cvw/bin/parseHPMC.py

320 lines
13 KiB
Python
Raw Normal View History

#!/usr/bin/python3
2023-01-22 19:04:31 +00:00
###########################################
## Written: Ross Thompson ross1728@gmail.com
## Created: 4 Jan 2022
## Modified:
##
## Purpose: Parses the performance counters from a modelsim trace.
##
## A component of the CORE-V-WALLY configurable RISC-V project.
##
## Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
##
## SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
##
## Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
## except in compliance with the License, or, at your option, the Apache License version 2.0. You
## may obtain a copy of the License at
##
## https:##solderpad.org/licenses/SHL-2.1/
##
## Unless required by applicable law or agreed to in writing, any work distributed under the
## License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
## either express or implied. See the License for the specific language governing permissions
## and limitations under the License.
################################################################################################
import os
import sys
2023-01-07 00:04:49 +00:00
import matplotlib.pyplot as plt
import re
2023-03-13 18:30:43 +00:00
#RefData={'twobitCModel' :(['6', '8', '10', '12', '14', '16'],
# [11.0680836450622, 8.53864970807778, 7.59565430177984, 6.38741598498948, 5.83662961500838, 5.83662961500838]),
# 'gshareCModel' : (['6', '8', '10', '12', '14', '16'],
# [14.5859173702079, 12.3634674403619, 10.5806018170154, 8.38831266973592, 6.37097544620762, 3.52638362703015])
#}
2023-03-13 18:54:04 +00:00
RefData = [('twobitCModel6', 11.0501534891674), ('twobitCModel8', 8.51829052266352), ('twobitCModel10', 7.56775222626483),
('twobitCModel12', 6.31366834586515), ('twobitCModel14', 5.72699936834177), ('twobitCModel16', 5.72699936834177),
('gshareCModel6', 14.5731555979574), ('gshareCModel8', 12.3155658100497), ('gshareCModel10', 10.4589596630561),
('gshareCModel12', 8.25796055444401), ('gshareCModel14', 6.23093702707613), ('gshareCModel16', 3.34001125650374)]
2023-03-13 18:30:43 +00:00
def ComputeCPI(benchmark):
'Computes and inserts CPI into benchmark stats.'
(nameString, opt, dataDict) = benchmark
CPI = 1.0 * int(dataDict['Mcycle']) / int(dataDict['InstRet'])
dataDict['CPI'] = CPI
def ComputeBranchDirMissRate(benchmark):
'Computes and inserts branch direction miss prediction rate.'
(nameString, opt, dataDict) = benchmark
2023-03-04 19:45:15 +00:00
branchDirMissRate = 100.0 * int(dataDict['BP Dir Wrong']) / int(dataDict['Br Count'])
dataDict['BDMR'] = branchDirMissRate
def ComputeBranchTargetMissRate(benchmark):
'Computes and inserts branch target miss prediction rate.'
# *** this is wrong in the verilog test bench
(nameString, opt, dataDict) = benchmark
2023-03-04 19:45:15 +00:00
branchTargetMissRate = 100.0 * int(dataDict['BP Target Wrong']) / (int(dataDict['Br Count']) + int(dataDict['Jump Not Return']))
dataDict['BTMR'] = branchTargetMissRate
def ComputeRASMissRate(benchmark):
'Computes and inserts return address stack miss prediction rate.'
(nameString, opt, dataDict) = benchmark
2023-03-04 19:45:15 +00:00
RASMPR = 100.0 * int(dataDict['RAS Wrong']) / int(dataDict['Return'])
dataDict['RASMPR'] = RASMPR
def ComputeInstrClassMissRate(benchmark):
'Computes and inserts instruction class miss prediction rate.'
(nameString, opt, dataDict) = benchmark
ClassMPR = 100.0 * int(dataDict['Instr Class Wrong']) / int(dataDict['InstRet'])
dataDict['ClassMPR'] = ClassMPR
def ComputeICacheMissRate(benchmark):
'Computes and inserts instruction class miss prediction rate.'
