cvw/wally-pipelined/src/clint.sv

132 lines
4.7 KiB
Systemverilog
Raw Normal View History

2021-01-15 04:37:51 +00:00
///////////////////////////////////////////
// clint.sv
//
// Written: David_Harris@hmc.edu 14 January 2021
// Modified:
//
// Purpose: Core-Local Interruptor
// See FE310-G002-Manual-v19p05 for specifications
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-macros.sv"
module clint #(parameter XLEN=32) (
input logic clk, reset,
input logic [1:0] MemRWM,
input logic [7:0] ByteMaskM,
input logic [15:0] AdrM,
input logic [XLEN-1:0] WdM,
output logic [XLEN-1:0] RdM,
output logic TimerIntM, SwIntM);
logic [63:0] MTIMECMP, MTIME;
logic MSIP;
logic [XLEN-1:0] read, write;
logic [15:0] entry;
logic memread, memwrite;
assign memread = MemRWM[1];
assign memwrite = MemRWM[0];
// word aligned reads
generate
if (XLEN==64)
assign #2 entry = {AdrM[15:3], 3'b000};
else
assign #2 entry = {AdrM[15:2], 2'b00};
endgenerate
// register access
generate
if (XLEN==64) begin
always_comb begin
case(entry)
16'h0000: read = {63'b0, MSIP};
16'h4000: read = MTIMECMP;
16'hBFF8: read = MTIME;
default: read = 0;
endcase
write=read;
if (ByteMaskM[0]) write[7:0] = WdM[7:0];
if (ByteMaskM[1]) write[15:8] = WdM[15:8];
if (ByteMaskM[2]) write[23:16] = WdM[23:16];
if (ByteMaskM[3]) write[31:24] = WdM[31:24];
if (ByteMaskM[4]) write[39:32] = WdM[39:32];
if (ByteMaskM[5]) write[47:40] = WdM[47:40];
if (ByteMaskM[6]) write[55:48] = WdM[55:48];
if (ByteMaskM[7]) write[63:56] = WdM[63:56];
end
always_ff @(posedge clk or posedge reset)
if (reset) begin
MSIP <= 0;
MTIME <= 0;
// MTIMECMP is not reset
end else begin
if (entry == 16'h0000) MSIP <= write[0];
if (entry == 16'h4000) MTIMECMP <= write;
// MTIME Counter. Eventually change this to run off separate clock. Synchronization then needed
if (entry == 16'hBFF8) MTIME <= write;
else MTIME <= MTIME + 1;
end
end else begin // 32-bit
always_comb begin
case(entry)
16'h0000: read = {31'b0, MSIP};
16'h4000: read = MTIMECMP[31:0];
16'h4004: read = MTIMECMP[63:32];
16'hBFF8: read = MTIME[31:0];
16'hBFFC: read = MTIME[63:32];
default: read = 0;
endcase
write=read;
if (ByteMaskM[0]) write[7:0] = WdM[7:0];
if (ByteMaskM[1]) write[15:8] = WdM[15:8];
if (ByteMaskM[2]) write[23:16] = WdM[23:16];
if (ByteMaskM[3]) write[31:24] = WdM[31:24];
end
always_ff @(posedge clk or posedge reset)
if (reset) begin
MSIP <= 0;
MTIME <= 0;
// MTIMECMP is not reset
end else begin
if (entry == 16'h0000) MSIP <= write[0];
if (entry == 16'h4000) MTIMECMP[31:0] <= write;
if (entry == 16'h4004) MTIMECMP[63:32] <= write;
// MTIME Counter. Eventually change this to run off separate clock. Synchronization then needed
if (entry == 16'hBFF8) MTIME[31:0] <= write;
else if (entry == 16'hBFFC) MTIME[63:32]<= write;
else MTIME <= MTIME + 1;
end
end
endgenerate
// read
assign RdM = memread ? read: 0;
// Software interrupt when MSIP is set
assign SwIntM = MSIP;
// Timer interrupt when MTIME >= MTIMECMP
assign TimerIntM = ({1'b0, MTIME} >= {1'b0, MTIMECMP}); // unsigned comparison
endmodule