
endmodule 
 | 
					endmodule 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/* verilator lint_on UNOPTFLAT */
 | 
					/* verilator lint_on UNOPTFLAT */
 | 
				
			||||||
 | 
				
			|||||||
@ -48,8 +48,8 @@ module muldiv (
 | 
				
			|||||||
	 logic [`XLEN-1:0] QuotM, RemM;
 | 
						 logic [`XLEN-1:0] QuotM, RemM;
 | 
				
			||||||
	 logic [`XLEN*2-1:0] ProdE, ProdM; 
 | 
						 logic [`XLEN*2-1:0] ProdE, ProdM; 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	 logic 		     StartDivideE, BusyE, DivDoneM;
 | 
						 logic 		     DivE;
 | 
				
			||||||
	 logic 		     SignedDivideE;	
 | 
						 logic 		     DivSignedE;	
 | 
				
			||||||
	 logic           W64M; 
 | 
						 logic           W64M; 
 | 
				
			||||||
	 
 | 
						 
 | 
				
			||||||
	 // Multiplier
 | 
						 // Multiplier
 | 
				
			||||||
@ -58,11 +58,10 @@ module muldiv (
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
	 // Divide
 | 
						 // Divide
 | 
				
			||||||
	 // Start a divide when a new division instruction is received and the divider isn't already busy or finishing
 | 
						 // Start a divide when a new division instruction is received and the divider isn't already busy or finishing
 | 
				
			||||||
	 assign StartDivideE = MulDivE & Funct3E[2] & ~BusyE & ~DivDoneM; 
 | 
						 assign DivE = MulDivE & Funct3E[2];
 | 
				
			||||||
	 assign DivBusyE = StartDivideE | BusyE;
 | 
						 assign DivSignedE = ~Funct3E[0];
 | 
				
			||||||
	 assign SignedDivideE = ~Funct3E[0];
 | 
					 | 
				
			||||||
	 intdivrestoring div(.clk, .reset, .StallM, .FlushM, 
 | 
						 intdivrestoring div(.clk, .reset, .StallM, .FlushM, 
 | 
				
			||||||
	   .SignedDivideE, .W64E, .StartDivideE, .SrcAE, .SrcBE, .BusyE, .DivDoneM, .QuotM, .RemM);
 | 
						   .DivSignedE, .W64E, .DivE, .SrcAE, .SrcBE, .DivBusyE, .QuotM, .RemM);
 | 
				
			||||||
	 	 
 | 
						 	 
 | 
				
			||||||
	 // Result multiplexer
 | 
						 // Result multiplexer
 | 
				
			||||||
	 always_comb
 | 
						 always_comb
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
		Reference in New Issue
	
	Block a user