mirror of
https://github.com/openhwgroup/cvw
synced 2025-02-11 06:05:49 +00:00
146 lines
7.1 KiB
Systemverilog
146 lines
7.1 KiB
Systemverilog
|
///////////////////////////////////////////
|
||
|
// intdivrestoring.sv
|
||
|
//
|
||
|
// Written: David_Harris@hmc.edu 12 September 2021
|
||
|
// Modified:
|
||
|
//
|
||
|
// Purpose: Restoring integer division using a shift register and subtractor
|
||
|
//
|
||
|
// Documentation: RISC-V System on Chip Design Chapter 12 (Figure 12.19)
|
||
|
//
|
||
|
// A component of the CORE-V-WALLY configurable RISC-V project.
|
||
|
//
|
||
|
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
|
||
|
//
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
|
||
|
//
|
||
|
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
|
||
|
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
|
||
|
// may obtain a copy of the License at
|
||
|
//
|
||
|
// https://solderpad.org/licenses/SHL-2.1/
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, any work distributed under the
|
||
|
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
|
||
|
// either express or implied. See the License for the specific language governing permissions
|
||
|
// and limitations under the License.
|
||
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
`include "wally-config.vh"
|
||
|
|
||
|
module div(
|
||
|
input logic clk,
|
||
|
input logic reset,
|
||
|
input logic StallM,
|
||
|
input logic FlushE,
|
||
|
input logic IntDivE, // integer division/remainder instruction of any type
|
||
|
input logic DivSignedE, // signed division
|
||
|
input logic W64E, // W-type instructions (divw, divuw, remw, remuw)
|
||
|
input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // Forwarding mux outputs for Source A and B
|
||
|
output logic DivBusyE, // Divide is busy - stall pipeline
|
||
|
output logic [`XLEN-1:0] QuotM, RemM // Quotient and remainder outputs
|
||
|
);
|
||
|
|
||
|
localparam STEPBITS = $clog2(`XLEN/`IDIV_BITSPERCYCLE); // Number of steps
|
||
|
|
||
|
typedef enum logic [1:0] {IDLE, BUSY, DONE} statetype; // division FSM state
|
||
|
statetype state;
|
||
|
|
||
|
logic [`XLEN-1:0] W[`IDIV_BITSPERCYCLE:0]; // Residual for each of k steps
|
||
|
logic [`XLEN-1:0] XQ[`IDIV_BITSPERCYCLE:0]; // dividend/quotient for each of k steps
|
||
|
logic [`XLEN-1:0] WNext, XQNext; // initialized W and XQ going into registers
|
||
|
logic [`XLEN-1:0] DinE, XinE; // divisor & dividend, possibly truncated to 32 bits
|
||
|
logic [`XLEN-1:0] DnE; // DnE = ~DinE
|
||
|
logic [`XLEN-1:0] DAbsBE; // absolute value of D
|
||
|
logic [`XLEN-1:0] DAbsB; // registered absolute value of D, constant during division
|
||
|
logic [`XLEN-1:0] XnE; // DXnE = ~XinE
|
||
|
logic [`XLEN-1:0] XInitE; // |X|, or original X for divide by 0
|
||
|
logic [`XLEN-1:0] WnM, XQnM; // negated residual W and quotient XQ for postprocessing sign correction
|
||
|
logic [STEPBITS:0] step; // division step
|
||
|
logic Div0E, Div0M; // divide by 0
|
||
|
logic DivStartE; // start integer division
|
||
|
logic SignXE, SignDE; // sign of dividend and divisor
|
||
|
logic NegQE, NegWM, NegQM; // negate quotient or residual during postprocessing
|
||
|
|
||
|
//////////////////////////////
|
||
|
// Execute Stage: prepare for division calculation with control logic, W logic and absolute values, initialize W and XQ
|
||
|
//////////////////////////////
|
||
|
|
||
|
// Divider control signals
|
||
|
assign DivStartE = IntDivE & (state == IDLE) & ~StallM;
|
||
|
assign DivBusyE = (state == BUSY) | DivStartE;
|
||
|
|
||
|
