Modified parseHPMC.py to support local history and selecting between x-axis as bits or entries.

This commit is contained in:
Ross Thompson 2024-03-29 13:01:40 -05:00
parent 7c3e93bb2c
commit 129949b849

View File

@ -34,12 +34,12 @@ import numpy as np
import argparse
RefDataBP = [('twobitCModel6', 'twobitCModel', 64, 10.0060297551637), ('twobitCModel8', 'twobitCModel', 256, 8.4320392215602), ('twobitCModel10', 'twobitCModel', 1024, 7.29493318805151),
('twobitCModel12', 'twobitCModel', 4096, 6.84739616147794), ('twobitCModel14', 'twobitCModel', 16384, 5.68432926870082), ('twobitCModel16', 'twobitCModel', 65536, 5.68432926870082),
('gshareCModel6', 'gshareCModel', 64, 11.4737703417701), ('gshareCModel8', 'gshareCModel', 256, 8.52341470761974), ('gshareCModel10', 'gshareCModel', 1024, 6.32975690693015),
('gshareCModel12', 'gshareCModel', 4096, 4.55424632377659), ('gshareCModel14', 'gshareCModel', 16384, 3.54251547725509), ('gshareCModel16', 'gshareCModel', 65536, 1.90424999467293)]
RefDataBTB = [('BTBCModel6', 'BTBCModel', 64, 1.51480272475844), ('BTBCModel8', 'BTBCModel', 256, 0.209057900418965), ('BTBCModel10', 'BTBCModel', 1024, 0.0117345454469572),
('BTBCModel12', 'BTBCModel', 4096, 0.00125540990359826), ('BTBCModel14', 'BTBCModel', 16384, 0.000732471628510962), ('BTBCModel16', 'BTBCModel', 65536, 0.000732471628510962)]
RefDataBP = [('twobitCModel6', 'twobitCModel', 64, 128, 10.0060297551637), ('twobitCModel8', 'twobitCModel', 256, 512, 8.4320392215602), ('twobitCModel10', 'twobitCModel', 1024, 2048, 7.29493318805151),
('twobitCModel12', 'twobitCModel', 4096, 8192, 6.84739616147794), ('twobitCModel14', 'twobitCModel', 16384, 32768, 5.68432926870082), ('twobitCModel16', 'twobitCModel', 65536, 131072, 5.68432926870082),
('gshareCModel6', 'gshareCModel', 64, 128, 11.4737703417701), ('gshareCModel8', 'gshareCModel', 256, 512, 8.52341470761974), ('gshareCModel10', 'gshareCModel', 1024, 2048, 6.32975690693015),
('gshareCModel12', 'gshareCModel', 4096, 8192, 4.55424632377659), ('gshareCModel14', 'gshareCModel', 16384, 32768, 3.54251547725509), ('gshareCModel16', 'gshareCModel', 65536, 131072, 1.90424999467293)]
RefDataBTB = [('BTBCModel6', 'BTBCModel', 64, 128, 1.51480272475844), ('BTBCModel8', 'BTBCModel', 256, 512, 0.209057900418965), ('BTBCModel10', 'BTBCModel', 1024, 2048, 0.0117345454469572),
('BTBCModel12', 'BTBCModel', 4096, 8192, 0.00125540990359826), ('BTBCModel14', 'BTBCModel', 16384, 32768, 0.000732471628510962), ('BTBCModel16', 'BTBCModel', 65536, 131072, 0.000732471628510962)]
def ParseBranchListFile(path):
'''Take the path to the list of Questa Sim log files containing the performance counters outputs. File
@ -120,25 +120,45 @@ def ComputeGeometricAverage(benchmarks):
benchmarks.append(('Mean', '', AllAve))
def GenerateName(predictorType, predictorParams):
if(predictorType == 'gshare' or predictorType == 'twobit' or predictorType == 'btb' or predictorType == 'class' or predictorType == 'ras'):
if(predictorType == 'gshare' or predictorType == 'twobit' or predictorType == 'btb' or predictorType == 'class' or predictorType == 'ras' or predictorType == 'global'):
return predictorType + predictorParams[0]
elif(predictorParams == 'local'):
elif(predictorType == 'local'):
return predictorType + predictorParams[0] + '_' + predictorParams[1]
else:
print(f'Error unsupported predictor type {predictorType}')
sys.exit(-1)
def GenerateDisplayName(predictorType, predictorParams):
if(predictorType == 'gshare' or predictorType == 'twobit' or predictorType == 'btb' or predictorType == 'class' or predictorType == 'ras' or predictorType == 'global'):
return predictorType
elif(predictorType == 'local'):
return predictorType + predictorParams[0]
else:
print(f'Error unsupported predictor type {predictorType}')
sys.exit(-1)
def ComputePredNumEntries(predictorType, predictorParams):
if(predictorType == 'gshare' or predictorType == 'twobit' or predictorType == 'btb' or predictorType == 'class'):
if(predictorType == 'gshare' or predictorType == 'twobit' or predictorType == 'btb' or predictorType == 'class' or predictorType == 'global'):
