cvw/fpga/zsbl/sd.c

161 lines
4.1 KiB
C
Raw Normal View History

#include "sd.h"
#include "spi.h"
#include "uart.h"
// Parallel byte update CRC7-CCITT algorithm.
// The result is the CRC7 result, left shifted over by 1
// which is perfect, since we append a 1 at the end anyway
uint8_t crc7(uint8_t prev, uint8_t in) {
// CRC polynomial 0x89
uint8_t remainder = prev ^ in;
remainder ^= (remainder >> 4) ^ (remainder >> 7);
remainder = (remainder << 1) ^ (remainder << 4);
return remainder & 0xff;
}
// Need to check this. This could be wrong as well.
uint16_t crc16(uint16_t crc, uint8_t data) {
// CRC polynomial 0x11021
crc = (uint8_t)(crc >> 8) | (crc << 8);
crc ^= data;
crc ^= (uint8_t)(crc >> 4) & 0xf;
crc ^= crc << 12;
crc ^= (crc & 0xff) << 5;
return crc;
}
// sd_cmd ------------------------------------------------------------
// Sends SD card command using SPI mode.
// This function:
// * Chooses the response length based on the input command
// * Makes use of SPI's full duplex. For every byte sent,
// a byte is received. Thus for every byte sent as part of
// a command, a useless byte must be read from the receive
// FIFO.
// * Takes advantage of the Sifive SPI peripheral spec's
// watermark and interrupt features to determine when a
// transfer is complete. This should save on cycles since
// no arbitrary delays need to be added.
uint64_t sd_cmd(uint8_t cmd, uint32_t arg, uint8_t crc) {
uint8_t response_len;
uint8_t i;
uint64_t r;
uint8_t rbyte;
// Initialize the response with 0's.
r = 0;
// Choose response length based on cmd input.
// Most commands return an R1 format response.
switch (cmd) {
case 8:
response_len = R7_RESPONSE;
break;
case 12:
response_len = R1B_RESPONSE;
default:
response_len = R1_RESPONSE;
break;
}
// Make interrupt pending after response fifo receives the correct
// response length. Probably unecessary so let's wait and see what
// happens.
// write_reg(SPI_RXMARK, response_len);
// Write all 6 bytes into transfer fifo
spi_sendbyte(0x40 | cmd);
spi_sendbyte(arg >> 24);
spi_sendbyte(arg >> 16);
spi_sendbyte(arg >> 8);
spi_sendbyte(arg);
spi_sendbyte(crc);
// Wait for command to send
// The Transfer IP bit should go high when the txFIFO is empty
// while(!(read_reg(SPI_IP) & 1)) {}
waittx();
// Read the dummy rxFIFO entries to move the head back to the tail
for (i = 0; i < 6; i++) {
spi_readbyte();
}
// Send "dummy signals". Since SPI is duplex,
// useless bytes must be transferred
for (i = 0; i < response_len; i++) {
spi_sendbyte(0xFF);
}
// Wait for transfer fifo again
waittx();
// Read rxfifo response
for (i = 0; i < response_len; i++) {
rbyte = spi_readbyte();
r = r | (rbyte << ((response_len - 1 - i)*8));
}
return r;
} // sd_cmd
uint64_t sd_read64(uint16_t * crc) {
uint64_t r;
uint8_t rbyte;
int i;
for (i = 0; i < 8; i++) {
spi_sendbyte(0xFF);
}
waittx();
for (i = 0; i < 8; i++) {
rbyte = spi_readbyte();
*crc = crc16(*crc, rbyte);
r = r | (rbyte << ((8 - 1 - i)*8));
}
return r;
}
// Utility defines for CMD0, CMD8, CMD55, and ACMD41
#define CMD0() sd_cmd( 0, 0x00000000, 0x95) // Reset SD card into IDLE state
#define CMD8() sd_cmd( 8, 0x000001aa, 0x87) //
#define CMD55() sd_cmd(55, 0x00000000, 0x65) //
#define ACMD41() sd_cmd(41, 0x40000000, 0x77) //
// init_sd: ----------------------------------------------------------
// This first initializes the SPI peripheral then initializes the SD
// card itself. We use the uart to display anything that goes wrong.
void init_sd(){
spi_init();
uint64_t r;
print_uart("Initializing SD Card in SPI mode");
// Reset SD Card command
// Initializes SD card into SPI mode if CS is asserted '0'
if (!(( r = CMD0() ) & 0x10) ) {
print_uart("SD ERROR: ");
print_uart_byte(r & 0xff);
print_uart("\r\n");
}
//
if (!(( r = CMD8() ) & 0x10 )) {
print_uart("SD ERROR: ");
print_uart_byte(r & 0xff);
print_uart("\r\n");
}
do {
CMD55();
r = ACMD41();
} while (r == 0x1);
print_uart("SD card is initialized");
}