// Handle sign extension for W-type instructions
|
||
|
if (`XLEN == 64) begin:rv64 // RV64 has W-type instructions
|
||
|
mux2 #(`XLEN) xinmux(ForwardedSrcAE, {ForwardedSrcAE[31:0], 32'b0}, W64E, XinE);
|
||
|
mux2 #(`XLEN) dinmux(ForwardedSrcBE, {{32{ForwardedSrcBE[31]&DivSignedE}}, ForwardedSrcBE[31:0]}, W64E, DinE);
|
||
|
end else begin // RV32 has no W-type instructions
|
||
|
assign XinE = ForwardedSrcAE;
|
||
|
assign DinE = ForwardedSrcBE;
|
||
|
end
|
||
|
|
||
|
// Extract sign bits and check fo division by zero
|
||
|
assign SignDE = DivSignedE & DinE[`XLEN-1];
|
||
|
assign SignXE = DivSignedE & XinE[`XLEN-1];
|
||
|
assign NegQE = SignDE ^ SignXE;
|
||
|
assign Div0E = (DinE == 0);
|
||
|
|
||
|
// Take absolute value for signed operations, and negate D to handle subtraction in divider stages
|
||
|
neg #(`XLEN) negd(DinE, DnE);
|
||
|
mux2 #(`XLEN) dabsmux(DnE, DinE, SignDE, DAbsBE); // take absolute value for signed operations, and negate for subtraction setp
|
||
|
neg #(`XLEN) negx(XinE, XnE);
|
||
|
mux3 #(`XLEN) xabsmux(XinE, XnE, ForwardedSrcAE, {Div0E, SignXE}, XInitE); // take absolute value for signed operations, or keep original value for divide by 0
|
||
|
|
||
|
//////////////////////////////
|
||
|
// Division Iterations (effectively stalled execute stage, no suffix)
|
||
|
//////////////////////////////
|
||
|
|
||
|
// initialization multiplexers on first cycle of operation
|
||
|
mux2 #(`XLEN) wmux(W[`IDIV_BITSPERCYCLE], {`XLEN{1'b0}}, DivStartE, WNext);
|
||
|
mux2 #(`XLEN) xmux(XQ[`IDIV_BITSPERCYCLE], XInitE, DivStartE, XQNext);
|
||
|
|
||
|
// registers before division steps
|
||
|
flopen #(`XLEN) wreg(clk, DivBusyE, WNext, W[0]);
|
||
|
flopen #(`XLEN) xreg(clk, DivBusyE, XQNext, XQ[0]);
|
||
|
flopen #(`XLEN) dabsreg(clk, DivStartE, DAbsBE, DAbsB);
|
||
|
|
||
|
// one copy of divstep for each bit produced per cycle
|
||
|
genvar i;
|
||
|
for (i=0; i<`IDIV_BITSPERCYCLE; i = i+1)
|
||
|
divstep divstep(W[i], XQ[i], DAbsB, W[i+1], XQ[i+1]);
|
||
|
|
||
|
//////////////////////////////
|
||
|
// Memory Stage: output sign correction and special cases
|
||
|
//////////////////////////////
|
||
|
|
||
|
flopen #(3) Div0eMReg(clk, DivStartE, {Div0E, NegQE, SignXE}, {Div0M, NegQM, NegWM});
|
||
|
|
||
|
// On final setp of signed operations, negate outputs as needed to get correct sign
|
||
|
neg #(`XLEN) qneg(XQ[0], XQnM);
|
||
|
neg #(`XLEN) wneg(W[0], WnM);
|
||
|
// Select appropriate output: normal, negated, or for divide by zero
|
||
|
mux3 #(`XLEN) qmux(XQ[0], XQnM, {`XLEN{1'b1}}, {Div0M, NegQM}, QuotM); // Q taken from XQ register, negated if necessary, or all 1s when dividing by zero
|
||
|
mux3 #(`XLEN) remmux(W[0], WnM, XQ[0], {Div0M, NegWM}, RemM); // REM taken from W register, negated if necessary, or from X when dividing by zero
|
||
|
|
||
|
//////////////////////////////
|
||
|
// Divider FSM to sequence Busy and Done
|
||
|
//////////////////////////////
|
||
|
|
||
|
always_ff @(posedge clk)
|
||
|
if (reset | FlushE) begin
|
||
|
state <= IDLE;
|
||
|
end else if (DivStartE) begin
|
||
|
step <= 1;
|
||
|
if (Div0E) state <= DONE;
|
||
|
else state <= BUSY;
|
||
|
end else if (state == BUSY) begin // pause one cycle at beginning of signed operations for absolute value
|
||
|
if (step[STEPBITS] | (`XLEN==64) & W64E & step[STEPBITS-1]) begin // complete in half the time for W-type instructions
|
||
|
state <= DONE;
|
||
|
end
|
||
|
step <= step + 1;
|
||
|
end else if (state == DONE) begin
|
||
|
if (StallM) state <= DONE;
|
||
|
else state <= IDLE;
|
||
|
end
|
||
|
endmodule
|