return 2**int(predictorParams[0])
elif(predictorType == 'ras'):
return int(predictorParams[0])
elif(predictorParams == 'local'):
elif(predictorType == 'local'):
return 2**int(predictorParams[0]) * int(predictorParams[1]) + 2**int(predictorParams[1])
else:
print(f'Error unsupported predictor type {predictorType}')
sys.exit(-1)
def ComputePredSize(predictorType, predictorParams):
if(predictorType == 'gshare' or predictorType == 'twobit' or predictorType == 'btb' or predictorType == 'class' or predictorType == 'global'):
return 2*2**int(predictorParams[0])
elif(predictorType == 'ras'):
return int(predictorParams[0])
elif(predictorType == 'local'):
return 2**int(predictorParams[0]) * int(predictorParams[1]) + 2*2**int(predictorParams[1])
else:
print(f'Error unsupported predictor type {predictorType}')
sys.exit(-1)
def BuildDataBase(predictorLogs):
# Once done with the following loop, performanceCounterList will contain the predictor type and size along with the
# raw performance counter data and the processed data on a per benchmark basis. It also includes the geometric mean.
@ -164,16 +184,16 @@ def BuildDataBase(predictorLogs):
ComputeStats(performanceCounters)
ComputeGeometricAverage(performanceCounters)
#print(performanceCounters)
performanceCounterList.append([GenerateName(predictorType, predictorParams), predictorType, performanceCounters, ComputePredNumEntries(predictorType, predictorParams)])
performanceCounterList.append([GenerateName(predictorType, predictorParams), GenerateDisplayName(predictorType, predictorParams), performanceCounters, ComputePredNumEntries(predictorType, predictorParams), ComputePredSize(predictorType, predictorParams)])
return performanceCounterList
def ReorderDataBase(performanceCounterList):
# Reorder the data so the benchmark name comes first, then the branch predictor configuration
benchmarkFirstList = []
for (predictorName, predictorPrefixName, benchmarks, entries) in performanceCounterList:
for (predictorName, predictorPrefixName, benchmarks, entries, size) in performanceCounterList:
for benchmark in benchmarks:
(nameString, opt, dataDict) = benchmark
benchmarkFirstList.append((nameString, opt, predictorName, predictorPrefixName, entries, dataDict))
benchmarkFirstList.append((nameString, opt, predictorName, predictorPrefixName, entries, size, dataDict))
return benchmarkFirstList
def ExtractSelectedData(benchmarkFirstList):
@ -181,7 +201,8 @@ def ExtractSelectedData(benchmarkFirstList):
# namestring + opt, config
benchmarkDict = { }
for benchmark in benchmarkFirstList:
(name, opt, config, prefixName, entries, dataDict) = benchmark
(name, opt, config, prefixName, entries, size, dataDict) = benchmark
#print(f'config = {config}, prefixName = {prefixName} entries = {entries}')
# use this code to distinguish speed opt and size opt.
#if opt == 'bd_speedopt_speed': NewName = name+'Sp'
#elif opt == 'bd_sizeopt_speed': NewName = name+'Sz'
@ -190,18 +211,19 @@ def ExtractSelectedData(benchmarkFirstList):
#print(NewName)
#NewName = name+'_'+opt
if NewName in benchmarkDict:
benchmarkDict[NewName].append((config, prefixName, entries, dataDict[ReportPredictorType]))
benchmarkDict[NewName].append((config, prefixName, entries, size, dataDict[ReportPredictorType]))
else:
benchmarkDict[NewName] = [(config, prefixName, entries, dataDict[ReportPredictorType])]
benchmarkDict[NewName] = [(config, prefixName, entries, size, dataDict[ReportPredictorType])]
return benchmarkDict
def ReportAsTable(benchmarkDict):
refLine = benchmarkDict['Mean']
FirstLine = []
SecondLine = []
for (name, typ, size, val) in refLine:
for Elements in refLine:
(name, typ, size, entries, val) = Elements
FirstLine.append(name)
SecondLine.append(size)
SecondLine.append(entries if not args.size else size)
sys.stdout.write('benchmark\t\t')
for name in FirstLine:
@ -216,7 +238,7 @@ def ReportAsTable(benchmarkDict):
if(args.summary):
sys.stdout.write('Mean\t\t\t')
for (name, typ, size, val) in refLine:
for (name, typ, size, entries, val) in refLine:
sys.stdout.write('%0.2f\t\t' % (val if not args.invert else 100 - val))