(nameString, opt, dataDict) = benchmark
ICacheMR = 100.0 * int(dataDict['I Cache Miss']) / int(dataDict['I Cache Access'])
dataDict['ICacheMR'] = ICacheMR
def ComputeICacheMissTime(benchmark):
'Computes and inserts instruction class miss prediction rate.'
(nameString, opt, dataDict) = benchmark
2023-03-04 19:45:15 +00:00
cycles = int(dataDict['I Cache Miss'])
if(cycles == 0): ICacheMR = 0
else: ICacheMR = 100.0 * int(dataDict['I Cache Cycles']) / cycles
dataDict['ICacheMT'] = ICacheMR
def ComputeDCacheMissRate(benchmark):
'Computes and inserts instruction class miss prediction rate.'
(nameString, opt, dataDict) = benchmark
DCacheMR = 100.0 * int(dataDict['D Cache Miss']) / int(dataDict['D Cache Access'])
dataDict['DCacheMR'] = DCacheMR
2023-01-07 00:04:49 +00:00
def ComputeDCacheMissTime(benchmark):
'Computes and inserts instruction class miss prediction rate.'
(nameString, opt, dataDict) = benchmark
2023-03-04 19:45:15 +00:00
cycles = int(dataDict['D Cache Miss'])
if(cycles == 0): DCacheMR = 0
else: DCacheMR = 100.0 * int(dataDict['D Cache Cycles']) / cycles
dataDict['DCacheMT'] = DCacheMR
2023-01-07 00:04:49 +00:00
def ComputeAll(benchmarks):
for benchmark in benchmarks:
ComputeCPI(benchmark)
ComputeBranchDirMissRate(benchmark)
ComputeBranchTargetMissRate(benchmark)
ComputeRASMissRate(benchmark)
ComputeInstrClassMissRate(benchmark)
ComputeICacheMissRate(benchmark)
ComputeICacheMissTime(benchmark)
2023-01-07 00:04:49 +00:00
ComputeDCacheMissRate(benchmark)
ComputeDCacheMissTime(benchmark)
def printStats(benchmark):
(nameString, opt, dataDict) = benchmark
print('Test', nameString)
print('Compile configuration', opt)
print('CPI \t\t\t %1.2f' % dataDict['CPI'])
print('Branch Dir Pred Miss Rate %2.2f' % dataDict['BDMR'])
print('Branch Target Pred Miss Rate %2.2f' % dataDict['BTMR'])
print('RAS Miss Rate \t\t %1.2f' % dataDict['RASMPR'])
print('Instr Class Miss Rate %1.2f' % dataDict['ClassMPR'])
print('I Cache Miss Rate %1.4f' % dataDict['ICacheMR'])
print('I Cache Miss Ave Cycles %1.4f' % dataDict['ICacheMT'])
print('D Cache Miss Rate %1.4f' % dataDict['DCacheMR'])
print('D Cache Miss Ave Cycles %1.4f' % dataDict['DCacheMT'])
print()
2023-01-07 00:04:49 +00:00
def ProcessFile(fileName):
'''Extract preformance counters from a modelsim log. Outputs a list of tuples for each test/benchmark.
The tuple contains the test name, optimization characteristics, and dictionary of performance counters.'''
# 1 find lines with Read memfile and extract test name
# 2 parse counters into a list of (name, value) tuples (dictionary maybe?)
benchmarks = []
transcript = open(fileName, 'r')
HPMClist = { }
testName = ''
for line in transcript.readlines():
lineToken = line.split()
if(len(lineToken) > 3 and lineToken[1] == 'Read' and lineToken[2] == 'memfile'):
opt = lineToken[3].split('/')[-4]
testName = lineToken[3].split('/')[-1].split('.')[0]
HPMClist = { }
elif(len(lineToken) > 4 and lineToken[1][0:3] == 'Cnt'):
countToken = line.split('=')[1].split()
2023-01-11 23:00:45 +00:00
value = int(countToken[0])
2023-01-07 00:04:49 +00:00
name = ' '.join(countToken[1:])
HPMClist[name] = value
elif ('is done' in line):
benchmarks.append((testName, opt, HPMClist))
return benchmarks
def ComputeArithmeticAverage(benchmarks):
2023-01-11 23:00:45 +00:00
average = {}
index = 0
2023-01-11 23:00:45 +00:00
for (testName, opt, HPMClist) in benchmarks:
for field in HPMClist:
value = HPMClist[field]
if field not in average:
average[field] = value
else:
average[field] += value
index += 1
2023-01-11 23:00:45 +00:00
benchmarks.append(('All', '', average))
2023-01-07 00:04:49 +00:00
def FormatToPlot(currBenchmark):
names = []
values = []
for config in currBenchmark:
#print ('config' , config)
2023-01-07 00:04:49 +00:00
names.append(config[0])
values.append(config[1])
return (names, values)
def GeometricAverage(benchmarks, field):
Product = 1
index = 0
for (testName, opt, HPMCList) in benchmarks:
#print(HPMCList)
Product *= HPMCList[field]
index += 1
return Product ** (1.0/index)
def ComputeGeometricAverage(benchmarks):
fields = ['BDMR', 'BTMR', 'RASMPR', 'ClassMPR', 'ICacheMR', 'DCacheMR', 'CPI', 'ICacheMT', 'DCacheMT']
AllAve = {}
for field in fields:
Product = 1
index = 0
for (testName, opt, HPMCList) in benchmarks:
#print(HPMCList)
Product *= HPMCList[field]
index += 1
AllAve[field] = Product ** (1.0/index)
benchmarks.append(('All', '', AllAve))
2023-01-07 00:04:49 +00:00
if(sys.argv[1] == '-b'):
configList = []
summery = 0
if(sys.argv[2] == '-s'):
summery = 1
sys.argv = sys.argv[1::]
2023-01-07 00:04:49 +00:00
for config in sys.argv[2::]:
benchmarks = ProcessFile(config)
#ComputeArithmeticAverage(benchmarks)
2023-01-07 00:04:49 +00:00
ComputeAll(benchmarks)
ComputeGeometricAverage(benchmarks)
2023-02-23 04:08:00 +00:00
#print('CONFIG: %s GEO MEAN: %f' % (config, GeometricAverage(benchmarks, 'BDMR')))
2023-01-07 00:04:49 +00:00
configList.append((config.split('.')[0], benchmarks))
2023-01-07 00:04:49 +00:00
# Merge all configruations into a single list
benchmarkAll = []
for (config, benchmarks) in configList:
#print(config)
2023-01-07 00:04:49 +00:00
for benchmark in benchmarks:
(nameString, opt, dataDict) = benchmark
#print("BENCHMARK")
#print(nameString)
#print(opt)
#print(dataDict)
2023-01-07 00:04:49 +00:00
benchmarkAll.append((nameString, opt, config, dataDict))
#print('ALL!!!!!!!!!!')
2023-02-20 04:49:48 +00:00
#for bench in benchmarkAll:
# print('BENCHMARK')
# print(bench)
#print('ALL!!!!!!!!!!')