sys.stdout.write('\n')
@ -226,7 +248,7 @@ def ReportAsTable(benchmarkDict):
if(length < 8): sys.stdout.write('%s\t\t\t' % benchmark)
elif(length < 16): sys.stdout.write('%s\t\t' % benchmark)
else: sys.stdout.write('%s\t' % benchmark)
for (name, typ, size, val) in benchmarkDict[benchmark]:
for (name, typ, entries, size, val) in benchmarkDict[benchmark]:
sys.stdout.write('%0.2f\t\t' % (val if not args.invert else 100 -val))
sys.stdout.write('\n')
@ -234,14 +256,14 @@ def ReportAsText(benchmarkDict):
if(args.summary):
mean = benchmarkDict['Mean']
print('Mean')
for (name, typ, size, val) in mean:
sys.stdout.write('%s %s %0.2f\n' % (name, size, val if not args.invert else 100 - val))
for (name, typ, entries. size, val) in mean:
sys.stdout.write('%s %s %0.2f\n' % (name, entries if not args.size else size, val if not args.invert else 100 - val))
if(not args.summary):
for benchmark in benchmarkDict:
print(benchmark)
for (name, type, size, val) in benchmarkDict[benchmark]:
sys.stdout.write('%s %s %0.2f\n' % (name, size, val if not args.invert else 100 - val))
for (name, type, entries, size, val) in benchmarkDict[benchmark]:
sys.stdout.write('%s %s %0.2f\n' % (name, entries if not args.size else size, val if not args.invert else 100 - val))
def Inversion(lst):
return [x if not args.invert else 100 - x for x in lst]
@ -306,11 +328,11 @@ def ReportAsGraph(benchmarkDict, bar, FileName):
# branch predictors with various parameterizations
# group the parameterizations by the common typ.
sequencies = {}
for (name, typ, size, value) in benchmarkDict['Mean']:
for (name, typ, entries, size, value) in benchmarkDict['Mean']:
if not typ in sequencies:
sequencies[typ] = [(size, value)]
sequencies[typ] = [(entries if not args.size else size, value)]
else:
sequencies[typ].append((size,value))
sequencies[typ].append((entries if not args.size else size,value))
# then graph the common typ as a single line+scatter plot
# finally repeat for all typs of branch predictors and overlay
fig, axes = plt.subplots()
@ -327,7 +349,8 @@ def ReportAsGraph(benchmarkDict, bar, FileName):
axes.legend(loc='upper left')
axes.set_xscale("log")
axes.set_ylabel('Prediction Accuracy')
axes.set_xlabel('Entries')
Xlabel = 'Entries' if not args.size else 'Size (bits)'
axes.set_xlabel(Xlabel)
axes.set_xticks(xdata)
axes.set_xticklabels(xdata)
axes.grid(color='b', alpha=0.5, linestyle='dashed', linewidth=0.5)
@ -368,7 +391,7 @@ def ReportAsGraph(benchmarkDict, bar, FileName):
for benchmarkName in benchmarkDict:
currBenchmark = benchmarkDict[benchmarkName]
xlabelList.append(benchmarkName)
for (name, typ, size, value) in currBenchmark:
for (name, typ, entries, size, value) in currBenchmark:
if(name not in seriesDict):
seriesDict[name] = [value]
else:
@ -381,7 +404,7 @@ def ReportAsGraph(benchmarkDict, bar, FileName):
for benchmarkName in benchmarkDict:
currBenchmark = benchmarkDict[benchmarkName]
xlabelListBig.append(benchmarkName)
for (name, typ, size, value) in currBenchmark:
for (name, typ, entries, size, value) in currBenchmark:
if(name not in seriesDictBig):
seriesDictBig[name] = [value]
else:
@ -410,6 +433,7 @@ parser.add_argument('-s', '--summary', action='store_const', help='Show only the
parser.add_argument('-b', '--bar', action='store_const', help='Plot graphs.', default=False, const=True)
parser.add_argument('-g', '--reference', action='store_const', help='Include the golden reference model from branch-predictor-simulator. Data stored statically at the top of %(prog)s. If you need to regenreate use CModelBranchAcurracy.sh', default=False, const=True)
parser.add_argument('-i', '--invert', action='store_const', help='Invert metric. Example Branch miss prediction becomes prediction accuracy. 100 - miss rate', default=False, const=True)
parser.add_argument('--size', action='store_const', help='Display x-axis as size in bits rather than number of table entries', default=False, const=True)
displayMode = parser.add_mutually_exclusive_group()
displayMode.add_argument('--text', action='store_const', help='Display in text format only.', default=False, const=True)