2023-01-07 00:04:49 +00:00
# now extract all branch prediction direction miss rates for each
# namestring + opt, config
benchmarkDict = { }
for benchmark in benchmarkAll:
(name, opt, config, dataDict) = benchmark
if name+'_'+opt in benchmarkDict:
2023-03-13 18:30:43 +00:00
benchmarkDict[name+'_'+opt].append((config, dataDict['BDMR']))
2023-01-07 00:04:49 +00:00
else:
2023-03-13 18:30:43 +00:00
benchmarkDict[name+'_'+opt] = [(config, dataDict['BDMR'])]
2023-01-07 00:04:49 +00:00
size = len(benchmarkDict)
index = 1
if(summery == 0):
2023-02-23 04:08:00 +00:00
#print('Number of plots', size)
2023-03-13 18:30:43 +00:00
for benchmarkName in benchmarkDict:
currBenchmark = benchmarkDict[benchmarkName]
(names, values) = FormatToPlot(currBenchmark)
print(names, values)
plt.subplot(6, 7, index)
plt.bar(names, values)
plt.title(benchmarkName)
plt.ylabel('BR Dir Miss Rate (%)')
#plt.xlabel('Predictor')
index += 1
else:
combined = benchmarkDict['All_']
2023-03-13 18:30:43 +00:00
# merge the reference data into rtl data
combined.extend(RefData)
(name, value) = FormatToPlot(combined)
lst = []
dct = {}
category = []
length = []
accuracy = []
for index in range(0, len(name)):
match = re.match(r"([a-z]+)([0-9]+)", name[index], re.I)
percent = 100 -value[index]
if match:
(PredType, size) = match.groups()
category.append(PredType)
length.append(size)
accuracy.append(percent)
if(PredType not in dct):
dct[PredType] = ([size], [percent])
else:
(currSize, currPercent) = dct[PredType]
currSize.append(size)
currPercent.append(percent)
dct[PredType] = (currSize, currPercent)
print(dct)
fig, axes = plt.subplots()
marker={'twobit' : '^', 'gshare' : 'o', 'global' : 's', 'gshareBasic' : '*', 'globalBasic' : 'x', 'btb': 'x', 'twobitCModel' : 'x', 'gshareCModel' : '*', 'tenlocal' : '.', 'eightlocal' : ',', 'fourlocal' : 'x', 'tenlocalahead' : '.', 'eightlocalahead' : ',', 'fourlocalahead' : 'x', 'tenlocalrepair' : 'x'}
colors={'twobit' : 'black', 'gshare' : 'blue', 'global' : 'dodgerblue', 'gshareBasic' : 'turquoise', 'globalBasic' : 'lightsteelblue', 'btb' : 'blue', 'twobitCModel' : 'gray', 'gshareCModel' : 'dodgerblue', 'tenlocal' : 'lightblue', 'eightlocal' : 'lightblue', 'fourlocal' : 'lightblue', 'tenlocalahead' : 'lightblue', 'eightlocalahead' : 'lightblue', 'fourlocalahead' : 'lightblue', 'tenlocalrepair' : 'lightblue'}
for cat in dct:
(x, y) = dct[cat]
x=[int(2**int(v)) for v in x]
#print(x, y)
print(cat)
axes.plot(x,y, color=colors[cat])
axes.scatter(x,y, label=cat, marker=marker[cat], color=colors[cat])
#plt.scatter(x, y, label=cat)
#plt.plot(x, y)
#axes.set_xticks([4, 6, 8, 10, 12, 14])
axes.legend(loc='upper left')
axes.set_xscale("log")
axes.set_ylabel('Prediction Accuracy')
axes.set_xlabel('Entries')
axes.set_xticks([64, 256, 1024, 4096, 16384, 65536])
axes.set_xticklabels([64, 256, 1024, 4096, 16384, 65536])
axes.grid(color='b', alpha=0.5, linestyle='dashed', linewidth=0.5)
2023-01-07 00:04:49 +00:00
plt.show()
else:
# steps 1 and 2
benchmarks = ProcessFile(sys.argv[1])
print(benchmarks[0])
ComputeAll(benchmarks)
ComputeGeometricAverage(benchmarks)
2023-01-07 00:04:49 +00:00
# 3 process into useful data
# cache hit rates
# cache fill time
# branch predictor status
# hazard counts
# CPI
# instruction distribution
for benchmark in benchmarks:
printStats(benchmark)